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Abstract—In this paper, Perfect Root-of-Unity Sequences
(PRUS) with entries in αp = {x ∈ C | xp = 1} (where p is
a prime) are studied. A lower bound on the number of distinct
phases that are used in PRUS over αp is derived. We show
that PRUS of length L ≥ p(p − 1) must use all phases in αp.
Certain conditions on the lengths of PRUS are derived. Showing
that the phase values of PRUS must follow a given difference
multiset property, we derive a set of equations (which we call
the principal equations) that give possible lengths of a PRUS
over αp together with their phase distributions. The usefulness
of the principal equations is discussed, and guidelines for efficient
construction of PRUS are provided. Through numerical results,
also contributions are made to the current state-of-knowledge
regarding the existence of PRUS. In particular, a combination of
the developed ideas allowed us to numerically settle the problem
of existence of PRUS with (L, p) = (28, 7) within about two
weeks— a problem whose solution (without using the ideas in
this paper) would likely take more than three million years on a
standard PC.

Index Terms—Perfect sequences, Root-of-unity sequences, Pe-
riodic autocorrelation, Phase distribution, Sequence construction

I. INTRODUCTION

Perfect Root-of-Unity Sequences (PRUS), also known as
perfect N -phase [1], N -ary [2], or polyphase [3] sequences,
are unimodular sequences with entries in αN = {x ∈
C | xN = 1} and the property that all their out-of-phase
periodic autocorrelations are equal to zero [4]-[7]. These
sequences are of interest in several applications including
fast startup equalization and channel estimation [1], as well
as communication schemes such as Direct-Sequence Spread-
Spectrum Multiple-Access (DS/SSMA) and Frequency-
Hopping Spread-Spectrum Multiple-Access (FH/SSMA) [8].
They can also be used as key sequences in pulse compression
for continuous-wave radars [4]-[8].

Due to implementation issues it is usually desirable that
the entries of the sequence are from a small alphabet. With
this fact in mind, it is interesting to note that 4, 6 and 11
out of the first 8, 16 and 32 natural numbers, respectively,
are prime. The study of PRUS with prime-size alphabets is
important not only because of this relatively high density
of prime numbers in small alphabet sizes, but also because
of the role of prime numbers as building blocks of natural
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numbers. A similar building block property can be seen in the
PRUS case: let n = mk where m and k are co-prime and
assume that there exist PRUS u = (u0, · · · , um−1) and v =
(v0, · · · , vk−1) with alphabet sizes m† and k† respectively;
then w = (w0, · · · , wn−1) where wl = u(l mod m)v(l mod k)

is a PRUS with alphabet size n† = m†k†. This construction
is known as Chinese Remainder Theorem (CRT) construction
or simply as the direct product [11].

A general computational framework for designing se-
quences with optimal correlation was proposed in [13]. It is
known that for lengths L that are square-free there exist an
infinite number of independent unimodular sequences with
perfect periodic correlation, see [6]. A fast computational
method to find perfect unimodular sequences is proposed in
[14]. Algebraic constructions for perfect unimodular sequences
of lengths p, 2p, 3p, pp′ and ps (where p and p′ are prime) were
introduced and studied in [16]-[20]. When it comes to root-of-
unity sequences (which correspond to the finite alphabet case
of the unimodular sequences), the problem appears to be more
complicated. For example, it is not known whether there exists
none, a few or plenty of PRUS for some lengths or alphabet
sizes. Besides construction methods, some publications (e.g.
[1], [21]) have introduced and used the following necessary
condition on PRUS: if x = {xl}L−1

l=0 is a PRUS of length L
then ∣∣∣∣∣

L−1∑
l=0

xl

∣∣∣∣∣ = √
L (1)

This necessary condition follows directly from the fact that
the DFT of a PRUS has a constant magnitude (note that the
DFT value at zero frequency is the sum of the sequence). In
[2], several useful results are obtained which can be combined
with the results in this paper. Namely, it was shown in [2] that
the existence of PRUS of length L = mp (for a prime p) with
entries in αp is connected to the existence of (L, p, L,m)-
relative difference sets. Using some existence results of relative
difference sets, the authors in [2] prove for example that there
is no PRUS of length L = ps (for s ≥ 3), L = 2ps (for
s ≥ 1), and L = pp′ (for prime p′ > p) with entries in αp.
However, the strongest claim in the literature regarding the
existence (and construction) of PRUS is known as the Mow’s
conjecture [8]:

Mow’s conjecture (for prime p): Let M(L,p) be the total
number of PRUS with length L over αp. Let L = sq2, where
s and q are both natural numbers and s is square-free. Then

M(L, p) =

{
q!sqΦq(s)pm, pmin = p,
0, otherwise,

(2)
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where

pmin =

{
2sq, for s even and m odd,
sq, otherwise,

(3)

and the Euler totient function Φ(n) shows the number of
k ∈ Zn for which k and n are co-prime, and Φ(1) = 1 by
definition. Moreover, all such PRUS can be constructed using
a unified approach, see [8].

Note that a proof of Mow’s conjecture would imply that
no PRUS of lengths other than L = p and L = p2 exists
over αp. In this work1, PRUS with a prime-size alphabet are
studied. In particular, we study the phase distribution of such
sequences, and introduce a set of principal equations that
can yield the possible phase distributions of PRUS for any
given p and L. In general, the provided phase distributions can
significantly reduce the size of search space for finding PRUS.
Based on the obtained phase distributions, we also provide
practical guidelines for construction of PRUS. A combination
of the ideas in this paper provides us, for example, with the
possibility to numerically settle the problem of the existence
of PRUS for (L, p) = (28, 7) within two weeks; a problem for
which an exhaustive search of the associated search space is
guaranteed to take more than three million years on a standard
PC.

The rest of this paper is organized as follows. In Section
II, the phase distribution of PRUS over αp is discussed. We
show that the phase values of PRUS over αp must follow a
specific difference multiset property. Furthermore, Section II
presents the principal equations. Section III is devoted to the
study of some special cases. A discussion on the usefulness
of the principal equations as well as guidelines for an efficient
construction of perfect sequences along with some examples
are included in section IV. In Section V, we provide our
numerical results. Finally, Section VI concludes the paper.

Notation: We use bold lowercase letters for vec-
tors/sequences and bold uppercase letters for matrices. (.)T

and (.)∗ denote the vector/matrix transpose and complex con-
jugate respectively. The symbol ⊙ is used for the Hadamard
element-wise product of two matrices. x↕ is a vector con-
taining the same entries as x but in reversed order. 0n and
1n are all zero and all one vectors of length n. e(n)l is the
lth standard basis vector in Rn. ∥x∥n or the ln-norm of the
vector x is defined as (

∑
k |x(k)|n)

1
n where {x(k)} are the

entries of x. N, Z, R and C represent the set of natural, integer,
real and complex numbers respectively. Zn represents the set
{0, 1, · · · , n− 1}. Considering the multiplicities of elements,
we use the concept of multiset with the notation [·]. Finally,
p denotes a prime number throughout the paper.

II. PHASE STUDY

In this section, we study the phase distribution of PRUS
over the alphabet αp of prime size. Let x = {xl}L−1

l=0 ={
ej

2π
p kl

}L−1

l=0
be an L-length PRUS over αp. All kl are in

1Some parts of this work were presented at the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP) 2011 [22].

Zp and we call them the integer phases of the sequence. The
periodic autocorrelation of x at lag u ∈ ZL is defined as

Ru =
L−1∑
l=0

ej
2π
p (kl−kl+u)

=

{
L u = 0
0 u ∈ ZL − {0} (4)

where the indices of {kl} are used in a periodic manner (i.e.
mod L). It is interesting to note that Ru is a summation of
terms which are also in αp. Theorem 1 paves the way for
using this observation (see Appendix A for a short proof):

Theorem 1. If
∑p−1

k=0 ake
j 2π

p k = 0 for some ak ∈ Z, then all
ak must be identical.

Corollary 1. If there exists a PRUS of length L over αp then
p|L.

Proof: Let u ∈ ZL − {0}. Then it follows from (4) and
Theorem 1 that Ru = m

∑p−1
k=0 e

j 2π
p k = 0 where m = L/p

must be an integer.

The fact pointed out in Corollary 1 is already known in the
literature, see e.g. [2]. However, it is worthwhile to comment
on the more general case of PRUS of length L over αN . From
a number theory perspective, the authors of [23] study the
vanishing sums of roots-of-unity, viz. q1 + q2 + · · · qT = 0
with ql ∈ αN (for all l), and general N ∈ N. In particular,
they show that if N = pa1

1 · · · par
r (with p1 < · · · < pr)

represent the prime factorization of N then a vanishing sum
of T root-of-unity numbers {ql} (with ql ∈ αN ) can occur
only if there exist non-negative integers {tk} such that T can
be written as T = t1p1 + · · ·+ trpr. Interestingly, we can use
this result in the context of PRUS. Namely, the autocorrelation
sums similar to that in (4) may become zero only if L can be
written as

L = t1p1 + · · ·+ trpr (5)

where {tk} are non-negative integers. Therefore, satisfying
(5) is a necessary condition for a PRUS of length L over
αN . Considering (5), also typically known as the Frobenius
coin problem [24]-[26], can be particularly useful for showing
the non-existence of PRUS when L is rather small. On the
contrary, it can be shown that if L ≥ (p1 − 1)(p2 − 1) then
(5) always has a solution.

In the sequel we use the notation L = mp, m ∈ N, for the
length of PRUS over αp.

Corollary 2. Let x =
{
ej

2π
p kl

}mp−1

l=0
be a PRUS of length

L = mp over αp. Then for every s ∈ Zp and u ∈ ZL −
{0}, there exist exactly m distinct integers {l} such that kl ≡
kl+u + s (mod p).

Proof: We only need to observe that, according to The-
orem 1, all sums in (4) for {Ru}u∈ZL−{0} must have exactly
m terms equal to ej

2π
p s for every s ∈ Zp .

We note that in light of the above results, a general differ-
ence set structure is obtained. Let D = [d0, d1, · · · , ds−1] be a
multiset over a group G of order v. D is a (v, s, λ)-difference
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multiset over G iff the multiset ∆D = [dk − dl : k, l ∈
Zs, k ̸= l] contains each element of G (0 included) exactly
λ times. By this definition, the multiset of integer phases
[k0, k1, · · · , kL−1] of a PRUS of length L = mp over αp

is a (p,mp,m)-difference multiset. The next two definitions
appear to be essential in order to continue our study.

Definition 1. Let ξ0, · · · , ξt−1 be real numbers whose sum is
a constant C. From the Cauchy-Schwarz inequality we have
that

∥ξ∥22 ≥
(
1T
t ξ
)2
/t (6)

where ξ is the vector with entries {ξk}. Therefore,
∑t−1

k=0 ξ
2
k at-

tains its minimum value when the sum is uniformly distributed
over {ξk}. We define

Γ(C, t) ,
{
C2/t t > 0
0 otherwise

(7)

as the minimum value of the sum of squares of t real variables
with sum C.

Definition 2. We let Φx be the circulant matrix made from
the integer phases {kl} of the sequence x, viz.

Φx ,


k0 k1 · · · kmp−1

kmp−1 k0 · · · kmp−2

...
...

. . .
...

k1 k2 · · · k0

 . (8)

For the lth column of Φx, consider the location of the entries
which are equal to kl (l = 0, · · · ,mp− 1). Considering these
locations for all columns, we build an mp×mp equivalence
matrix Φe of x whose entries in the mentioned locations are
1; otherwise they are 0. We also extend the definition of Φe to
Φ(s)

e (with Φ(0)
e = Φe), for s ∈ Zp as follows: by finding the

locations of the entries kl′ in the lth column of Φx such that
kl′ ≡ kl+ s (mod p), we represent these locations in Φ(s)

e by
1, and by 0 otherwise.

There exist several construction methods for PRUS with the
length L = p; see Section III for details. Moreover, the case
of L = p presents some unique properties (see below) that
makes its study relevant. We also study the PRUS of length
L = mp, m > 1, and present our general results in sub-section
II-B below.

A. The case of L = p (corresponding to m = 1)

Based on the above discussions, the integer phases of PRUS
with length L = p over αp have a (p, p, 1)-difference multiset
structure. Such PRUS are in close connection with prime-
length binary sequences with optimal periodic correlation. A
detailed discussion revealing such close relationship is pro-
vided in Appendix B. Theorem 2 studies the phase distribution
of PRUS in this case.

Theorem 2. A PRUS of length L = p > 2 over αp has
exactly 1

2 (p + 1) distinct phases. Even more precisely, such
PRUS consists of a singleton and 1

2 (p− 1) equi-phase pairs.

Proof: Note that due to the (p, p, 1)-difference multiset
structure, all rows of Φe (in this case) have exactly one 1

except the first row whose all entries are 1. Now let µk be
the number of times that ej

2π
p k (for k ∈ Zp) occurs in the

sequence, and let us assume that t of {µk} are nonzero. We
have

p−1∑
k=0

µk = p. (9)

As discussed above, by considering the rows of Φe, we
conclude that there are (2p−1) ones in Φe. On the other hand,
since for every integer phase k ∈ Zp we have µk columns with
µk ones in each of them, the number of ones in Φe is equal
to
∑p−1

k=0 µ
2
k; hence

p−1∑
k=0

µ2
k = 2p− 1. (10)

Since the sum of µk is constant, we have

2p− 1 =

p−1∑
k=0

µ2
k ≥ Γ(p, t) =

p2

t
, (11)

and as a result

t ≥
⌈

p2

2p− 1

⌉
=

1

2
(p+ 1) (12)

where ⌈x⌉ denotes the smallest integer greater than or equal
to x. Now let us suppose that t ≥ 1

2 (p + 1) + 1 = 1
2 (p + 3).

Also let v1 be the number of {µk} which are equal to one.
Therefore

p =

p−1∑
k=0

µk ≥ v1 + 2(t− v1) = 2t− v1. (13)

Note that (13) implies v1 ≥ 2t − p ≥ 3. This leads to a
contradiction for p = 3 as all phases should be different; i.e.
µ0 = µ1 = µ2 = 1 which yields

∑p−1
k=0 µ

2
k ̸= 2(3) − 1. Next

we consider the case of p ≥ 5. Note that

p−1∑
k=0

µ2
k ≥ v1 + Γ

(
p− v1,

p+ 3

2
− v1

)
. (14)

By substituting (10) in (13) we get v1 ≤ 3 and as a result
v1 = 3. Now let µk∗ ≥ 2 for some k∗ ∈ Zp; then

p−1∑
k=0

µ2
k ≥ 3 + µ2

k∗
+ Γ

(
p− 3− µ2

k∗
,
p+ 3

2
− 4

)
. (15)

Again by substituting (10) in (15) we obtain µk∗ ≤ 3. This
shows that except for µk = 1, the only possible values of µk

are 2 and 3. Let us denote the number of them by v2 and v3,
respectively. Then:{

3 + 2v2 + 3v3 = p
3 + 4v2 + 9v3 = 2p− 1

(16)

which is not feasible for integer numbers v2 and v3. Thanks
to the latter contradiction, we conclude that the number of
distinct phases is equal to t = 1

2 (p+ 1). In order to obtain a
complete picture of the phase distribution of x, let vk denote
the number of {µk} which are equal to k, for all k ∈ Zp.
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Using the inequality in (13) we have that v1 ≥ 2t − p ≥ 1.
On the other hand,

p−1∑
k=0

µ2
k ≥ v1 + Γ

(
p− v1,

p+ 1

2
− v1

)
(17)

which implies v1 ≤ 1, and as a result v1 = 1. If µk∗ ≥ 2 for
some k∗ ∈ Zp then

p−1∑
k=0

µ2
k ≥ 1 + µ2

k∗
+ Γ

(
p− 1− µ2

k∗
,
p+ 1

2
− 2

)
. (18)

As before, by substituting (10) in (18) we obtain µk∗ ≤ 2, and
hence µk∗ = 2. This implies that v2 = 1

2 (p − 1) and vk = 0
for k > 2 which completes the proof.

B. The case of L = mp (general case)

As indicated earlier, the integer phases of a PRUS of length
L = mp over αp build a (p,mp,m)-difference multiset, which
implies that for every u ∈ ZL − {0}, there exist exactly m
distinct integers {l} such that kl = kl+u. Therefore, for an
mp ×mp matrix Φe built as in Definition 2, the number of
ones is equal to mp+m(mp−1). Let µk represent the number
of times that ej

2π
p k occurs in the sequence. Then we have that

p−1∑
k=0

µk = mp, (19)

p−1∑
k=0

µ2
k = mp+m(mp− 1). (20)

We assume t of {µk} are nonzero, which implies

m2p+m(p− 1) =

p−1∑
k=0

µ2
k

≥ Γ (mp, t) =
(mp)2

t
, (21)

and as a result

t ≥ mp2

(m+ 1)p− 1
. (22)

The above lower bound shows that as m increases, a larger
number of phases from αp might be needed to build a PRUS
of length L = mp. For sufficiently large values of m we need
all phases:

Theorem 3. For m ≥ p − 1, all phase values must be used
in a PRUS.

Proof: This is a direct consequence of the lower bound
in (22).

Now, for every s ∈ Zp − {0} we consider the matrix
Φ(s)

e built as in Definition 2. Based on the difference multiset
property, for every u ∈ ZL−{0}, there exist exactly m distinct
integers {l} such that kl+u ≡ kl + s (mod p). Therefore, the
matrix Φ(s)

e has exactly m ones in each of its rows except
for the first row which is all zero. This implies that Φ(s)

e has
m(mp − 1) ones. On the other hand, the number of ones in
Φ(s)

e is equal to
∑p−1

k=0 µkµk+s as it equals the number of all

pairs with the property kl+u ≡ kl+s (mod p). Therefore, the
out-of-phase correlations of the sequence {µk} are given by

p−1∑
k=0

µkµk+s = m(mp− 1), s ∈ Zp − {0}. (23)

Based on (19), (20) and (23), we conclude the following.

Theorem 4. Let {µk} denote the phase distribution of a PRUS
with length L = mp over αp. If we define rk , µk −m, then
{rk} satisfy the following set of principal equations:

∑p−1
k=0 rk = 0∑p−1
k=0 r

2
k = m(p− 1)∑p−1

k=0 rkrk+s = −m, s ∈ Zp − {0}.
(24)

Solving the principal equations indicate the possible PRUS
phase distributions for given L and p. It is interesting to note
that if {rk} is a solution to (24), then {−rk}, {r−k} and
{rk+l} where l ∈ Zp are also valid solutions to (24). In other
words, the set of principal equations induces a certain type of
equivalence class on its solutions. We note that the unimodular
perfect sequences enjoy a similar set of equivalence properties:
let x be a unimodular perfect sequence, then x∗ and ejϕx
(where ϕ can be chosen arbitrarily) are also unimodular perfect
sequences. This shows that given a solution {rk} to the
principal equations, the solutions {r−k} and {rk+l} do not
lead to new PRUS. In contrast, the solution {−rk} might lead
to new sequences. As an aside remark, note that the second
equation of (24) can be viewed as a sum of squares problem,
which has been widely studied for many years. More details
on this aspect are deferred to Appendix C. The following
discussion is devoted to a geometrical study of the problem.

Let r0 = (r0, · · · , rp−1)
T and also let rk represent the

circularly shifted version of r0 by k ∈ Zp. The principal
equations can be rephrased as follows over the vectors {rk}:

1T
p rk = 0

∥rk∥2 =
√
m(p− 1)

rTk rl = −m, k ̸= l

(25)

The angle between each pair of vectors {(rk, rl)}k ̸=l is given
by

θ = arccos

(
rTk rl

∥rk∥2∥rl∥2

)
= arccos

(
−1

p− 1

)
(26)

Therefore, {rk}k∈Zp , form a set of p vectors lying in a
(p−1)-dimensional space which is the hyperplane orthogonal
to 1p and the angle between each pair of them is the value
given in (26). We further note that the structure made by
connecting all vertices pointed by {rk} is a known multi-
dimensional object called a regular simplex [29]. Such struc-
tures are shown in Fig. 1 for one, two and three dimen-
sions. The reference [29] suggests {e(p)k } (i.e. the standard
basis) as vertices of a regular simplex of edge

√
2 lying

in the hyperplane 1T
p x = 1. It can be easily verified that

r̃0 =
(
(p− 1)

√
m
p ,−

√
m
p , · · · ,−

√
m
p

)T
∈ Rp together

with its circularly shifted versions (denoted by {r̃k}) satisfy
the principal equations. It is also straightforward to verify that
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Fig. 1. (a-c) Regular simplexes in one, two and three dimensional space.
In n dimensions they can be characterized with n+1 vectors with the same
l2-norm and also the same angle between them as described in Eq. (26).

these points can be obtained from the vectors {e(p)k } by a
scaling and a translation. As every two regular simplexes with
their center at 0p can be obtained from each other by a set of
rotations, we can find the vectors {rk} by rotations of {r̃k}
such that their end lie at the integral lattice. Note that as the
regular simplex made by {r̃k} is in a (p − 1)-dimensional
space, its rotation could be parametrized with (p − 2) angles
ψ0, · · · , ψp−3 and as a result the vectors {rk} could be written
as a function of sinψk and cosψk for k ∈ Zp−2. Taking into
consideration the fact that {rk} are integral, this gives a closed
form solution for m (and as a result a closed form solution
for the sequence length) as well as the phase distribution. We
give an example of the usage of such a geometrical approach
in Section III. Nevertheless, for large values of L and p, an
efficient numerical approach to tackle the principal equations
is discussed in Appendix D.

III. SPECIAL CASES

This section not only considers special cases associated
with the principal equations but also aims to establish the
connections between the results in Section II and the existing
literature on PRUS. Several special cases for m and p are
discussed. The cases m = 1 and m = p are discussed because
of the well-known constructions which give sequences for
these values. Additionally, we study the case of m = h2m′

where a solution for the principal equations can be found for
length L′ = m′p. The special cases p = 2 and p = 3 are
also discussed to give closed form solutions for the length and
phase distribution of PRUS. The case p = 3 can be considered
as an example of using the geometrical approach based on the
regular simplex to solve the principal equations.

A. Special Cases of m

• m = 1 and m = p: Sequences with m = 1 (i.e.
length L = p) can be constructed for example by Zadoff,

Chu, Golomb polyphase, P3 and P4 methods [4]. These
methods are all based on quadratic integer phases and it
is easy to verify that all of them follow the distribution
given in Section II-A. Examples of construction methods
for m = p (i.e. length L = p2) include Frank, P1, P2
and Px methods [4]. Sequences of this length contain all
phase values, see Theorem 3.

• m = h2m′: Let {r(m
′)

k } be a solution of the principal
equations for length L′ = m′p over αp. Then, one
can verify that {r(m)

k } = {hr(m
′)

k } is a solution of the
principal equations for the length L = mp. Interestingly,
the Mow’s conjecture suggests that the latter consruction
of solutions for the principal equations cannot lead to
new PRUS. Nevertheless, existence of such PRUS is not
disproved by the principal equations.

B. Special Cases of p

• p = 2: Solving the principal equations, viz.

µ2
0 + µ2

1 = 2m2 +m (27)
2µ0µ1 = 2m2 −m (28)

for this case (which is the case of perfect binary
sequences) yields µ0 = 1

2

(
2m±

√
2m
)

and µ1 =
1
2

(
2m∓

√
2m
)
. Therefore m must be of the form 2h2

and as a result µ0 = 2h2 ± h and µ1 = 2h2 ∓ h. This
enumeration of +1 and −1 in perfect binary sequences
can be obtained also by the necessary condition (1) and
is mentioned in several publications including [30].

• p = 3: Here we use the geometrical approach discussed in
Section II-B to solve the principal equations. For 3-phase
perfect sequences, the {rk} make a two dimensional
regular simplex orthogonal to 13, which has 3 vectors
and each two of them have an angle of 2π

3 . The structure
of this regular simplex is shown in Fig. 1(b). Let R13

be the unitary rotation matrix which maps 13 to
√
3e

(3)
3 .

Also let

r′k =
√
2m

 cos
(
2kπ
3 + ψ

)
sin
(
2kπ
3 + ψ

)
0

 (29)

for k ∈ Z3 and ψ ∈ [0, 2π). Therefore, rk is equal to
R−1

13
r′k for some ψ. This implies that rk ∈ Z3 is of the

form

√
2m


√
2
2 cos

(
2kπ
3 + ψ

)
−

√
6
6 sin

(
2kπ
3 + ψ

)
√
6
3 sin

(
2kπ
3 + ψ

)
−

√
2
2 cos

(
2kπ
3 + ψ

)
−

√
6
6 sin

(
2kπ
3 + ψ

)


for k ∈ Z3. As {rk} are the circularly shifted versions
of each other, it is sufficient to study one of them. For
k = 0, we infer that both h1 = 2

√
m
3 sinψ (which is

the second entry of r0) and h2 = 2
√
m cosψ (which is

the difference between the first and the third entry of r0)
must be integers. We conclude that 3h21 + h22 = 4m and

r0 =
1

2

 (h2 − h1)
2h1

−(h2 + h1)

 . (30)
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Therefore, the sequence length must be of the form

L =
1

4

(
9h21 + 3h22

)
(31)

while its phase distribution is given by

1

4

(
3h21 + h22

)
13 +

1

2

 (h2 − h1)
2h1

−(h2 + h1)

 , (32)

for integers h1 and h2.

IV. PRUS: FROM PHASE DISTRIBUTIONS TO
CONSTRUCTION

In this section, we discuss the use of the ideas introduced
earlier for an efficient search or construction of PRUS.

A. Are the Principal Equations Useful?
First we show that if {rk} satisfy the principal equations,

then the necessary condition in (1) will be satisfied; i.e. the
principal equations are more informative than (1). Let S be
the sum of entries of the PRUS:

S ,
mp−1∑
l=0

ej
2π
p kl =

p−1∑
k=0

µke
j 2π

p k. (33)

For {rk} satisfying the principal equations:
p−1∑
k=0

rkrk+s =

(
p−1∑
k=0

r2k

)
−mp = −m, s ∈ Zp − {0}. (34)

Therefore,

|S|2 =

∣∣∣∣∣
p−1∑
k=0

µke
j 2π

p k

∣∣∣∣∣
2

=

∣∣∣∣∣
p−1∑
k=0

rke
j 2π

p k

∣∣∣∣∣
2

=

p−1∑
s=0

(
p−1∑
k=0

rkrk+s

)
ej

2π
p s = mp

which implies the satisfaction of (1).
It is worth emphasizing that satisfaction of the principal

equations is necessary but not sufficient for a PRUS. The
necessity induced by the principal equations guarantees that
if a sequence exists over αp then it will have a specific length
and phase distribution; particularly, the number of sequences
which are needed to be checked for enummeration of PRUS
of length L over αp reduces from

pL =
∑

{µk≥0}p−1
k=0:

∑p−1
k=0 µk=L

(
L

µ0, µ1, · · · , µp−1

)
(35)

to ∑
{µk}p−1

k=0 ∈ Ω

(
L

µ0, µ1, · · · , µp−1

)
(36)

where Ω represents the set of feasible phase distributions.
Note that the expression (36) typically contains only a few
out of

(
L+p−1
p−1

)
summation terms of Eq. (35). Therefore, the

principal equations can be used to show the impossibility of
some lengths (in cases for which no feasible phase distribution
exists) and to significantly reduce the size of search space of
PRUS in general; see Section V for some numerical evidence
on this aspect.

B. PRUS Construction: Guidelines and Examples

Once we have obtained the length and phase distribution of
a PRUS, an efficient method for its construction (or further
elimination of non-suitable cases) is needed. Hereafter, we
aim to explain how a PRUS could be constructed using the
{Φ(s)

e } matrices introduced in Section II. Examples of such a
construction for different scenarios are also provided.

For the Φe matrix (built based on the equality of phases)
we need an all one first row and exactly m ones in any
other row. On the other hand, the matrices {Φ(s)

e }s̸=0 (built
based on the inequality of phases) contain no ones in the
first row and exactly m ones in the other rows. It is an
important observation that this condition is equivalent to the
perfectness of the sequence and as a result all we need is
to check whether assigning different phases to indices in the
sequence preserves this condition. Let us assume that the
vector χk = (χk(0), · · · , χk(µk − 1))

T contains the indices
that are assigned to the kth phase, i.e. ej

2π
p k. As an example,

the configuration of the matrix Φx and the corresponding
vectors {χk} are shown in Fig. 2 for the Frank sequence of
length 9. As the Φx matrix has a circulant structure, we can

Fig. 2. Configuration of Φx and the vectors {χk} for the Frank sequence
of length 9.

observe that rows of {Φ(s)
e } with a one in the χk(l)

th position
are given by

(χk(l)− χk(1))1µ(k+s)
+ χ

↕
(k+s). (37)

Fig. 3 depicts the construction of the matrices {Φ(s)
e } for the

Frank sequence of length 9 based on (37).
According to the above discussion, instead of the classical

method based on calculation of the autocorrelation for all
sequences, one can make updates of the matrices {Φ(s)

e } for
each assignment of indices to phases in αp respectively, and
check whether for each assignment the number of nonzero
entries in each row (except the first row) of the updated
matrices {Φ(s)

e } does not exceed m. Note that since the
matrices {Φ(s)

e } represent all distinct differences (s ∈ Zp

where s = 0 denotes the case of phase equality), they can
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(a) (b) (c)

Fig. 3. (a-c) Construction of the matrices {Φ(s)
e } for the Frank sequence of length 9 and integer phase differences equal to s = 0 (i.e. equality of phases),

1 and 2 respectively. The positions of 1s are shown by the corresponding phases that satisfy the difference s.

be viewed as complementary binary matrices; i.e. (i) there
exists no common positions for ones in the matrices {Φ(s)

e }
(equivalently Φ(s1)

e ⊙ Φ(s2)
e is an all zero matrix for any

s1 ̸= s2, where s1, s2 ∈ Zp), and (ii) the sum of matrices
{Φ(s)

e }s∈Zp is an all one matrix. Therefore, if by assigning all
indices to elements of αp, there still exists no row violating
the above condition, then this shows that the number of ones
in all rows of {Φ(s)

e } (except the first row) is equal to m.
It is important to note that by using the discussed idea, still

we need to check all(
L

µ0, µ1, · · · , µp−1

)
(38)

possible arrangements of entries of PRUS (with given phase
distribution {µk}). But the proposed method is also sensitive to
unsuitable partial assignments of phases. A suitable phase ar-
rangement is as shown in Fig. 2 corresponding to the Frank se-
quence of length 9. The method assigns χ0 = (0, 1, 2, 3, 6)T ,
χ1 = (5, 7)T and χ2 = (4, 8)T one after another and none
of the matrices {Φ(s)

e } violates the above rule about the
number of ones in their rows. On the other hand, there are
unsuitable phase arrangements which coincide with the phase
configuration of the Frank sequence. For example, suppose
that the method already has assigned χ0 = (0, 1, 2, 3, 6)T .
Now if the method assigns χ1 = (4, 5)T then by updating the
matrices {Φ(s)

e } (as depicted in Fig. 4), it appears that such
a partial phase arrangement violates the expected number of
ones in rows of {Φ(s)

e }.
Note that by recognizing any partial assignment of phases as

unsuitable, the proposed construction approach avoids testing
lots of sequences and thus is considerably more efficient than
the classical approach. We refer the interested reader to a
further efficiency analysis of the proposed construction method
in Appendix E.

V. NUMERICAL RESULTS

We provide several numerical results that rely on the ideas
discussed in the paper. Table I presents all feasible lengths

(less than or equal to 500) along with their corresponding
phase distributions for p = 5 and 7. Using the equivalence
properties of PRUS, the {µk} sequences are circularly shifted
such that µ0 take the maximum value among all {µk}. The
non-existence results of [2] are used to omit some cases of
(L, p) wihtout solving the principal equations. Note that by
providing the phase distributions we are able to significantly
reduce the size of the search space in all cases. The search
space cardinality reduction induced by using the principal
equations is also reported in Table I.

In order to contribute to the current state-of-knowledge re-
garding the existence of PRUS, next we consider the unsolved
cases of PRUS of length L ≤ 50 in [2]; which are also shown
in Table II. As in the previous example, the size reduction of
the PRUS search space is reported when the phase distributions
were derived by solving the principal equations. Nevertheless,
even after using the principal equations, the size of the search
spaces appears to be prohibitive for an exhaustive search. To
help the interpretation of the results in Table II, and to see how
expensive tackling such search problems can be, we consider
the following analysis for the case (L, p) = (28, 7):

• The initial size of the search space is 728 ≈ 4.60× 1023.
Supposing that a standard PC can handle 5× 109 simple
math operations per second, we can see that a search for
PRUS in this case would take more than

728

(3600× 24× 365)(5× 109)
years (39)

i.e. approximately 3 million years.
• Using the principal equations, we reduce the size of the

search space by a factor of 5.33 × 104. On the same
standard PC, an exhaustive search of PRUS for (L, p) =
(28, 7) in this case will take more than

8.63× 1018

(3600× 24× 365)(5× 109)
years (40)

i.e. approximately 55 years.
• By employing the construction guidelines provided in
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(a) (b) (c)

Fig. 4. (a-c) Updated matrices {Φ(s)
e } for an unsuitable phase arrangement which coincides with the phase configuration of the Frank sequence (integer

phase differences are equal to s = 0, 1 and 2 for (a), (b) and (c) respectively). The positions of 1s are shown by the corresponding phases that satisfy the
difference s. χ1 = (4, 5)T is assigned after considering χ0 = (0, 1, 2, 3, 6)T and as a result the number of 1s in the second and ninth row of (a) are more
than m = 3.

TABLE I
ALL POSSIBLE LENGTHS (LESS THAN OR EQUAL TO 500) OF PRUS OVER αp FOR p = 5 AND 7 TOGETHER WITH PHASE DISTRIBUTIONS.

p Length (L) Phase distributions {µk}p−1
k=0 Reduction in the size of search space induced by the

principal equations (, initial size / final size)
5 (2, 1, 2, 0, 0) (2, 2, 0, 1, 0) 52.08
25 (6, 6, 6, 6, 1) (9, 4, 4, 4, 4) 1.60× 103

180 (42, 36, 42, 30, 30) (42, 42, 30, 36, 30) 8.39× 104

5 220 (52, 46, 34, 46, 42) (52, 46, 46, 42, 34) 6.31× 104

(54, 42, 46, 36, 42) (54, 46, 42, 42, 36)
275 (64, 54, 59, 44, 54) (64, 59, 54, 54, 44) 9.86× 104

(66, 56, 46, 56, 51) (66, 56, 56, 51, 46)

7 (2, 2, 1, 0, 0, 2, 0) 1.31× 103

28 (6, 6, 4, 2, 2, 6, 2) (7, 5, 5, 2, 5, 2, 2) 5.33× 104

49 (13, 6, 6, 6, 6, 6, 6) (8, 8, 8, 8, 8, 8, 1) 3.05× 105

56 (11, 10, 10, 5, 10, 5, 5) (11, 11, 6, 11, 6, 6, 5) 4.55× 105

112 (18, 18, 17, 18, 17, 17, 17) (20, 20, 14, 20, 14, 14, 10) 2.52× 106

(20, 20, 16, 12, 12, 20, 12) (22, 18, 18, 12, 18, 12, 12)
(25, 15, 15, 14, 15, 14, 14)

7 196 (30, 30, 30, 30, 30, 30, 16) (33, 33, 26, 33, 26, 26, 19) 1.02× 107

(37, 30, 30, 23, 30, 23, 23) (40, 26, 26, 26, 26, 26, 26)
224 (36, 36, 32, 36, 32, 32, 20) (37, 37, 35, 26, 26, 37, 26) 1.02× 107

(38, 36, 36, 26, 36, 26, 26) (38, 38, 26, 28, 28, 38, 28)
(38, 38, 27, 38, 27, 27, 29) (44, 32, 32, 28, 32, 28, 28)

372 (62, 62, 55, 62, 55, 55, 41) (62, 62, 62, 48, 62, 48, 48) 8.23× 107

(64, 64, 50, 64, 50, 50, 50) (71, 57, 57, 50, 57, 50, 50)
448 (68, 68, 66, 68, 66, 66, 46) (71, 71, 62, 71, 62, 62, 49) 7.02× 107

(72, 72, 56, 72, 56, 56, 64) (72, 72, 60, 72, 60, 60, 52)
(76, 68, 68, 56, 68, 56, 56) (79, 66, 66, 57, 66, 57, 57)
(82, 62, 62, 60, 62, 60, 60)

Section IV, we developed a MATLAB code1 to search for
PRUS with (L, p) = (28, 7). We used two standard PCs,
which dealt with the two possible phase distribtuions of
the case (L, p) = (28, 7) (see Table II), in parallel. Using
this approach, we were able to confirm the non-existence
of PRUS with (L, p) = (28, 7) in about 2 weeks.

Note that due to the exponential growth in the size of search
space, the questions regarding the existence of PRUS in cases
for (L, p) = (33, 11) and (L, p) = (39, 13) remain open.

Although the study of PRUS over general root-of-unity

1The MATLAB code associated with this experiment is provided online:
http://www.it.uu.se/katalog/mojso279/test-p7.rar

alphabet (i.e. αN with general N ∈ N) is beyond the scope
of this paper, it can be interesting to study the length/alphabet
restrictions imposed by (5) and the remarks after Corollary
1. The eliminated cases of (L,N) via (5) are plotted in Fig.
5 for 2 ≤ L,N ≤ 100. Interestingly, the prime values of
N appear to support rather smaller numbers of lengths L
than the nonprime values do. Via the results of Fig. 5 we
prove the non-existence of PRUS for 3443 cases of (L,N)
for 2 ≤ L,N ≤ 100.

VI. CONCLUDING REMARKS

Perfect root-of-unity sequences with prime-size alphabets
have been studied. The results can be summarized as follows:
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TABLE II
REMAINING UNSOLVED CASES FROM [2], L ≤ 50

p Length (L) Phase distributions {µk}p−1
k=0 Reduction in the size of search space

induced by the principal equations (,
initial size / final size)

Final size of the
search space

Existence

7 28 (6, 6, 4, 2, 2, 6, 2) (7, 5, 5, 2, 5, 2, 2) 5.33× 104 8.63× 1018 Negative
11 33 (8, 3, 2, 3, 3, 3, 2, 2, 2, 3, 2) 2.68× 107 8.65× 1026 ?
13 39 (5, 1, 4, 5, 5, 3, 3, 1, 4, 3, 4, 0, 1) 1.03× 109 2.69× 1034 ?

(5, 1, 1, 4, 4, 3, 5, 4, 5, 0, 3, 1, 3)
(6, 3, 5, 3, 1, 5, 5, 2, 2, 3, 1, 2, 1)
(6, 5, 1, 5, 2, 1, 1, 3, 3, 5, 2, 3, 2)

2 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

2
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Fig. 5. The eliminated PRUS cases (represented by black squares) of (L,N) by solving (5) for 2 ≤ L,N ≤ 100. The results in this figure prove the
non-existence of PRUS for 3443 cases of (L,N) for 2 ≤ L,N ≤ 100.

• The phase distribution of p-length PRUS over αp was
given for p > 2: it was shown that such sequences have
1
2 (p+1) distinct phases with 1

2 (p−1) of them appearing
in pairs and one of them being a singleton.

• A lower bound on the number of distinct phases which
must be used in a PRUS over αp was derived. The lower
bound was used to show that for PRUS of length L ≥
p(p−1) (i.e. m ≥ p−1) over αp, the sequence must use
all phase values.

• Guidelines to find possible lengths (L) of PRUS over αp

were given. It was shown that integer phases of the se-
quence must follow a specific difference multiset property
and there should exist a sequence of {µk} (introduced

in Section II) satisfying the principal equations. For a
possible length, the phase distribution is then given by
{µk}p−1

k=0.
• A geometrical analytical method to solve the principal

equations was introduced for a specific p using the regular
simplex. In particular, it was shown using the geometrical
approach that if there exists a perfect sequence over α3

(i.e. a 3-phase perfect sequence), its length must be of
the form L = 1

4

(
9h21 + 3h22

)
for (h1, h2) ∈ Z2 and the

phase distribution of the sequence was also derived.
• The usefulness of the principal equations was discussed.

Given the phase distribution, guidelines for efficient
construction of PRUS (in comparison to the exhaustive
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search) along with some examples were provided.
• Numerical evidence was provided to show the potential

of using the principal equations and the construction
guidelines of Section IV in practice. Through numerical
examples, new contributions were made to the current
state of knowledge regarding the existence of PRUS.

We conclude the paper with two remarks. First of all, while
Theorem 1 shows that a uniform distribution of phases leads to
perfect sequences, for almost-perfect sequences we may focus
on almost-uniform distributions. A clear possibility here can
be outlined as follows: in cases for which a perfect sequence
does not exist, one can try to build sequences with a phase
distribution which approximately satisfies the principal equa-
tions and approximately preserves the construction conditions
for {Φ(s)

e } in Section D. Finally, we would like to emphasize
the possible connections between the study of PRUS and the
Szemerédi theorem and related results which study the min-
imal size and properties of subsets of Zn containing specific
length arithmetic progressions (see Appendix E). These results
might be usable to further examine the existence as well as
the construction for PRUS over αp.

APPENDIX A
PROOF OF THEOREM 1

We prove a more general form of the theorem by using some
results from the theory of algebraic numbers and minimal
polynomials: a number is called algebraic iff it is a root of a
polynomial with rational coefficients. The minimal polynomial
Pmin(x) of an algebraic number x0 is the polynomial with
rational coefficients, minimum degree and the leading coeffi-
cient equal to 1 which satisfies Pmin(x0) = 0. It is known
[34] that the minimal polynomial of the primitive nth root of
unity (ej

2π
n ) is of degree d = ϕ(n) where ϕ (the Euler’s totient

function) shows the number of k ∈ Zn for which k and n are
co-prime. For n = p, p prime, the minimal polynomial is of the
unique form

∑p−1
k=0 x

k [35]. We conclude that if P (ej
2π
p ) = 0

for a polynomial P (x) with rational coefficients and degree
d = p − 1 then P (x) must be equal to w

∑p−1
k=0 x

k for some
rational scalar w. This implies that all coefficients of P (x)
must be equal, which completes the proof.

APPENDIX B
CONNECTIONS BETWEEN PRUS OF LENGTH L = p

OVER αp AND BINARY SEQUENCES WITH
OPTIMAL PERIODIC CORRELATION

Let x be a PRUS of length p over αp. Let µk represent the
number of times for which ej

2π
p k occurs in x. It is shown in

Section III-B that the distribution of {µk} is given by (p− 1)/2, µk = 0
1, µk = 1
(p− 1)/2, µk = 2

(41)

Since x is perfect, it has a constant magnitude of
√
p in the

discrete Fourier domain. Note that the value of the discrete
Fourier domain, at the frequency zero, represents the sum of

the sequence x; hence, for x =
{
ej

2π
p kl

}p−1

l=0
we have that∣∣∣∣∣

p−1∑
l=0

ej
2π
p kl

∣∣∣∣∣ = √
p, (42)

or equivalently ∣∣∣∣∣
p−1∑
k=0

µke
j 2π

p k

∣∣∣∣∣ = √
p. (43)

Now let rk = µk−1. Therefore, (43) can be rewritten based
on {rk} as ∣∣∣∣∣

p−1∑
k=0

rke
j 2π

p k

∣∣∣∣∣ = √
p. (44)

The latter equality implies that
p−1∑
k=0

(
p−1∑
l=0

rlrl+k

)
ej

2π
p k = p. (45)

By applying the result of Theorem 1 to (45), we obtain:(
p−1∑
l=0

r2l

)
− p =

p−1∑
l=0

rlrl+1 = · · · =
p−1∑
l=0

rlrl+p−1. (46)

On the other hand, it is interesting to note that
p−1∑
l=0

r2l =

p−1∑
l=0

(µl − 1)
2
= p− 1. (47)

Therefore, the sequence {rk} has in-phase autocorrelation of
p−1, and respectively, a constant out-of-phase autocorrelation
of −1. Moreover, the distribution of {rk} is given by (p− 1)/2, rk = −1

1, rk = 0
(p− 1)/2, rk = +1

(48)

which implies that {rk} is a balanced [36] punctured [37]
binary sequence with only one zero. Note that replacing the
zero element of the sequence with +1 or −1 can change
the out-of-phase correlation lags by 0, 2 or −2. We also
note that all correlation values are congruent to the length
of the sequence (i.e. p) modulo 4. Therefore, the out-of-phase
correlation lags would turn to −1 for p ≡ 3, and to {1,−3}
for p ≡ 1 (mod 4).

The discussed idea of constructing binary sequences with
optimal periodic correlation from PRUS is summarized in
Table III. As indicated earlier, there are several methods to
construct a PRUS of length p over αp. However, we do not
limit our statements to the known construction methods as it is
not yet proven that the currently known construction methods
cover all possible PRUS.

APPENDIX C
STUDY OF THE PRINCIPAL EQUATIONS IN (24) USING THE

SUM OF SQUARES PROBLEM

We note that the second equality in (24) may be viewed as
a sum of squares problem. This approach can be applied in
particular to the case of p = 3. For p = 3, Gauss showed that a
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TABLE III
CONSTRUCTION OF PRIME-LENGTH BINARY SEQUENCES WITH OPTIMAL

PERIODIC CORRELATION FROM PRUS

Step 0: Consider a PRUS of length L = p over αp.

Step 1: Let µk represent the number of times for which e
j 2π

p
k occurs

in the considered PRUS. Form the sequence rk = µk − 1.
Step 2: Replace the only zero element in {rk} with +1 or −1.

natural number can be represented as the sum of three squares
iff it is not of the form 4k(8l−1), (k, l) ∈ Z2 [38]. For p > 3,
one may note that according to a theorem by Lagrange every
natural number can be represented as the sum of four squares
[38]. The latter result implies that every natural number can
be written as sum of p > 3 squares. We refer the interested
reader to [39]-[42] for additional information on cases p = 5,
7, 11, and 13.

APPENDIX D
EFFICIENT TEST METHOD FOR SPECIFIC LENGTHS

Herein we propose an efficient method for testing if a PRUS
of a specific length might exist over αp and for determining its
phase distribution. This test method is useful for cases in which
the length of the needed sequence is fixed or the derivation
of closed form solutions of the principal equations for the
sequence length and phase distribution over a desired alphabet
is deemed to be expensive. Our test method is based on two
approaches to reduce the size of search space for {rk}: (i)
imposing adaptive bounds on {rk} and (ii) assigning {rk}
to certain classes of residues for different integer values. A
preliminary bound on {rk} is given by the following lemma:

Lemma 1. Let r0, · · · , rp−1 be a solution to the principal
equations; then

|rk| ≤ (p− 1)

√
m

p
, k ∈ Zp. (49)

Also if rk∗ has the maximum absolute value among all {rk},
then

|rk∗ | ≥
(√

p− 1
)√m

p
. (50)

Proof: From the principal equations we have rk =
−
∑

l∈Zp−{k} rl, and as a result |rk| ≤
∑

l∈Zp−{k} |rl|.
Therefore,

m(p− 1) =

p−1∑
l=0

r2l = r2k +
∑

l∈Zp−{k}

r2l

≥ r2k + Γ

 ∑
l∈Zp−{k}

|rl|, p− 1


≥ r2k + Γ (|rk|, p− 1)

=

(
p

p− 1

)
r2k (51)

which yields the inequality (49). Next, note that

m(p− 1) =

p−1∑
k=0

r2k ≤ pr2k∗
(52)

which implies the inequality (50).

Interestingly, similar bounds on {rk} could also be estab-
lished in the case that some of {rk} are known. Let us assume
that we know the values of {rk}k∈Zq and let{

S1 =
∑q−1

k=0 rk
S2 =

∑q−1
k=0 r

2
k

(53)

Therefore, for every k ∈ Zp − Zq ,

rk = −S1 −
∑

l∈(Zp−Zq)−{k}

rl (54)

and as a result

m(p− 1)− S2 = r2k +
∑

l∈(Zp−Zq)−{k}

r2l

≥ r2k + Γ (rk + S1, p− q − 1) . (55)

The above quadratic inequality implies that such an arrange-
ment of {rk}k∈Zq might be possible only if

S2
1

p− q
+ S2 ≤ m(p− 1), (56)

and that {rk}k∈Zp−Zq are bounded by

b± =
−S1 ±

√
(p− q − 1) ((p− q)(m(p− 1)− S2)− S2

1)

(p− q)
. (57)

These adaptive bounds help us make convenient successive
selections of rk.

In the following, we propose another useful idea to reduce
the size of the search space, inspired by Minkowski-Hasse
principle for quadratic forms [38]:

Minkowski-Hasse Principle. A quadratic form

Q (r0, · · · , rn−1) =
∑

(k,l)∈Z2
n

Qklrkrl (58)

of rank n with integral coefficients represents zero over
the rationals iff for any g ∈ Z − {0}, the congruence
Q (r0, · · · , rn−1) ≡ 0 (mod g) has a primitive solution and in
addition Q represents zero over the reals, i.e. it is indefinite.

Let
∑p−1

k=0 rk ≡ 0∑p−1
k=0 r

2
k ≡ m(p− 1)∑p−1

k=0 rkrk+s ≡ −m, s ∈ Zp − {0}
(59)

be a set of congruence mod g ∈ N. Note that the second and
third term of (59) are quadratic. It is also interesting to note
that, as {rk} are bounded according to Lemma 1 and all other
values are known and finite, the necessity and sufficiency of
the congruence are obvious. In fact, choosing a sufficiently
large g turns the congruence into an equality by adding an
integral constant to rk. The second fact we need to take into
consideration is that the sum

∑p−1
k=0 rk, rk ∈ Zg , gets all

the residue values in Zg exactly gp−1 times. Therefore, by
searching over all rk ∈ Zg , the congruence set (59) must
reduce the search space at least by a factor of g. Starting from a
small g (say g = 2), we can omit at least (g−1)/g of the search
space elements by testing at most gp elements. But, since many
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of these elements are redundant for different g, it turns out that
for sufficiently large values of g the number of newly omitted
elements is less that the number of tested elements. Therefore,
a combination of this method and the adaptive bounds in
(57) appears to be more useful. Our proposed method can
be described as follows:

• 0: Consider the integral search space Ω bounded by the
inequality (49). Without loss of generality, we assume that
r0 has the maximum value among {rk} and is bounded
as in (50). Also let g = 2.

• 1: Solve the congruence set in (59) for g. This can be
done by a brute-force search over Zg .

• 2: Reduce the size of Ω by omiting elements which
belong to residue classes not feasible for the congruence
set in (59). Let ∆g represent the number of omitted
elements. If ∆g > gp, increase g by one and goto 1.

• 3: Consider all possible values of r0 in Ω and update
S1 and S2 for each of them. By considering all k =
1, · · · , p− 1, respectively, do the following:

– 3.0: Establish the bounds b± as in (57).
– 3.1: Consider all possible rk in Ω that follow the

bounds b± and their absolute value is at most equal
to r0.

– 3.2: Update S1 and S2 for each rk considered in 3.1.
• 4: Check whether the obtained {rk} satisfy the third part

of the principal equations (i.e. all out-of-phase correla-
tions of {rk} are −m).

APPENDIX E
FURTHER EFFICIENCY ASSESSMENT OF THE PROPOSED

CONSTRUCTION IN SECTION IV-B

To explain in more detail how the proposed approach
contributes an efficient construction scheme, consider the
following: let 1+ad(χk) be the length of the longest arithmetic
progression with common difference d in χk. For a PRUS, we
must have that

p−1∑
k=0

ad(χk) ≤ m. (60)

On the other hand, {ad(χk)} are not independent for different
values of d as it can be checked (by construction) that

aqd(χk) ≥
⌊
1

q
ad(χk)

⌋
(61)

for every q ∈ Zad(χk)
− {0}. This immediately shows that

a large ad(χk∗
) (for a k∗ ∈ Zp) limits not only ad(χk)

where k ∈ Zp − {k∗} but also ad(χk) for some other values
of d. A preliminary result from (60) is that none of {χk}
has an arithmetic progression of length greater than m + 1.
However, the number of elements of the set (A×) of sequences
for which the assigned vectors χ0, · · · ,χl (l ∈ Zp) are not
feasible according to (60) and (61) is significantly larger than
the number of sequences for which at least one of the elements
of the set {χ0, · · · ,χl} has an arithmetic progression of length
greater than m+1. We further note that A× is a subset of all
sequences that the proposed construction approach identifies
as unsuitable for PRUS before assigning all {χk}k∈Zp .
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