
Resource Partitioning among Real-Time Applications

Giuseppe Lipari, Enrico Bini
Scuola Superiore S. Anna

Pisa, Italy
E-mail: lipari@sssup.it, e.bini@sssup.it

Abstract
When executing different real-time applications on a sin-

gle processor system, one problem is how to compose these
applications and guarantee at the same time that their tim-
ing requirements are not violated. A possible way of com-
posing applications is through the resource reservation ap-
proach. Each application is handled by a dedicated server
that is assigned a fraction of the processor. Using this ap-
proach, the system can be seen as a two-level hierarchical
scheduler. A considerable amount of work has been recently
addressed to the analysis of this kind of hierarchical sys-
tems. However, a question is still unanswered: given a set
of real-time tasks to be handled by a server, how to assign
the server parameters so that the task set is feasible? In this
paper, we answer to the previous question for the case of
fixed priority local scheduler by presenting a methodology
for computing the class of server parameters that make the
task set feasible.

1. Introduction
Thanks to the advances in the field of computer architec-

tures, computers are getting faster and faster and it is then
desirable to concurrently execute different real-time appli-
cations in the same system. The motivation is in cost reduc-
tion and in the re-use of legacy applications. This trend can
be seen both in the general purpose computer area and in
the embedded system area.

When executing different real-time applications in the
same system, the question is how to schedule these appli-
cations and guarantee at the same time that their timing re-
quirements are not violated. One simple way to do compo-
sition is to use a unique scheduling paradigm for the whole
system and design all applications according to the chosen
paradigm: then, it is possible to check the schedulability of
whole the system by using already existing schedulability
analysis tools.

However, sometime it is necessary to use an already im-
plemented application “as it is”, without going back to the
design phase. If an application is already working well on
the old slower processor, it is less expensive to move it on
the new faster processor without changing the code. How-
ever, we must guarantee that the old application will still
meet its timing requirements even when other applications
are scheduled in the same system.

An interesting problem is how to compose applications
that come with their own scheduling strategy. In reality, dif-
ferent schedulers may be used in different context, and there
is not a “catch-all” scheduler that is best for all kind of ap-
plication domains. For example, applications that are event-
triggered are best served by on-line scheduling algorithms
like fixed priority or earliest deadline first; time triggered
applications are best handled by off-line schedulers like the
TTA [10].

One way of composing existing applications with differ-
ent timing characteristics is to use a two-level scheduling
paradigm (see Figure 1): at the global level, a scheduler se-
lects which application will be executed next and for how
long. Each application then possesses a local scheduler that
selects which task will be scheduled next.

Scheduler

Local

Scheduler

Local

Scheduler

Local

Task B2

Task B1

Task C2

Task C1

Task A3 Task C3
Task A1

Task A2

Application A Application B Application C

Scheduler

OS

Figure 1. Hierarchical scheduler structure.

The global scheduler allocates the processor bandwidth
and each application is served with a fraction of the total
processor time distributed over the time line according to a
certain law. Moreover, the global scheduler must “protect”
one application from all others, by ensuring that if an appli-
cation is requiring more than expected, it does not compro-
mise the others.

If we could provide a “fluid allocation”, for example by
using the Generalized Processor Sharing (GPS) [18, 19],
then the bandwidth allocation would be easy. Unfor-
tunately, the GPS algorithm is a theoretical abstraction
that cannot be implemented in practice, but only approxi-
mated [9, 2, 1].

In this paper, we consider the class of algorithms that
can be described by the periodic server abstraction. Each
application is assigned a server that is characterized by the
pair ���� �, with the meaning that the server gets � units
of execution every � units of time. The global schedul-

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

ing mechanism decides when to schedule the servers; the
selected server, by using the local scheduling mechanism,
decides which application task will be executed next.

Some research has already been done on hierarchical
composition of periodic servers. In particular, it is possi-
ble to perform a schedulability analysis of a group of tasks
on a server, given the pair ���� � assigned to the server, the
worst execution times, periods and deadlines of the tasks,
and the internal scheduling algorithm for the task group.
For example, Saewong et al. [22] presented a response time
analysis for the schedulability of such a hierarchical system.

However, an open issue remains to be answered: given a
group of tasks, what is the “best” pair ���� � that can be
assigned to the server so that the task group is schedulable?.

In this paper we present a technique that answers the pre-
vious question for applications composed by periodic (or
sporadic) tasks, scheduled by a fixed priority local sched-
uler. Given an application (i.e. a set of tasks), we are able
to find a class of possible parameters ���� � that make the
application schedulable. The designer can then choose the
best pair that meets his needs.

The paper is organized as follows: after an overview of
the research in the field of hierarchical schedulers (Section
1.1), the system model and most of the concept and defini-
tion are presented in Section 2. In Section 3, we present our
analysis and propose our method; finally in Section 4, we
draw our conclusion and propose some future development.

1.1. Related work
The research on two-level scheduling algorithms can be

considered a hot topic in the real-time system research. A
general methodology for temporal protection in real-time
system is the resource reservation framework [15, 21]. The
basic idea, formalized by Rajkumar [20], is that each task
is assigned a server that is reserved a fraction of the pro-
cessor available bandwidth. If the task tries to use more
than it has been assigned, it is slowed down. This frame-
work allows a task to execute in a system as it were exe-
cuting on a dedicated virtual processor, whose speed is a
fraction of the speed of the processor. Thus, by using a
resource reservation mechanism, the problem of schedula-
bility analysis is reduced to the problem of estimating the
computation time of the task without considering the rest of
the system. Many server algorithm have been presented in
the literature, both for fixed priority and dynamic priority
schedulers [12, 23, 3, 24, 1]. In these models, the server
executes together with hard real-time periodic tasks, and it
is mainly used to handle aperiodic tasks.

Recently, many techniques have been proposed for ex-
tending the resource reservation framework to hierarchical
scheduling.

Saewong et al. [22] proposed to use the Deferrable
Server in a hierarchical way. They present a schedulabil-
ity analysis that is based on the worst-case response time
for a local fixed priority scheduler. Liu and Deng in [6, 5]

proposed a two-level hierarchical architecture, which uses
the EDF as global scheduler and uses a dedicated TBS for
each application. It is then possible to select the most appro-
priate scheduling algorithm for each application. The paper
presents also a sufficient condition for schedulability. This
work has been later extended by Kuo et al. [11] for using
RM as global scheduling algorithm, but the authors assume
that all tasks are periodic with harmonic periods.

Lipari and Baruah in [14, 13] presented the BSS schedul-
ing algorithm that uses EDF as global scheduling algorithm,
and permits to select any scheduling algorithm as appli-
cation level scheduler. The paper presents schedulability
conditions for applications that use EDF and RM as second
level schedulers. However, the algorithm is complex to im-
plement and assumes the knowledge of all task deadlines;
in fixed priority scheduling, the absolute deadline may not
be specified in the implementation of the task. Therefore, it
is not possible to schedule legacy applications.

Feng and Mok [16] presented a general methodology for
hierarchical partitioning of a computational resource. It is
possible compose schedulers at arbitrary levels of the hier-
archy. They also propose simple schedulability test for any
scheduler at any level of the hierarchy, but these tests are
only sufficient. In this paper, we will follow their same ini-
tial approach. However, while Feng and Mok concentrate
their research on how to analyse and guarantee the schedu-
lability of an application on a partition, we will address the
reverse problem: given an application, scheduled by a local
fixed priority scheduler, how to select the “best” server.

2. System model and definitions
An application is a set �� of � periodic or sporadic tasks,

ordered by decreasing priority. Every task �� is character-
ized by a period �� (or minimum interarrival time), a worst-
case execution time �� and a relative deadline �� smaller
than the period. In this paper we will consider independent
tasks. The extension for interacting tasks is currently under
research.

An application is further characterized by a local sched-
uler �����. When the application is selected to execute by
the global scheduler (see Figure 1), the local scheduler se-
lects which application task will execute. In this paper we
focus our attention on fixed priority schedulers.

The system consists of a set of applications, each one
with a (possibly different) local scheduler. The aim of the
global scheduler is to assign execution time to the appli-
cations according to a given rule. This rule can be static
(i.e. the allocation is pre-computed off-line), or dynamic,
according to some on-line algorithm.

In this paper we will concentrate our efforts in analysing
the behavior of those on-line algorithms referred as peri-
odic servers. Examples of these algorithms are the Polling
Server, the Deferrable server, the Sporadic Server [23, 8,
24], the Constant Bandwidth Server [1], etc. All these al-

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

gorithms have different peculiarities. Since we do not want
to concentrate on one particular mechanism, in Section 2.2
we will present an abstract model of a server and how this
model is related to some existing mechanism.

However, it is important to point out that our methodol-
ogy is very general and can be applied, with some simple
customization, to many other partitioning mechanism like,
for example, p-fair scheduling, static allocation (TTA), etc.
In the following subsection, we give an overview of the dif-
ferent mechanisms for providing partitions.

2.1. Partitions
A partition is a function���� that has values in ��� ��. If

���� � �, then the resource is allocated to the application
at time �. A partition is periodic if it exists � � � such that
���� � ���� � � (see [7, 17]).

The global scheduler provides partitions among applica-
tions. A static algorithm pre-computes the partitions off-
line, and at run-time a dispatch mechanism will make use
of a simple table to allocate the resource. Examples are
cyclic executives, the TTA [10], etc. Conversely, an on-line
algorithm uses some rule for dynamically allocating the re-
source. Therefore, an on-line algorithm may produce dif-
ferent partitions every time it is executed, depending on the
arrival times and execution times of the application tasks.
Moreover, these partitions are not necessarily periodic. Ex-
amples are the Deferrable server, the Constant Bandwidth
server, etc.

For a given partition, we define the minimum amount of
time that is available to the application in every interval of
length �.

Definition 1 Given a partition ����, we define the char-
acteristic function ����� as the minimum amount of time
provided by the partition in every time interval � � � units
of time long:

����� � ���
����

� ����

��

����	�

As an example, consider an off-line algorithm that pro-
duces a periodic partition ���� with period
, which allo-
cates slots �,�,
 and slot �. The corresponding character-
istic function ����� is plotted in Figure 2. Note that the
worst-case interval starts at time
.

2.2. The server abstraction
The concept of server has been originally devised for

minimizing the response time of aperiodic tasks when
scheduled together with hard real-time tasks [23, 8]. Re-
cently, some server has been used for providing resource
reservations mechanisms [20, 1]. Many server algorithms
have been proposed in the literature, both in fixed priority
and in dynamic priority systems. Since many of these mech-
anisms provide similar guarantees, in this paper we analyse
a general abstraction of a server that subsumes (with some

0 2 4 6 8 10 12 14 16 18

8 163

�����

���

�

Figure 2. An example of �����.

important differences) all the algorithms cited so far.
A server is an abstraction that provides execution time

to one or more tasks, according to a certain local schedul-
ing algorithm. A server is characterized by two parameters
���� �, where� is the maximum budget, and � is the server
period. The system consists of a set of servers scheduled by
a global scheduling algorithm. The server maintains two
internal variables � and � that are updated according to the
following rules.

Server Rules.

1. Initially, � � �, � � � and the server is inactive.

2. When a task is activated at time �, if the server is in-
active, then � � � and � � � � � , and the server
becomes active. If the server is already active, then �

and � remain unchanged.

3. At any time �, the global scheduling algorithm selects
one active server. When the server is selected, it exe-
cutes the first task in its ready queue (which is ordered
by the local scheduling policy).

4. While some application task is executing, the current
budget � is decremented accordingly.

5. The global scheduler can preempt the server for exe-
cuting another server: in this case, the current budget
� is no longer decremented.

6. If � � � and some task has not yet finished, then
the server is suspended until time �; at time �, � is
recharged to �, � is set to � � � and the server can
execute again.

7. When, at time �, the last task has finished executing
and there is no other pending task in the server, the
server yields to another server. Moreover, if � � � �
� �
�

, the server becomes inactive; otherwise it remains

active, and it will become inactive at time � � � �
�

,
unless another task is activated before.

The previously cited server algorithms differ from one
another in the underlying global scheduling policy and in
rules 6 and 7. For example, the Deferrable Server and the

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

Sporadic Server have different rules for recharging the bud-
get; the Constant Bandwidth Server does not suspend the
server when the budget is 0, but simply decreases its prior-
ity by postponing its absolute deadline.

We do not assume any particular global scheduling pol-
icy for the servers. It is possible to show that the algorithm
described by the previous rules is similar to the Constant
Bandwidth Server [1]. Therefore, it is possible to use EDF
as global scheduler. However, if the server periods are har-
monic, it is also possible to use the same algorithm with the
Rate Monotonic scheduler.

2.3. Characteristic function of a server
Given a task set that has to be scheduled by a local fixed

priority scheduler, our goal is to find the class of server pa-
rameters ���� � that make the set feasible. In this way, the
designer can choose the best tradeoff between a large� and
a small � � �

�
. In fact, as we will see more in detail in

Section 3.2, a small � may cause a high number of context
switches between servers, but a large � leads to a high util-
isation �

�
and then to a waste of computational resources.

In order to find all the possible feasible pairs ���� �, we
first need to characterize the temporal behaviour of a server.
In particular, we need to know the minimum amount of ex-
ecution time that a server can provide in every interval of
time � to its application.

Definition 2 Given a server �, we define �������� as the
set of partitions � that can be generated by the server al-
gorithm.

Definition 3 Given a server �, we define ����� the mini-
mum amount of time provided by the server � in every time
interval � � � units of time long.

����� � ���
����������

�����

To see the importance of the function�����, consider the
schedulability problem of a single task �� on the server �.
If ������, which is the minimum amount of time provided
in every time interval ��-long, is greater than or equal to
the maximum possible time requested by the task �� and all
its higher priority tasks in the same interval, then task �� is
feasible on the server �.

In Figure 3, we plot the characteristic function����� of a
server with parameters � � � and � � �. Since we do not
assume any particular global scheduling algorithm, and we
do not know the global system load, we consider the worst-
case situation, when the application tasks are activated just
after the budget is exhausted, and the first instant of time at
which they will receive execution is after 	�� ���.

Theorem 1 Given a server algorithm defined by the rules
of Section 2.2, and with parameters ���� �, and defined

8 10 12 14 160 2 4 6−4 −2 18

�����

�� ��

�

�

��� ��� �� ��

Figure 3. General case of periodic server.

� �
�
�������

�

�
, its characteristic function ����� is:

������

��
�
� if � �
�� � ���
������ if �������� ��
����	��
�� ��
 ���� ��� otherwise

	

Proof. We have to compute the worst-case allocation to
the server for every interval of time. Consider an interval
starting at time �. There are 2 possibilities:

case a : The server is inactive at time �. In this case, ac-
cording to rule 2, a new budget
 � � and a new dead-
line � � �
� are computed. Therefore, the worst-case
allocation is depicted in Figure 4a.

case b : The server is active at time � and it has already
consumed � units of budget. In this case, the worst
possible situation is when the server is preempted by
the global scheduler until time � � � � �� � ��. The
worst-case allocation is depicted in Figure 4b, and is
minimum for � � �.

By comparing the two cases, it is clear that case b, with
� � �, is the most pessimistic. The corresponding function
is �����1.
�

b)

a)

�� �� �

Figure 4. Worst-case allocation for the server.

Function ����� is complex to analyse. For this reason,
we will instead consider a simple lower bound function

���:

��� � ������ �������	 (1)

1Please note that Bernat et al. [3] and Saewong et al. [22] found the
same kind of relationship for the Deferrable Server when scheduled by a
fixed priority global scheduling algorithm.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

where � and � are defined as follows:

� � is the share of the used processor, formally defined

as � � ���
���

�����

�
;

� � is the maximum delay in the time slots distribu-
tion, formally defined as � � ����� � 	
 �� �
	 ����� � ��� � ��� or, equivalently, ����� � 	

�� � 	 ����� � ���� ���.

The relationship between the characteristic function
����� and its lower bound function ���� is shown in Fig-
ure 2. It is worth to note that the lower bound function ����
is also used in [17, 7] by Feng and Mok to define a class of
equivalent resource partitions.

3. Analysis of a fixed priority local scheduler
Now, we consider the problem of analysing the schedu-

lability of a task set �� on a server �. This problem has
been already approached in different ways. For example
Saewong et al. [22] compute the worst-case response time
of every task in the presence of the server. We propose a
different approach because our ultimate goal is not only to
check the feasibility on a given server, but also to find the
“best” server that guarantees the schedulability of the task
set. As usual in the real-time research, we must consider the
worst-case scenario both for the server and for the task set.

When analysing the schedulability of the task ��, we
analyse the situation at the critical instant, which corre-
sponds to the time in which all higher priority tasks are re-
leased. Saewong et al. [22] proved that this is indeed the
worst case for task �� even in the presence of the server.

The worst-case allocation of resource provided by a
server � is given by its characteristic function �����, which
represents (see Definition 3) the minimum available time
for the task set in any interval of length �. So, informally
speaking, we can say that a server can schedule a task set
if the time provided by the server is greater than or equal
to the the time requested by the tasks. In the following, we
will characterize the worst-case workload requested by the
task set.

3.1. Characterisation of fixed priority scheduling
Let us first tackle the problem of finding the minimum

processor speed that maintains the task set schedulable.
Slowing down the processor speed by a factor � �
, is
equivalent to scale up the computation times by
��:

�� �
� 	 	 	 �
 ��� � ����	 (2)

The problem is to find the minimum speed �min, keeping the
system schedulable. In [4], Bini and Buttazzo found a new
way to express the schedulability condition under a fixed
priority scheduling algorithm as a set of linear inequalities
in the computation times ��.

Theorem 2 (Theorem 3 in [4]) A task set �� �
���� ��� 	 	 	 � ��� is schedulable if and only if:

�
�������

�
����������

��
���

�
�

��

�
�� � � (3)

where ����� is defined by the following recurrent expres-
sion: ��

�
����� � ���

����� � ����

	

�

��

�
��

�
	 �������	

(4)

By introducing the speed factor �, we can reformulate
condition (3) taking into account the substitution given by
Equation (2). The result is the following:

�
�������

�
����������

��
���

�
�

��

�
��

�
� �

�
�������

�
����������

�

��
���

�
�

��

�
�� � �

�
�������

�
����������

� �

�

���

�
�
��

�
��

�

and finally:

� � �min � ���
�������

���
����������

��
���

�
�

��

�
��

�
(5)

where �min is the minimum allowed speed rate of a proces-
sor still capable to schedule the task set.

Now we introduce the delay � in the analysis. In fact,
when a task set is scheduled by a server, there can be a delay
in the service because the server is not receiving any execu-
tion time from the global scheduler. To extend the previous
result to the case when �
 	 we need to look at Equa-
tion (5) from a different point of view. In Figure 5, we show
the worst-case workload for a task ��, called �����, and the
line �min�. The line represents the amount of time that a
processor with speed �min provides to the task set. Task ��
is schedulable because:

��� � ��
 �min�
� �����

��	

The presence of a delay � forbids us to allocate time
slots for an interval of length �. This interval can start, in
the worst case, at the critical instant for task ��, i.e. when ��
and all higher priority tasks are released. It follows that the
time provided by the server is bounded from below by the
function ���� previously defined in Equation (1). In Figure 5
we also show different functions ���� for different values
�����. Therefore, when introducing �, task �� is schedu-

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

lable on server �, characterized by function ����, if:

��� � �� � ����� �����
��� (6)

Notice that, as � increases, the tangent point �� may
change. By using Equation (6), and increasing � we can
find all possible � that make the task �� schedulable.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

����� �����

�min
�

��
��
�
��
�

��
��
�
��
�

� �
��
�
� �
�

���

��
��
��

Figure 5. Workload and the �min speed.

In order to find a closed formulation for the relation be-
tween � and � expressed by Equation (6), we need the fol-
lowing Lemma proved in [4].

Lemma 1 (Lemma 4 in [4]) Given a task subset �� �
���� � � � � ��� schedulable by fixed priorities and the set
����� as defined in Equation (4), the workload ���	� is

���	� � ���
�������

��
���

�
�

�

�
�� 	 �	� ���

By means of this lemma, the well known schedulability
condition for the task set:

�� �
 � � �
 �� 	�������� � ��

can be rewritten as follows:
�� �
 � � �

�� 	 ���
����������

����
���

�
�

�

�
�� 	 ��� � �� � ��� (7)

When the task set is served by a server with function
����, the schedulability condition expressed by Equation (7)
becomes the following:
�� �
 � � �

�	
��

�
	 ���

����������

����
���

�
�

�

�
��

�
	 ��� � �� � �� (8)

Since the link between ����� is now explicit, we can
manipulate the previous expression to obtain a direct rela-
tionship between � and �. In fact, the schedulability con-

dition of the single task �� can be written as:

� � ���

�
���

�
	 ���
����������

����
���

�
�

�

�
��

�
	������

�
�

and, simplifying the expression, we finally obtain:

� � ���
����������

��

�

�
��� 	

����
���

�
�

�

�
��

�
� � (9)

To take into account the schedulability of all the tasks
in the set (and not only �� as done so far), this condition
must be true for every task. Hence, we obtain the following
theorem.

Theorem 3 A task set �� � ���� ��� � � � � ��� is schedula-
ble by a server characterized by the lower bound function
���� if:

� � ���
�������

���
����������

��

�

�
��� 	

����
���

�
�

�

�
��

�
� (10)

where: ��
	

����� � ���

����� � ����

�
�

�

�

�

� ��������

Proof. If � satisfies Equation (10), then it satisfies all the
equations (9) for every task in the set. Then every task is
schedulable on such a local scheduler and so the whole set
is, which proves the theorem. �

The last theorem does not only provide the schedulability
condition for the task set �� on a particular server, but it also
gives a rule to select the server parameters to make the task
set schedulable.

3.2. How to design a server
In our process of designing a server for an application

��, the first step is to characterise the application by spec-
ifying all the individual task parameters. Once this step is
carried out, by applying Theorem 3 a class of ����� pairs
is obtained. On this set, which guarantees by definition the
schedulability of application ��, we perform the server se-
lection by optimizing a desired cost function. One possible
cost function is the overhead of the scheduler. When choos-
ing the server parameters, we must balance two opposite
needs:

1. the required bandwidth should be small, to not waste
the total processor capacity;

2. the server period should be large, otherwise the time
wasted in context switches performed by the global
scheduler will be too high.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

Then, a typical cost function to be minimised may be:

��
�Overhead

�
� �� � (11)

where �Overhead is the global scheduler context switch time,
� is the server period, � is the fraction of bandwidth, and ��
and �� are two designer defined constants. Moreover some
additional constraints in the ����� domain, other than those
specified by Equation (10), may be required. For example,
if we use a fixed priority global scheduler, to maximize the
resource utilisation we could impose the server periods to
be harmonic.

� �� �� ��

1 4 1 4
2 10 1 10
3 25 3 25

Table 1. An example: �� data

To clarify the whole methodology of server parameters
selection, we provide a practical example. Suppose we
have a set of three tasks �� with the data shown in ta-
ble 1 (for simplicity, we choose �� � ��, but the ap-
proach is the same when �� � ��). The utilisation is
	 � �
�� �
��� 	

� � ��
���, hence � cannot defini-
tively be smaller than ��
���. The schedule corresponding
to the worst-case scenario (i.e. the critical instant) is shown
in Figure 6.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

��
��
��

Figure 6. Worst-case schedule of ��

By expanding Equation (9) for �� we obtain the follow-
ing inequality:

����� � ���

� � �� �
�

Doing the same for ��, we obtain:

������ � �
� ���

� � ����
� 	
�� ��� �
��

and, finally, for the last task ��:

���
�� � �
��
��
��

� � ����
�� ��
��
�� �

��
�� �	
��

� �
�� �

��

In order to make all the three tasks schedulable, all the
inequalities must hold at the same time, as stated in Theo-
rem 3. It follows that:

� � ������
�

�
�����
�

	

�
� ���

�

�
��
��

�

�� (12)

In Figure 7, we plotted the set of ����� pairs defined by
Equation (12) as a gray area whose upper boundary is drawn
by a thick line. This boundary is a piece-wise hyperbole,
because it is the minimum between inequalities, each one of
them is an hyperbole (see Equations (9) and (10)). Notice
that, in this particular case, the schedulability condition for
task �� does not provide any additional constraint in the final
function.

cost
function

Working
domain

�

�

��

�

�

�

�

��

�

�

��

��

�
��

	

�

�

�

� �
co

nd
iti

on

��
co

nditio
n

� �

co
nd

iti
on

�

Figure 7. Worst-case schedule of ��

In Figure 7, we also plotted a qualitative cost function
that is increasing as � increases, and decreasing as � in-
creases (see Equation 11). If we minimize this qualitative
function on the domain expressed by Equation (12), the so-
lution is � � ��

��
and� � ��

��
. We can now find the period�

and the budget
 of the server corresponding to the selected
solution:

� �
�� �
� � �

�
then:

� �
�

��� ��

 � ��

By substitution, we obtain the server parameters: � �
��

��
�
��
� and
 � �

�
� ��			.

Finally, in Figure (8), we show the schedule for the ex-
ample application, obtained by considering the worst-case
scenario both for the time requested by tasks and for the
time provided by the server. The shaded areas represent in-
tervals where the server does not receive any allocation by
the global scheduler. As expected, all tasks complete within
their deadlines.

4. Conclusions and future work
In this paper, we presented a methodology for computing

the “best” server parameters in an hierarchical scheduling

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

0 2 4 6 8 10 12 14 16 18 20 22 24 26

��
��
��

Instants when the server requires � time

Figure 8. Worst-case schedule of �� on a
server with the computed parameters

system, when the application is scheduled by a fixed priority
local scheduler. The proposed methodology is not optimal,
as we use the function ���� rather than �����. However, it
can easily be extended to other kind of schedulers, and this
will be the subject of future work.

We also believe that the concept of “partition” is quite
general and will allow us to extend this methodology in
other directions in the next future. For example, we would
like to analyse other kind of global allocation mechanisms
that cannot be included in the server category. We also be-
lieve that this work can be used as a basis for analysing the
composition of arbitrary kinds of scheduling mechanisms.

Finally, it would be interesting to understand if it is pos-
sible to devise a “optimal” allocation strategy, to avoid the
“loss” of resource utilisation due to the delay �.

5. Acknowledgments
We would like to thank Guillem Bernat for the useful

ideas and suggestions that helped us in improving the paper.

References
[1] L. Abeni and G. C. Buttazzo. Integrating multimedia appli-

cations in hard real-time systems. In Proceedings of the ����

IEEE Real-Time Systems Symposium, Madrid, Spain, Decem-
ber 1998.

[2] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Propor-
tionate progress: A notion of fairness in resource allocation.
Algorithmica, 6, 1996.

[3] G. Bernat and A. Burns. New results on fixed priority ape-
riodic servers. In Proceedings of the ��

�� IEEE Real-Time
Systems Symposium, 1999.

[4] E. Bini and G. C. Buttazzo. The space of rate monotonic
schedulability. In Proceedings of the ��

�� IEEE Real-Time
Systems Symposium, Austin, Texas, U.S.A., December 2002.

[5] Z. Deng and J. W. S. Liu. Scheduling real-time applications
in open envirovment. In Proceedings of the IEEE Real-Time
Systems Symposium, San Francisco, December 1997.

[6] Z. Deng, J. W. S. Liu, and J. Sun. A scheme for scheduling
hard real-time applications in open system environment. In
Proceedings of the �

�� Euromicro Workshop on Real-Time
Systems, 1997.

[7] X. Feng and A. K. Mok. A model of hierarchical real-time
virtual resources. In Proceedings of the ���� IEEE Real-Time
Systems Symposium, pages 26–35, Austin, TX, USA, Decem-
ber 2002.

[8] T. Ghazalie and T. Baker. Aperiodic servers in a deadline
scheduling environment. Journal of Real-Time System, 9,
1995.

[9] K. Jeffay, F. D. Smith, A. Moorthy, and J. Anderson. Propor-
tional share scheduling of operating systems services for real-
time applications. In Proceedings of the 19th IEEE Real-Time
Systems Symposium, pages 480–491, Madrid, Spain, decem-
ber 1998. IEEE.

[10] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schw-
abla, C. Senft, and R. Zainlinger. Distributed fault-tolerant
real-time systems: The mars approach. IEEE Micro, 9(1),
February 1989.

[11] T.-W. Kuo and C.-H. Li. Fixed-priority-driven open environ-
ment for real-time applications. In Proceedings of the IEEE
Real Systems Symposium, December 1999.

[12] J. P. Lehoczky, L. Sha, and J. Strosnider. Enhanced aperiodic
responsiveness in hard real-time environment. In Proceed-
ings of the �

�� IEEE Real-Time Systems Symposium, pages
110–123, San José, December 1987.

[13] G. Lipari. Resource Reservation in Real-Time Systems. PhD
thesis, Scuola Superiore S.Anna, Pisa, Italy, 2000.

[14] G. Lipari and S. Baruah. Efficient scheduling of multi-task
applications in open systems. In IEEE Proceedings of the 6th
Real-Time Systems and Applications Symposium,, June 2000.

[15] C. W. Mercer, R. Rajkumar, and H. Tokuda. Applying hard
real-time technology to multimedia systems. In Workshop on
the Role of Real-Time in Multimedia/Interactive Computing
System, 1993.

[16] A. K. Mok and X. Feng. Towards compositionality in real-
time resource partitioning based on regularity bounds. In Pro-
ceedings of the ��

�� IEEE Real-Time Systems Symposium,
2001.

[17] A. K. Mok, X. Feng, and D. Chen. Resource partition for
real-time systems. In Proceedings of the �

�� IEEE Real-
Time Technology and Applications Symposium, pages 75–84,
2001.

[18] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in integrated services net-
works: the single-node case. IEEE/ACM Transactions on
Networking, 1(3):344–357, June 1993.

[19] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in intergrated services net-
works: the multiple node case. IEEE/ACM Transanctions on
Networking, 2:137–150, April 1994.

[20] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource
kernels: A resource-centric approach to real-time and multi-
media systems. In Proceedings of the SPIE/ACM Conference
on Multimedia Computing and Networking, January 1998.

[21] D. Reed and R. F. (eds.). Nemesis, the kernel – overview,
May 1997.

[22] S. Saewong, R. Rajkumar, J. P. Lehoczky, and M. H. Klein.
Analysis of hierarchical fixed-priority scheduling. In Pro-
ceedings of the ��

�� IEEE Euromicro Conference on Real-
Time Systems, June 2002.

[23] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task schedul-
ing for hard-real-time systems. Journal of Real-Time Sys-
tems, 1, July 1989.

[24] M. Spuri and G. Buttazzo. Scheduling aperiodic tasks in dy-
namic priority systems. Journal of Real-Time Systems, 10(2),
1996.

Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS’03)

0-7695-1936-9/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

