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The Ricci flow for simply connected nilmanifolds

Jorge Lauret

We prove that the Ricci flow g(t) starting at any metric on R
n that

is invariant by a transitive nilpotent Lie group N can be obtained
by solving an ordinary differential equation (ODE) for a curve of
nilpotent Lie brackets on R

n. By using that this ODE is the neg-
ative gradient flow of a homogeneous polynomial, we obtain that
g(t) is type-III, and, up to pull-back by time-dependent diffeomor-
phisms, that g(t) converges to the flat metric, and the rescaling
|R(g(t))| g(t) converges to a Ricci soliton in C∞, uniformly on
compact sets in R

n. The Ricci soliton limit is also invariant by
some transitive nilpotent Lie group, though possibly nonisomor-
phic to N .

1. Introduction

It is expected that the Ricci flow behaves nicely in the presence of an addi-
tional structure on the starting metric. This is well known in the case
of Kähler manifolds, warped products, locally homogeneous 3-manifolds
and rotationally symmetric manifolds, among many others. We study in
this paper the case of nilmanifolds, a structure with strong algebraic data
involved but yet geometrically very rich and exotic.

Let g be a Riemannian metric on R
n that is invariant under a transitive

nilpotent Lie group N . Let us consider the Ricci flow g(t) starting at g,
that is,

∂
∂tg(t) = −2 Rc(g(t)), g(0) = g,

and g(t) is N -invariant for all t. We prove the following results:

• g(t) is defined for t ∈ [0,∞) and there exists a constant Cn that only
depends on n such that ‖Rm(g(t))‖ ≤ Cn

t for all t ∈ (0,∞); in partic-
ular, g(t) is a type-III solution.

• The quantity ‖Rc(g(t))‖
|R(g(t))| is strictly decreasing for all t unless g is a Ricci

soliton.
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• If {h(t)} ⊂ GLn(R) ⊂ Diff(Rn) is the solution to the ordinary
differential equation (ODE)

d
dth(t) = −h(t) Rict, h(0) = I,

where Rict = Ric(g(t))(0) is the Ricci operator of g(t) at the point
0 ∈ R

n, then the metrics h(t)∗g(t) converge in C∞ to the flat metric
uniformly on compact sets in R

n, as t → ∞.

• h(t)∗g(t) is the negative gradient flow of the functional square norm
of the Ricci tensor.

• If we denote by Rt := R(g(t)) the scalar curvature of g(t) (recall it is
constant on R

n), and g is nonflat, then the metrics

g̃(t) := |Rt|h(t)∗g(t)

converges in C∞ to a Ricci soliton metric g∞, uniformly on compact
sets in R

n, as t → ∞. The metric g∞ on R
n is also invariant under a

transitive nilpotent Lie group, though possibly non-isomorphic to N .
We note that R(g̃(t)) ≡ −1 and so g∞ is never flat as R(g∞) = −1.

These results show that most of the nice properties of the Ricci flow for
nilmanifolds of dimension 3 and 4 discovered and proved in [1–4], actually
hold in the general case.

Our approach is based on an ODE for Lie brackets which is equivalent in
a natural and specific sense to the Ricci flow g(t) starting at any nilmanifold,
and may be described as follows.

Let Mn = (Mn, C∞) be the space of Riemannian metrics on R
n endowed

with the compact open C∞-topology (i.e., uniform C∞-convergence on
compact sets ). For each μ ∈ Nn ⊂ Λ2(Rn)∗ ⊗ R

n, the algebraic subset of
nilpotent Lie brackets on R

n, a metric gμ ∈ Mn that is invariant by some
transitive nilpotent Lie group can be defined in such a way that

Nn ↪→ Mn, μ 
→ gμ,

turns out to be an embedding (i.e., μk → λ (vector space topology) if and
only if gμk

→ gλ in C∞). Nn contains, up to isometry, all left-invariant met-
rics on simply connected nilpotent Lie groups of dimension n (see Section 2).

Let g(t) be the Ricci flow with g(0) = gμ0 , μ0 ∈ Nn. We prove that g(t)
is given, up to pull-back by time-dependent diffeomorphisms, by gμ(t) for
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the solution μ(t) ∈ Nn to the ODE (bracket flow)

d
dtμ(t) = μ(t)(Ricμ(t) ·, ·) + μ(t)(·, Ricμ(t) ·) − Ricμ(t) μ(t)(·, ·), μ(0) = μ0,

where Ricμ : R
n −→ R

n denotes the Ricci operator of gμ at 0 ∈ R
n (see

Theorem 5.1). This ODE is precisely the negative gradient flow of the
4-degree homogeneous polynomial F (μ) = tr Ric2

μ, whose only critical point
is the global minima 0 ∈ Nn (i.e., the flat metric g0). The fact that g(t) is
a type-III solution follows from an upper bound for the rate of decay of
‖μ(t)‖ → 0 (see Section 6.2).

However, when restricted to any sphere, the critical points of F are
precisely the Ricci soliton metrics in Nn, and the convergence to a unique
Ricci soliton of the corresponding normalized Ricci flow (the one for which
R(gμ) = −1

4‖μ‖2 ≡ −1) follows from the known Thom conjecture (see
Section 7.2).

The bracket flow has already been used to study the Ricci flow for nil-
manifolds in [5] and [6], and for three-dimensional unimodular Lie groups
in [7] (see Remark 5.2). In [8], the equivalence (up to pull-back by time-
dependent diffeomorphisms) between the Ricci and bracket flows has been
proved for homogeneous Riemannian manifolds in general.

2. Nilmanifolds as metrics on R
n

Let us consider the euclidean space R
n as a differentiable manifold, and let

Mn denote the space of all Riemannian metrics on R
n. The tangent space

T0 R
n at the point 0 ∈ R

n is naturally identified with R
n, and if L(x) :

R
n −→ R

n is the translation by x ∈ R
n (i.e. L(x)y = x + y for all y ∈ R

n),
then d L(x)|0 : T0 R

n −→ Tx R
n is an isomorphism of vector spaces. The

canonical inner product 〈·, ·〉 on R
n therefore determines a distinguished

element g0 ∈ Mn given by

(2.1)
g0(x)(d L(x)|0v, dL(x)|0w) := 〈v, w〉, ∀v, w ∈ R

n ≡ T0 R
n, x ∈ R

n,

that is, the flat metric. Any inner product on R
n actually defines in the same

way a flat element in Mn.
Let μ be a bilinear map

μ : R
n × R

n −→ R
n,

and assume that μ is skew symmetric, satisfies the Jacobi identity (i.e., left
multiplication maps adμ x are all derivations of the algebra (Rn, μ)) and that
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μ is nilpotent (i.e., the operators adμ x are all nilpotent). In other words,
(Rn, μ) is a nilpotent Lie algebra. It is well known that the simply con-
nected (always connected) nilpotent Lie group Nμ with Lie algebra (Rn, μ)
is diffeomorphic to R

n; moreover, the exponential map expμ : R
n −→ Nμ is

a diffeomorphism. One can therefore identify Nμ with R
n via expμ and use

the Baker–Campbell–Hausdorff formula

expμ(x) expμ(y) = expμ(x + y + pμ(x, y)), ∀x, y ∈ R
n,

where pμ : R
n × R

n −→ R
n is a polynomial function (see for instance

[9, Section 2.15]), to define a group operation on R
n by

x ·μ y := x + y + pμ(x, y), ∀x, y ∈ R
n.

In this way, (Rn, ·μ) becomes the simply connected nilpotent Lie group with
Lie algebra (Rn, μ).

Remark 2.1. If x = (x1, ..., xn) and y = (y1, ..., yn), then the product x ·μ y
is polynomial in x1, ..., yn, and conversely, it is proved in [10] that any group
operation on R

n, which is polynomial in the coordinates is necessarily a
nilpotent Lie group structure on R

n.

It is easy to see that pμ(ax, bx) = 0 for all a, b ∈ R, x ∈ R
n, which gives

that 0 is the identity element of the group (Rn, ·μ) and that −x is the inverse
of any x ∈ R

n.
We may define a Riemannian metric attached to each nilpotent Lie

bracket μ, analogously to what we did in (2.1) for the flat metric g0, which
will correspond to μ = 0. If Lμ(x) : R

n −→ R
n denotes left multiplication by

x in the group (Rn, ·μ) (i.e. Lμ(x)y = x + y + pμ(x, y) for all y ∈ R
n), then

Lμ(x) ∈ Diff(Rn) (with inverse Lμ(−x)), and thus μ defines a Riemannian
metric gμ on R

n by

(2.2)
gμ(x)(d Lμ(x)|0v, dLμ(x)|0w) := 〈v, w〉, ∀v, w ∈ R

n ≡ T0 R
n, x ∈ R

n,

where 〈·, ·〉 = gμ(0) is the canonical inner product on R
n. Thus Lμ(x) is

automatically an isometry of gμ for any x ∈ R
n, and so the nilpotent Lie

group (Rn, ·μ) acts transitively by isometries on (Rn, gμ).
The degree of nilpotency 1 ≤ kμ ≤ n − 1 of μ is defined by

kμ := min{j ∈ N : (adμ x)j = 0, ∀x ∈ R
n},
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which is usually referred to, by saying that μ is kμ-step nilpotent. An explicit
formula for pμ is really hard to get when kμ is large, although the low order
terms are well known (see [9, (2.15.17)]):

pμ(x, y) = 1
2μ(x, y) + 1

12μ(x, μ(x, y)) − 1
12μ(y, μ(x, y))(2.3)

− 1
48μ(y, μ(x, μ(x, y))) − 1

48μ(x, μ(y, μ(x, y)))
+ commutators in five or more terms.

In any case, we have that

(2.4) pμ(x, y) =
(
p1

μ(x, y), ..., pn
μ(x, y)

)
,

where pi
μ : R

n × R
n −→ R are polynomial functions on (x, y) of degree ≤ kμ,

whose coefficients are universal polynomial expressions on μ depending only
on n, of degree ≤ n − 2 (and actually ≤ kμ − 1 for each μ). By ‘polynomial
on μ’ we will always mean polynomial on the coordinates μk

ij ’s of μ defined by

μ(ei, ej) =
∑

k

μk
ijek.

For each 1 ≤ m ≤ n we have that

pm
μ (x, y) = 1

2

∑
μm

ij xiyj + 1
12

∑
μk

ijμ
m
lk xixlyj − 1

12

∑
μk

ijμ
m
lk xiyjyl

+ monomials of degree ≥ 4.

It follows from (2.3) that pμ(ϕx, ϕy) = ϕpμ(x, y) for all x, y ∈ R
n and

ϕ ∈ Aut(Rn, μ), and hence Aut(Rn, μ) ⊂ Aut(Rn, ·μ). Conversely, if ϕ ∈ Aut
(Rn, ·μ), then ϕ is linear as exp : (Rn, μ) −→ (Rn, ·μ) is the identity map and
therefore ϕ = dϕ|0. By taking the second derivative at t = 0 of pμ(tx, ty) one
can easily show that ϕ ∈ Aut(Rn, μ), and, in consequence,

(2.5) Aut(Rn, ·μ) = Aut(Rn, μ).

We note that Lμ(x) and its inverse Lμ(−x) are both polynomial diffeo-
morphisms of R

n. When kμ = 2, it follows from (2.3) that the product is
simply given by x ·μ y = x + y + 1

2μ(x, y), and hence Lμ(x) is actually an
affine map of R

n: Lμ(x)y = (I + 1
2 adμ x)y + x for all y ∈ R

n.
It will be useful to have an expression of the metric gμ in terms of the

canonical global chart (x1, ..., xn) of R
n.
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Lemma 2.1. The coordinates (gμ)ij : R
n −→ R of the metric gμ are given

by

(gμ)ij(x) = δij +
∂pi

μ

∂yj
(−x, x) +

∂pj
μ

∂yi
(−x, x) +

∑

k

∂pk
μ

∂yi
(−x, x)

∂pk
μ

∂yj
(−x, x).

Proof. By (2.2) we have

(gμ)ij(x) = 〈d Lμ(x)|−1
0 ei, d Lμ(x)|−1

0 ej〉 = 〈dLμ(−x)|xei, dLμ(−x)|xej〉,

and since from (2.4) we get that

dLμ(−x)|xei = d
dt |0Lμ(−x)(x + tei) = d

dt |0tei + pμ(−x, x + tei)(2.6)

= ei +

(
∂p1

μ

∂yi
(−x, x), ...,

∂pn
μ

∂yi
(−x, x)

)

,

the formula follows. �

For a multiindex α = (α1, ..., αn) we denote xα := xα1
1 ...xαn

n for
x = (x1, ..., xn), and |α| := α1 + . . . αn.

Corollary 2.1. (gμ)ij is a polynomial on x,

(gμ)ij(x) =
∑

α

aij
α (μ)xα,

of degree ≤ 2(kμ − 1), and each coefficient aij
α is a universal polynomial

expression on μ depending only on i, j, α and n, of degree |α| ≤ 2(n − 2)
(and actually ≤ 2(kμ − 1) for each μ).

Example 2.1. It is easy to see that if kμ = 2 then

(gμ)ij(x) = δij − 1
2

∑

k

(μi
kj + μj

ki)xk + 1
4

∑

kl

(
∑

r

μr
kiμ

r
lj

)

xkxl.

We use the following notion of convergence for metrics on R
n (see for

instance [11, Chapter 3]).

Definition 2.1. Let {gk}k∈N, g be Riemannian metrics on R
n. We say that

gk converges in C∞ to g uniformly on compact sets in R
n (gk → g for short)
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if for any compact set K ⊂ R
n, p > 0 and ε > 0, there exists k0 = k0(K, p, ε)

such that for k ≥ k0,

sup
1≤q≤p

sup
x∈K

‖∇q(gk − g)‖g < ε,

where ∇ is the Levi–Civita connection of g and ‖ · ‖g denotes the norm in
the spaces of sections of the corresponding tensor bundles over R

n.

Remark 2.2. By using global coordinates in R
n, convergence gk → g can

be rephrased as follows: for any multi-index α the partial derivatives ∂α(gk)ij

converge to ∂αgij uniformly on compact sets of R
n, as k → ∞.

Remark 2.3. As usual, for a continuous family of metrics {gt}, conver-
gence gt → g as t → ∞ will mean gtk

→ g for any sequence tk → ∞, or
equivalently, we may replace k0 by t0 = t0(K, p, ε) above and require the
condition for t0 ≤ t.

Proposition 2.1. μk → λ in Nn ⊂ Vn (usual vector space topology) if and
only if gμk

converges in C∞ to gλ uniformly on compact sets in R
n.

Remark 2.4. In [12], the relationship between the ‘algebraic’ convergence
of brackets and other well-known notions, including local, infinitesimal and
pointed or Cheeger–Gromov convergence, is studied in the general homoge-
neous case.

Proof. The coordinates (gμ)ij of a metric gμ have been described in Corollary
2.1. Since the coefficients aα(μ) depend polynomially on μ, we see at once
that gμk

→ gλ follows from μk → λ by using Remark 2.2.
For the converse assertion, we first note that if ∇μ denotes the Levi–

Civita connection of gμ, then

gμ(0)
(
(∇μ

er
ej)0, ei

)
= 1

2(μi
rj + μj

ri + μr
ji)

(see for instance [13, 7.27]), and if α is the multi-index with 1 at entry r and
0 elsewhere, then it is easy to see by using Lemma 2.1 that

∂α(gμ)ij(0) = −1
2(μi

rj + μj
ri)

(see Example 2.1). Therefore, the convergence gμk
→ gλ implies that (μk)i

rj +
(μk)

j
ri + (μk)r

ji → λi
rj + λj

ri + λr
ji and (μk)i

rj + (μk)
j
ri → λi

rj + λj
ri, which

gives uniform convergence (μk)r
ji → λr

ji for all i, j, r, as k → ∞, and so
μk → λ. �
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3. Some technical background

The space of all skew-symmetric algebras of dimension n is parameterized
by the vector space

Vn := Λ2(Rn)∗ ⊗ R
n

= {μ : R
n × R

n −→ R
n : μ bilinear and skew-symmetric}.

Then

Nn := {μ ∈ Vn : μ satisfies the Jacobi identity and is nilpotent}

is an algebraic subset of Vn as all the required conditions can be written as
zeroes of polynomial functions. Nn is often called the variety of nilpotent
Lie algebras (of dimension n). There is a natural linear action of GLn(R) on
Vn given by

(3.1) g.μ(x, y) = gμ(g−1x, g−1y), x, y ∈ R
n, g ∈ GLn(R), μ ∈ Vn.

It is easily seen that Nn is GLn(R)-invariant, the Lie algebra isomorphism
classes are precisely the GLn(R)-orbits and the isotropy subgroup GLn(R)μ

equals Aut(Rn, μ) for any μ ∈ Nn.
The representation π : gln(R) −→ End(Vn) obtained by differentiation

of (3.1) is given by

(3.2) π(α)μ = −δμ(α) = d
dt |t=0 etα.μ = αμ(·, ·) − μ(α·, ·) − μ(·, α·),

for all α ∈ gln(R), μ ∈ Vn. We note that δμ : gln(R) −→ Vn is linear and
δμ(α) = 0 if and only if α ∈ Der(μ), the Lie algebra of derivations of the
algebra μ.

The canonical inner product 〈·, ·〉 on R
n determines an O(n)-invariant

inner product on Vn, also denoted by 〈·, ·〉, as follows:

(3.3) 〈μ, λ〉 =
∑

〈μ(ei, ej), λ(ei, ej)〉 =
∑

〈μ(ei, ej), ek〉〈λ(ei, ej), ek〉,

and also the standard Ad(O(n))-invariant inner product on gln(R) given by

〈α, β〉 = tr αβt =
∑

〈αei, βei〉 =
∑

〈αei, ej〉〈βei, ej〉, α, β ∈ gln(R),

where {e1, ..., en} denotes the canonical basis of R
n.
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Remark 3.1. We have made several abuses of notation concerning inner
products. Recall that 〈·, ·〉 has been used in this paper to denote an inner
product on R

n, Vn and gln(R).

We note that π(α)t = π(αt) and (adα)t = adαt for any α ∈ gln(R), due
to the choice of the canonical inner products everywhere.

4. Geometry of the metrics gµ

We describe in this section some well-known facts on the geometry of a
metric gμ ∈ Mn, concerning mainly isometries and Ricci curvature.

For each μ ∈ Nn, let gμ be the metric on R
n defined as in (2.2). Any left

invariant metric on any n-dimensional simply connected nilpotent Lie group
is isometric to at least one element in the subset

{gμ : μ ∈ Nn} ⊂ Mn.

If μ, λ ∈ Nn, then gμ and gλ are respectively isometric to two left invariant
metrics on the same nilpotent Lie group if and only if λ ∈ GLn(R).μ. For
any μ ∈ Nn and inner product (·, ·) on R

n we may also define gμ,(·,·) as in
(2.2) by using (·, ·) instead of 〈·, ·〉. The set

{gμ,(·,·) : μ ∈ Nn, (·, ·) inner product on R
n} ⊂ Mn

is therefore the set of all metrics on R
n which are invariant by some transitive

nilpotent Lie group.

Theorem 4.1 [14].

(i) The isometry group is given by Iso(Rn, gμ) = Kμ � Lμ(Rn) for any
μ ∈ Nn, where Kμ is the isotropy subgroup at 0 ∈ R

n, and Kμ :=
Aut(Rn, μ) ∩ O(n) is the group of 〈·, ·〉-orthogonal automorphisms
(recall (2.5)).

(ii) If μ, λ ∈ Nn, then gμ and gλ are isometric if and only if λ ∈ O(n).μ
(in particular, they must be invariant under isomorphic nilpotent Lie
groups).

(iii) gμ,(·,·) and gμ′,(·,·)′ are isometric if and only if there exists h ∈ GLn(R)
such that μ′ = h.μ and (·, ·)′ = (h·, h·).

It follows from (2.2) that not only the metric gμ is completely determined
by its value at 0 but also are its scalar curvature

Rμ := R(gμ)(0) ∈ R,
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its Ricci tensor

Rcμ := Rc(gμ)(0) : R
n × R

n −→ R (symmetric form)

and its curvature tensor

Rmμ := Rm(gμ)(0) : R
n × R

n × R
n × R

n −→ R (4-linear map).

We denote by

Ricμ := Ric(gμ)(0) : R
n −→ R

n (symmetric linear operator)

the Ricci operator of gμ, which is given by Rcμ(x, y) = 〈Ricμ x, y〉 for all
x, y ∈ R

n.

Lemma 4.1. Let μ ∈ Nn.

(i) The Ricci tensor and Ricci operator of gμ are respectively given by

Rcμ(x, y) = −1
2

∑
〈μ(x, ei), ej〉〈μ(y, ei), ej〉 + 1

4

∑
〈μ(ei, ej), x〉〈μ(ei, ej), y〉,

for all x, y ∈ R
n, and

Ricμ = −1
2

∑
(adμ ei)t adμ ei + 1

4

∑
adμ ei(adμ ei)t,

where {ei} is the canonical basis of R
n.

(ii) The scalar curvature of gμ is given by Rμ = −1
4‖μ‖2 (see (3.3)).

(iii) [15] If μ �= 0 then the Ricci tensor Rcμ has always both positive and
negative directions.

Proof. Parts (i) and (ii) follow easily from the general curvature formulas for
homogeneous spaces (see, for instance [13, 7.38]). We prove (iii). It follows
from (i) that any x ∈ R

n orthogonal to μ(Rn, Rn) and such that adμ x �= 0
gives Rc(x, x) < 0, and any y ∈ μ(Rn, Rn) with adμ y = 0 has Rc(y, y) > 0
(both such x and y are easily seen to exist by the nilpotency of μ). �
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5. Ricci flow starting at a metric gµ

For a given μ0 ∈ Nn, let g(t) be a Ricci flow starting at gμ0 , that is, a one-
parameter family {g(t)} ⊂ Mn that satisfies the Ricci flow equation

(5.1) ∂
∂tg(t) = −2 Rc(g(t)), g(0) = gμ0 .

The short-time existence of a solution follows from [16], as gμ0 is homo-
geneous and hence complete and of bounded curvature. Alternatively, one
may require (Rn, ·μ0)-invariance of g(t) for all t, and thus g(t) will also be
determined by its value at 0, denoted by 〈·, ·〉t := g(t)(0), as in (2.2):

g(t)(x)(d Lμ0(x)|0v, dLμ0(x)|0w) := 〈v, w〉t,
∀v, w ∈ R

n ≡ T0 R
n, x ∈ R

n.

The Ricci flow equation (5.1) is therefore equivalent to the ODE

(5.2) d
dt〈·, ·〉t = −2 Rc(〈·, ·〉t), 〈·, ·〉0 = 〈·, ·〉,

where Rc(〈·, ·〉t) := Rc(g(t))(0), and hence short time existence and unique-
ness of the solution in the class of (Rn, ·μ0)-invariant metrics is guaranteed.
In this way, g(t) is homogeneous and so complete and of bounded curvature
for all t; hence the uniqueness also follows from [17]. It is actually a sim-
ple matter to prove that the uniqueness, in turn, implies our assumption of
(Rn, ·μ0)-invariance. The need for this circular argument is due to the fact
that the uniqueness of the Ricci flow solution is still an open problem in the
noncompact general case (see [18]).

On the other hand, for a given μ0 ∈ Nn, we may consider the bracket
flow defined for a curve {μ = μ(t)} ⊂ Vn by the following ODE:

(5.3) d
dtμ = δμ(Ricμ), μ(0) = μ0,

where δμ : gln(R) −→ Vn is defined by

δμ(α) = μ(α·, ·) + μ(·, α·) − αμ(·, ·), α ∈ gln(R), μ ∈ Vn.

Equation (5.3) is well defined as Ricμ can be computed for any μ ∈ Vn as in
Lemma 4.1, (i), and not only for μ ∈ Nn. However, this technicality is only
needed to define the ODE, since the solution μ(t) stays in Nn (and even in
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the submanifold GLn(R).μ0), as long as μ0 ∈ Nn. Indeed,

δμ(Ricμ) = d
dt |t=0 e−t Ricμ .μ ∈ Tμ GLn(R).μ, ∀μ ∈ Vn,

and thus μ(t) ∈ GLn(R).μ0 ⊂ Nn for all t by a standard ODE theory argu-
ment.

We now show that the flows (5.1) and (5.3) are intimately related. Let
gμ0 be the Riemannian metric on R

n defined as in (2.2) for a nilpotent Lie
bracket μ0 : R

n × R
n −→ R

n.

Theorem 5.1. If g(t) is the solution to the Ricci flow with g(0) = gμ0 (see
(5.1)), and μ(t) is the solution to the bracket flow with μ(0) = μ0 (see (5.3)),
then there exists a one-parameter family {h(t)} ⊂ GLn(R) such that

g(t) = h(t)∗gμ(t), ∀t.

Furthermore, the following conditions hold for h = h(t) for all t:

(i) d
dth = −h Ric(g(t))(0) = −Ricμ(t) h, h(0) = I.

(ii) 〈·, ·〉t = 〈h·, h·〉 is the solution to (5.2).

(iii) μ(t) = hμ0(h−1·, h−1·).

Remark 5.1. The Ricci flow g(t) and the bracket flow μ(t) differ therefore
only by pullback by a time-dependent diffeomorphism (linear map), and are
equivalent in the following sense: each one can be obtained from the other
by solving the corresponding ODE in part (i) and applying parts (ii) or (iii),
accordingly. In [8], this result has been generalized for Ricci flows starting
at any homogeneous Riemannian manifold.

Remark 5.2. Part (iii) of this theorem has been proved in [5, Section 2.2],
and we also refer to [6] for a study of the Ricci flow on nilmanifolds via the
bracket flow (5.3). In the case of 3-dimensional unimodular Lie groups, a
global picture of the qualitative behavior of the Ricci flow is given in [7] by
using the same approach proposed in the above theorem: to vary brackets
instead of inner products. Every metric is represented à la Milnor by a triple
(a1, a2, a3) ∈ R

3 of Lie bracket structural constants in [7, Theorem 2.4], and
the ODE for the normalized quantities (a2/a1, a3/a1) which is equivalent to
the Ricci flow in the sense above is given in [7, Proposition 3.1].

Remark 5.3. It follows that the map h(t) ∈ GLn(R) satisfies, for all t, the
following properties:
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• h(t) : (Rn, g(t)) −→ (Rn, gμ(t)) is an isometry.

• h(t) : (Rn, μ0) −→ (Rn, μ) is a Lie algebra isomorphism.

• h(t) : (Rn, ·μ0) −→ (Rn, ·μ) is a Lie group isomorphism.

• h(t) : (Rn, 〈·, ·〉t) −→ (Rn, 〈·, ·〉) is an isometry of inner product vector
spaces.

Proof. We first consider the solution h = h(t) ∈ GLn(R) to the ODE

d
dth = −h Ric(〈·, ·〉t), h(0) = I,

where Ric(〈·, ·〉t) := Ric(g(t))(0), which is defined on the same interval of
time as g(t) by a standard result in ODE theory (h(t) is easily seen to be
invertible for all t). If (·, ·)t := 〈h(t)·, h(t)·〉 and h′ := d

dth(t) then

d
dt(·, ·)t = 〈h′·, h·〉 + 〈h·, h′·〉

= −〈h Ric(〈·, ·〉t)·, h·〉 − 〈h·, h Ric(〈·, ·〉t)·〉
= −(Ric(〈·, ·〉t)·, ·)t − (·, Ric(〈·, ·〉t)·)t.

On the other hand, since Ric(〈·, ·〉t) is symmetric with respect to 〈·, ·〉t, it
follows from (5.2) that 〈·, ·〉t satisfies

d
dt〈·, ·〉t = −2 Rc(〈·, ·〉t) = −2〈Ric(〈·, ·〉t)·, ·〉t

= −〈Ric(〈·, ·〉t)·, ·〉t − 〈·, Ric(〈·, ·〉t)·〉t.

Thus (·, ·)t and 〈·, ·〉t, as curves in the manifold GLn(R)/O(n) of inner prod-
ucts on R

n, satisfy the same ODE and (·, ·)0 = 〈·, ·〉0 = 〈·, ·〉. Part (ii) there-
fore holds by uniqueness of the solution.

It now follows from (ii) that h(t) : (Rn, g(t)) −→ (Rn, gλ(t)) is an isome-
try for the curve λ(t) := h(t).μ0 (see Theorem 4.1, (iii)). This implies that
Ricλ(t) = h(t) Ric(〈·, ·〉t)h(t)−1, or equivalently, h′ = −Ricλ(t) h, and thus

d
dtλ = h′μ0(h−1·, h−1·) − hμ0(h−1h′h−1·, h−1·) − hμ0(h−1·, h−1h′h−1·)

= (h′h−1)hμ0(h−1·, h−1·) − hμ0(h−1(h′h−1)·, h−1·)
− hμ0(h−1·, h−1(h′h−1)·)

= −δλ(h′h−1) = δλ(Ricλ).

But d
dtμ = δμ(Ricμ) and μ(0) = λ(0) = μ0, so that μ(t) = λ(t) for all t, from

which parts (i) and (iii) follow. We also obtain that h(t) : (Rn, g(t)) −→
(Rn, gμ(t)) is an isometry, concluding the proof of the theorem. �



844 Jorge Lauret

6. The bracket flow

Let gμ0 be the Riemannian metric on R
n corresponding to the nilpotent Lie

bracket μ0 ∈ Nn (see (2.2)). According to Theorem 5.1, the Ricci flow g(t)
with g(0) = gμ0 is equivalent in a natural and specific sense to the ODE (5.3)
for a curve μ(t) ∈ Vn. In particular, the maximal interval of time where a
solution exists is the same for both flows. We also note that at each time
t, the Riemannian manifolds (Rn, g(t)) and (Rn, gμ(t)) are isometric, so that
the behavior of the curvature and of any other Riemannian invariant along
the Ricci flow can be studied on the bracket flow μ(t) given by (5.3).

It is proved in [19, Lemma 4.1] that the gradient of the functional

F : Vn −→ R, F (μ) = tr Ric2
μ,

is given by

(6.1) grad(F )μ = −δμ(Ricμ), ∀μ ∈ Λ2n∗ ⊗ n.

One therefore obtains that the bracket flow (5.3) is precisely the negative
gradient flow of F . It follows from Theorem 5.1 that

the Ricci flow starting at any simply connected nilmanifold is,
up to pull-back by time-dependent diffeomorphisms, the negative
gradient flow of the square norm of the Ricci tensor on the set of
metrics whose value at the point 0 ∈ R

n is g(0) and are invariant
under some nilpotent Lie group.

This remarkable fact paves the way to find estimates and get convergence
results which may not be evident in the genuine Ricci flow equation.

Remark 6.1. It is proved in [20] that the moment map m : Nn −→ gln(R)
for the GLn(R)-action (3.1) (see [21, (4.4)]) is given by

m(μ) = 4
‖μ‖2 Ricμ .

Thus F is, up to scaling, the square norm of the moment map and (5.3) its
negative gradient flow.

6.1. Some ODE’s along the bracket flow

We are interested in the behavior of the Ricci and scalar curvature along
the bracket flow.
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Lemma 6.1. Let μ ∈ Nn.

(i) δμ(I) = μ.

(ii) δt
μ(μ) = −4 Ricμ, where δt

μ : Vn −→ gln(R) is the transpose of δμ.
Equivalently,

tr Ricμ α = −1
4〈δμ(α), μ〉, ∀α ∈ gln(R).

(iii) tr Ricμ D = 0 for any D ∈ Der(Rn, μ).

Proof. It follows from [20, Proposition 3.5] and Lemma 4.1, (i) that

〈2 Ricμ, α〉 = 1
2〈π(α)μ, μ〉, ∀α ∈ gln(R),

thus (ii) holds by using (3.2). Part (iii) follows from (ii) and part (i) does
from the definition of δμ. �

Recall that δμ(Ricμ) = 0 if and only if Ricμ ∈ Der(Rn, μ), but according
to part (iii) in the above lemma this is equivalent to Ricμ = 0. From Lemma
4.1, (ii), we conclude that the only fixed point of the bracket flow (5.3) is
μ = 0, the flat metric.

Lemma 6.2. The bracket flow (5.3) for μ = μ(t) produces the following
ODE’s:

(i) d
dt Ricμ = −1

2Δμ(Ricμ), where

Δμ := S ◦ δt
μδμ : gln(R) −→ gln(R), S(α) := 1

2(α + αt).

(ii) d
dt Rμ = 2 tr Ric2

μ = 2||Rcμ ||2.
(iii) d

dt‖μ‖2 = −8 tr Ric2
μ.

Remark 6.2. The operator δt
μδμ is precisely the Laplacian on

C1(Rn, μ) = (Rn)∗ ⊗ R
n = gln(R)

of the Lie algebra cohomology of (Rn, μ) relative to the adjoint representa-
tion.
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Proof. Let us also denote by Ric the map defined by

Ric : Vn −→ gln(R), Ric(μ) := Ricμ .

It follows from Lemmas 6.1, (ii) and (3.2) that

〈d Ric |μδμ(α), β〉 = 〈 d
dt |0 Rice−tα.μ, β〉 = 1

4
d
dt |0〈π(β)e−tα.μ, e−tα.μ〉

= 1
2〈π(β)μ, δμ(α)〉 = −1

2〈δt
μδμ(α), β〉,

∀β ∈ gln(R), βt = β,

from where one deduces that

(6.2) d Ric |μδμ(α) = −1
2Δμ(α), ∀α ∈ gln(R).

This implies part (i) since

d
dt Ricμ = d Ric |μ d

dtμ = d Ric |μδμ(Ricμ) = −1
2Δμ(Ricμ).

Part (iii) follows from (ii) by using that tr Ricμ = −1
4‖μ‖2 (see Lemma 4.1,

(ii)), and by using (i) we can prove part (ii) as follows:

d
dt Rμ = d

dt tr Ricμ = −1
2 tr Δμ(Ricμ) = −1

2 tr δt
μδμ(Ricμ)

= −1
2〈δt

μδμ(Ricμ), I〉 = −1
2〈Ricμ, δt

μδμ(I)〉 = 2〈Ricμ, Ricμ〉.

We have used in the last equality Lemma 6.1, (i) and (ii). �

6.2. Type-III solutions

By using Theorem 5.1 and the ODE for ‖μ‖2 obtained above, we are now
in a position to prove that the Ricci flows on simply connected nilmanifolds
are all type-III solutions.

Definition 6.1. A Ricci flow g(t) on a manifold is said to be a type-III
solution if it is defined for t ∈ [0,∞) and there exists C ∈ R such that

‖Rm(g(t))‖ ≤ C

t
, ∀t ∈ (0,∞).

It follows from Lemma 6.2, (iii), that a solution μ(t) to (5.3) will stay for
ever in a compact subset, which implies that μ(t) is defined for all t ∈ [0,∞)
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for any starting point μ0. Furthermore, it follows from Lemma 4.1, (ii) that

d
dt‖μ‖2 = −8 tr Ric2

μ ≤ − 8
n(tr Ricμ)2 = − 1

2n‖μ‖4,

which implies

‖μ‖2 ≤ 1
t

2n + 1
‖μ0‖2

≤ 2n

t
, ∀t,

and hence we get that

(6.3) lim
t→∞μ(t) = 0.

The Riemann curvature tensor of gμ satisfies Rmcμ = c2 Rmμ for any c ∈ R

(see [13, 7.30]). Thus

‖Rmμ(t) ‖ = ‖μ‖2‖Rmμ/‖μ‖ ‖ ≤ 2nMn

t
,

where Mn is the maximum of the continuous function λ 
→ ‖Rmλ ‖ restricted
to the unit sphere of Vn.

The following result thus follows, as an application of Theorem 5.1.

Theorem 6.1. For any μ0 ∈ Nn, the Ricci flow g(t) with g(0) = gμ0 is a
type-III solution for a constant Cn that only depends on the dimension n.

Corollary 6.1. Let N be a simply connected nilpotent Lie group endowed
with a left invariant metric g. Then the Ricci flow g(t) with g(0) = g is a
type-III solution for a constant Cn that only depends on n = dim N .

For the Ricci tensor, we know that the maximum of λ 
→ ‖Rcλ ‖ restricted
to the unit sphere of Vn is

√
3

4 (see [22, Theorem 4.6]), and so

‖Ricμ(t) ‖ = ‖μ(t)‖2‖Ricμ/‖μ‖ ‖ ≤
√

3n

2t
, ∀t ∈ (0,∞).

6.3. Ricci solitons

A complete Riemannian metric g on a differentiable manifold M is said to
be a Ricci soliton if its Ricci tensor satisfies

(6.4) Rc(g) = cg + LXg, for some c ∈ R, X ∈ χ(M) complete,

where χ(M) denotes the space of all differentiable vector fields on M and
LX the Lie derivative. If in addition X is the gradient field of a smooth
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function f : M −→ R, then (6.4) becomes Rc(g) = cg + 2 Hess(f) and g is
called a gradient Ricci soliton. The main significance of the concept is that
g is a Ricci soliton if and only if the curve of metrics

(6.5) g(t) = (−2ct + 1)ϕ∗
t g,

is a solution to the Ricci flow for some one-parameter group ϕt of diffeomor-
phisms of M . According to (6.5), Ricci solitons are called expanding, steady,
or shrinking depending on whether c < 0, c = 0, or c > 0 (see [11, Chapter
I] for further information on Ricci solitons).

The only critical point of the functional F : Vn −→ R, F (μ) = tr Ric2
μ,

is μ = 0, as F is a homogeneous polynomial (of degree 4) vanishing only at
μ = 0 (see Lemma 4.1, (ii)). Let us in turn consider the cone

Cn := {μ ∈ Vn : [μ] is a critical point of F : PVn −→ R},

where [μ] denotes the class of μ in the projective space PVn. We note that
μ ∈ Cn if and only if μ is a critical point of F restricted to the sphere that
μ belongs to.

Theorem 6.2. [19] The following conditions are equivalent for a metric
gμ, μ ∈ Nn:

(i) gμ is a Ricci soliton.

(ii) μ ∈ Cn.

(iii) Ricμ = cI + D for some c ∈ R, D ∈ Der(Rn, μ).

Furthermore, if μ ∈ Cn, then Cn ∩ GLn(R).μ = R
∗O(n).μ.

Remark 6.3. From the last assertion we deduce that a nilpotent Lie group
can admit at most one Ricci soliton left invariant metric up to isometry and
scaling (see Theorem 4.1).

A Ricci soliton gμ is often called a nilsoliton in the literature, and when
nonflat, it is always expanding (indeed, c = − trRic2

μ

4‖μ‖4 < 0 by Theorem 6.2,
(iii), Lemma 6.1, (iii) and Lemma 4.1, (ii)) and it can never be gradient
(see [23]). Nilsolitons have been extensively studied because of their inter-
play with Einstein solvmanifolds (see the survey [21]). All known nontriv-
ial examples of homogeneous Ricci solitons are isometric to left-invariant
metrics on solvable Lie groups satisfying condition (iii) in Theorem 6.2, so
called solvsolitons. It is proved in [24] that all solvsolitons can be obtained
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as semidirect products of nilsolitons and an abelian group of symmetric
automorphisms.

7. Normalized Ricci flows and convergence

We have seen in (6.3) that the bracket flow μ(t) defined in (5.3) converges to
0, as t → ∞, for any initial condition μ0 ∈ Nn. It follows from Proposition
2.1 that gμ(t) converges in C∞ to the flat metric g0, and so Theorem 5.1
shows that,

up to pull-back by time-dependent diffeomorphisms, the Ricci
flow starting at any simply connected nilmanifold converges in
C∞ to the flat metric uniformly on compact sets in R

n.

In order to get a more interesting convergence behavior, we are forced to
consider appropriate normalizations of the flows.

7.1. Normalized Ricci flows

Let gμ0 be the Riemannian metric on R
n corresponding to the nilpotent Lie

bracket μ0 ∈ Nn (see (2.2)). By rescaling the metric and reparametrizing the
time variable t, one can transform the Ricci flow (5.1) into an r-normalized
Ricci flow

(7.1) ∂
∂tg(t) = −2 Rc(g(t)) − 2r(t)g(t), g(0) = gμ0 ,

for some function r : [0, T ) −→ R which may depend on g(t). A scalar Rie-
mannian invariant of the solution g(t) to (7.1) may remains constant in
time as a result of an appropriate choice of the function r(t), as this is actu-
ally the flow equation the family c(s)g(s) satisfies for some scaling c(s) > 0,
c(0) = 1, and g(s) the solution to the unnormalized Ricci flow ∂

∂sg(s) =
−2 Rc(g(s)) (the time reparametrization is given by t(s) :=

∫ s
0 c(u) du and

r(t) = −1
2

c′(s)
c(s)2 ). If 〈·, ·〉t := g(t)(0), then the flow (7.1) is equivalent to

(7.2) d
dt〈·, ·〉t = −2 Rc(〈·, ·〉t) − 2r(t)〈·, ·〉t, 〈·, ·〉0 = 〈·, ·〉,

and if we define the r-normalized bracket flow for μ = μ(t) and r = r(t) by

(7.3) d
dtμ = δμ(Ricμ +rI) = δμ(Ricμ) + rμ, μ(0) = μ0,
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then the following result may be proved in much the same way as Theo-
rem 5.1. Let gμ0 be the Riemannian metric on R

n defined as in (2.2) for a
nilpotent Lie bracket μ0 : R

n × R
n −→ R

n.

Theorem 7.1. If g(t) is the solution to the r-normalized Ricci flow with
g(0) = gμ0 (see (7.1)), and μ(t) is the solution to the r-normalized bracket
flow with μ(0) = μ0 (see (7.3)), then there exists a one-parameter family
{h(t)} ⊂ GLn(R) such that

g(t) = h(t)∗gμ(t), ∀t.

Furthermore, the following conditions hold for h = h(t) for all t:

(i) d
dth = −h(Ric(g(t))(0) + r(t)I) = −(Ricμ(t) +r(t)I)h, h(0) = I.

(ii) 〈·, ·〉t = 〈h·, h·〉 is the solution to (7.2).

(iii) μ(t) = hμ0(h−1·, h−1·).

It is worth mentioning at this point that by Proposition 2.1, any con-
vergence μ(t) → λ we may get for some flow of the form (7.3) gives rise to a
convergence gμ(t) → gλ in C∞. We first show that the possible limits of any
of these normalized Ricci flows are all solitons.

Proposition 7.1. Let μ(t) be a solution to (7.3) with maximal interval of
time [0, T ), and assume that μ(t) converges as t → T to an element λ ∈ Vn.
Then T = ∞, λ ∈ Nn and gλ is a Ricci soliton. If in addition λ �= 0 (i.e., gλ

nonflat), then the solution h(t) to the ODE in Theorem 7.1, (i), converges
exponentially fast to 0, as t → ∞.

Remark 7.1. The fact that h(t) → 0 is what makes so difficult to visualize
where the genuine r-normalized Ricci flow g(t)(0) = 〈·, ·〉t = 〈h(t)·, h(t)·〉 is
approaching to.

Proof. As Nn is closed we have λ ∈ Nn, and since μ(t) stays in a compact
subset of Vn, it follows that T = ∞. By assumption, d

dtμ(t) → 0 as t →
∞, which gives r(t) → r∞ ∈ R and δλ(Ricλ +r∞I) = 0 (i.e. Ricλ +r∞I ∈
Der(Rn, λ)). Theorem 6.2 now shows that gλ is a Ricci soliton. Concerning
the last assertion, we first note that if λ �= 0 then it is known that that the
derivation Ricλ +r∞I is positive definite (see [25, Section 4] or [26, Lemma
2.17]). Let mμ denote the minimum eigenvalue of Ricμ +rI. It follows that
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for sufficiently large t, 0 < 1
2mλ < mμ and hence

d
dt‖h‖2 = 2〈 d

dth, h〉 = −2〈(Ricμ +rI)h, h〉 ≤ −2mμ‖h‖2 ≤ −mλ‖h‖2.

This gives ‖h‖2 ≤ e−mλt, concluding the proof. �

7.2. Scalar curvature normalization

In the homogeneous (possibly noncompact) case, a natural geometric quan-
tity to keep unchanged in time along a normalized Ricci flow is the scalar
curvature, as it is a single number associated to each metric which there-
fore does not need to be integrated. Recall that the scalar curvature of any
nonflat metric gμ is negative (see Lemma 4.1, (ii)).

If ‖μ0‖ = 2, i.e., R(gμ0) = −1, then the solution μ(t) to the r-normalized
bracket flow (7.3) for r(t) := tr Ric2

μ(t) satisfies ‖μ(t)‖ ≡ 2. Indeed, by Lemma
6.1, (ii) we have that

d
dt‖μ‖2 = 〈μ′, μ〉 = 〈δμ(Ricμ) + rμ, μ〉 = 〈Ricμ, δt

μ(μ)〉 + r‖μ‖2

= −4 tr Ric2
μ + rμ‖μ‖2 = tr Ric2

μ(−4 + ‖μ‖2),

and hence ‖μ‖2 ≡ 4 by uniqueness of the solution since ‖μ0‖2 = 4. Thus, the
scalar curvature satisfies R(gμ(t)) ≡ −1. It follows from Theorem 7.1 that the
normalized Ricci flow

(7.4) d
dt〈·, ·〉t = −2 Rc(〈·, ·〉t) − 2‖Rc(〈·, ·〉t)‖2〈·, ·〉t,

satisfies R(〈·, ·〉t) ≡ −1 as soon as R(〈·, ·〉0) = R(gμ0) = −1.

Remark 7.2. This normalized Ricci flow 〈·, ·〉t equals −R(〈·, ·〉s)〈·, ·〉s,
where 〈·, ·〉s denotes the unnormalized Ricci flow and s a suitable
reparametrization in time.

We shall therefore focus, from now on, on the normalized bracket flow

(7.5) d
dtμ = δμ(Ricμ) + tr Ric2

μ μ,

which satisfies ‖μ(t)‖ ≡ 2 if ‖μ0‖ = 2. This flow is precisely the negative gra-
dient flow of F (μ) = tr Ric2

μ restricted to the sphere S2 := {μ ∈ Vn : ‖μ‖ =
2} (see (6.1)). By the compactness of S2, μ(t) is defined for all t ∈ [0,∞).
We note that Cn ∩ S2, is precisely the set of critical points of F : S2 −→ R.
On the other hand, since F : Vn −→ R is a homogeneous polynomial such
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that F (μ) > 0 for any nonzero μ ∈ Vn, it follows that its negative gradient
flow starting at any point converges to 0. Moreover, it is proved in [27] (see
also [28]), that the radial projection of such a flow on any sphere of Vn has a
unique limit. But our solution μ(t) to (7.5) is precisely a reparametrization
of such a projection on S2, and therefore μ(t) converges as t → ∞ to a single
critical point λ ∈ Nn ∩ Cn ∩ S2, a Ricci soliton.

By applying Proposition 2.1, we thus obtain the following result.

Theorem 7.2. Let μ(t) be the solution to (7.5) with μ(0) = μ0 ∈ Nn,
‖μ0‖ = 2. Then gμ(t) converges in C∞ to a Ricci soliton gλ uniformly on
compact sets in R

n, as t → ∞.

According to Theorem 5.1, we have that

up to rescaling (scalar curvature ≡ −1) and pull-back by time-
dependent diffeomorphisms, the Ricci flow starting at any simply
connected nilmanifold converges in C∞ to a Ricci soliton metric
uniformly on compact sets in R

n.

Remark 7.3. It is proved in [29, Theorem 6.4] that if the nilpotent Lie
group (Rn, ·μ0) admits a left invariant Ricci soliton (i.e., GLn(R).μ0 ∩ Cn �=
∅), or equivalently, if there exists an (Rn, ·μ0)-invariant Ricci soliton g on R

n,
then the limit λ ∈ GLn(R).μ0, that is, gλ is invariant by a group isomorphic
to (Rn, ·μ0) and so gλ is isometric to g.
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conjecture of R. Thom., Ann. Math. 152(2) (2000), 763–792.

[28] R. Moussu, Sur la dynamique des gradients. Existence de variétés
invariantes, Math. Ann. 307 (1997), 445–460.

[29] M. Jablonski, Distinguished orbits of reductive groups, Rocky Mount.
J. Math., in press.

FaMAF and CIEM
Universidad Nacional de Córdoba
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