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Abstract 

 
Interest in self-driving vehicle research has been rapidly increasing, and related research has 
been continuously conducted. In such a fast-paced self-driving vehicle research area, the 
development of advanced technology for better convenience safety, and efficiency in road and 
transportation systems is expected. Here, we investigate research in self-driving vehicles and 
analyze the main technologies of driverless car software, including: technical aspects of 
autonomous vehicles, traffic infrastructure and its communications, research techniques with 
vision recognition, deep leaning algorithms, localization methods, existing problems, and 
future development directions. First, we introduce intelligent self-driving car and road 
infrastructure algorithms such as machine learning, image processing methods, and 
localizations. Second, we examine the intelligent technologies used in self-driving car projects, 
autonomous vehicles equipped with multiple sensors, and interactions with transport 
infrastructure. Finally, we highlight the future direction and challenges of self-driving vehicle 
transportation systems. 
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1. Introduction 

According to a National Highway Traffic Safety Administration (NHTSA) report [1] in 
2016, 94 percent of all automobile accidents occur due to driver errors and its associated 
factors. The main causes of vehicle accidents by drivers include recognition and decision 
errors, performance, and non-performance errors. Thus, self-driving vehicle research targets 
those factors, aiming at reducing the number of errors and offering solutions.  

 Self-driving cars continuously sense the surrounding area with vision, localization, 
mapping, and other techniques using camera, GPS (Global Positioning System), IMU(Inertial 
Measurement Unit), wheel odometry, LIDAR (Light Detection And Ranging) sensors, etc., 
thus reducing possible injuries and saving lives in accidents. Autonomous vehicles lead to 
improved convenience, safety, and efficiency of road and transportation systems [2]. 
Self-driving cars can collect traffic information, be connected by vehicular cloud computing 
[3], and find efficient travel paths in real time, further reducing air pollution caused by 
stopping. These vehicles can share their driving information with other systems to manage 
traffic congestion. Distracted, impaired, and drunk driving has been a major cause of fatalities 
on the road [4], and the new technology can help reduce these human errors, improving driver 
safety. 

Here, we analyze commercial companies [5-8] such as Google, Uber, General Motors, and 
Tesla that are building self-driving systems. Self-driving cars in commercial companies are 
generally equipped with vision, LIDAR, radar, and other supplemental sensor systems to 
detect the surrounding area in autonomous driving. Google and Uber focus on self-driving 
software for precise and accurate performance, and are working with other car manufacturers 
to build driving system hardware. GM and Tesla are developing both the hardware and 
software of the systems. We examine the driverless vehicle technology of these four popular 
companies and compare the detailed techniques in the section below. 

Here, we investigate the recent autonomous vehicle technologies of intelligence, 
automation, and connectivity to achieve efficient and safe driving. Innovations in intelligent 
technology (artificial intelligence) are accelerating the development of self-driving vehicles 
using computer vision (image recognition) and localization methods. In particular, 
camera-based vision techniques using deep learning algorithms are applied to recognize traffic 
information, such as lane lines, cars, signs, humans, etc., on the road with high accuracy to 
build intelligent traffic systems. LIDAR-based techniques [64] provide precise localization, 
achieving centimeter-level accuracy performance in real environments. Vehicle-to-everything 
(V2X) techniques allow for efficient communication between all traffic-related elements, such 
as vehicles, traffic infrastructure, and cloud servers, to reduce accidents and assist driving. We 
introduce these advanced technologies for self-driving cars, and review the recent algorithms 
to improve their performance.  

Section 2 provides a description of the algorithms for precise computer vision, localization, 
and connectivity. We introduce vehicles equipped with intelligent sensors to identify the 
surrounding area. Section 3 describes traffic infrastructure technologies to provide 
information for improved safety and efficiency. In Section 4, we describe the recent 
commercial research in autonomous vehicles at Uber, General Motors, Tesla and Google, and 
compare these technologies. Section 5 summarizes and concludes the investigation, discussing 
future endeavors in this field. 
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2. Autonomous Vehicle Algorithms 

2.1 Lane Tracking Algorithms for Autonomous Vehicles 

Vision algorithms for developing self-driving technology have been actively studied. Early 
vision algorithms had low accuracy and thus had to be used in combination with other sensors. 
Furthermore, the existing vision algorithms relied on image processing technology. During the 
process, since the input image may be distorted after being received as an input, the calibration 
operation is performed to extract the correct result. Information on color and gradient are 
extracted from the calibrated image. HLS(Hue Luminance Saturation) and R information of 
RGB are extracted and combined to generate the color information, and x, y, the magnitude of 
the gradient, and direction of the gradient of Sobel are extracted and combined to generate the 
gradient information. Next, the region of interest (ROI) is specified to reduce noise and extract 
the lane area only. As the perspective is applied to an image, it is difficult to extract accurate 
information about the lane. Therefore, the image needs to be transformed as if it were captured 
from above. Using the perspective transform method [60] of OpenCV, the image is 
transformed accordingly, and the resulting image is usually called the bird's eye view. To 
extract the lane information from the transformed image, a lane is searched by using a sliding 
window search technique. The lane is divided into a left lane and a right lane, and a perspective 
transform is performed after the divided lanes are connected to be converted back to the 
original image. The process using image-processing technology for the lane detection is 
shown in Fig. 1. 

 

 
Fig. 1. Flow chart of a vision algorithm based on image processing for lane detections 

 
 

Fig. 2 shows an example of a lane detection result using image-processing methods. While 
the lane has been detected, it is very vulnerable to surrounding noise because the system 
depends on image processing. Therefore, the self-driving technology is not accurate enough to 
detect lanes or perform object detection using vision algorithms alone. [61] 
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However, with the development of deep learning technology, the data necessary for 

self-driving can be extracted using vision technology, and the accuracy is improved 
correspondingly. Some studies [9–12] also used deep learning technology to detect vehicles 
and lanes on highways and to collect data necessary for self-driving. Computer vision plays an 
important role not only in lane detection, but also for detecting objects within a radius. 
Conventional classic computer vision algorithms were not precise or accurate enough for the 
human eye. However, large storage and computing capabilities over the past few years have 
smoothed learning-based deep-run operations.  

 

 
Fig. 2. Example of a lane detection result based on three image-processing methods: Sobel, perspective 

transform, and sliding window search. 
 
Using a large dataset, a neural network can be trained to perform real-time detection with 

small-capacity models. As the development of convolutional neural networks (CNNs), a 
famous CNN model, AlexNet [12], has been proposed, and various algorithms have been 
developed based on it. Existing multiple CNNs require 5–6 s per frame to take many crops of 
images and it leads to reduce the processing performance. This research [9] has conducted a 
bounding box regression which combines both a sliding window detector and a mask detector 
on CNN-based detectors to overcome this drawback. As a result, it achieved to decrease the 
number of bounding boxes and to increase the performance speed. For the lane detection 
feature, lanes can be detected by adding classes to the CNN used for vehicle detection. 
Furthermore, it has been suggested that self-driving may be possible using vision technology 
alone (i.e., without having to attach various sensors to the vehicle) to predict and draw lanes 
even if the lanes are covered by an object.  
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2.2 Image Recognition Algorithms for Self-driving Object Detection 

Object detection algorithms [13–19] for detecting objects, such as different types of 
vehicles and traffic lights in a self-driving environment, are widely used. Object detection 
algorithms are divided into two methods: 2-stage detection and unified detection. A typical 
algorithm for 2-stage detection is the region-based convolutional network (R-CNN) algorithm. 
Among them, the faster R-CNN algorithm has been applied to the object detection field. 
Thereafter, the faster R-CNN algorithm was developed.  

R-CNN is used to perform object detection by connecting the CNN, which performs the 
image classification, and the region proposal algorithm, which suggests the area in which the 
object may exist in the image. In the process of implementing the R-CNN, approximately 
2,000 region proposals are first extracted from the images received as inputs, and the selective 
search algorithm is used. Next, each region proposal area is cropped and warped from the 
images, and the CNN is used to extract the feature. Finally, classification is performed for each 
region proposal feature. The above process provides high algorithm performance, but the 
localization performance is low. As the CNN has some positional invariance characteristics 
and predicts a high classification score, it is difficult to find the exact location of an object even 
if it is not located at the center of the region proposal. To overcome this drawback, the 
bounding box regression, which can correct the location, is used. However, since the R-CNN 
requires as many CNN operations as the number of region proposals per image, the inference 
speed is very slow and the learning process must go through several stages. The fast R-CNN 
algorithm is an improvement over the R-CNN in terms of improved “speed,” In the case of the 
R-CNN, if 2,000 regions exist in the image, it is cropped and a CNN operation is conducted in 
each region. As a result, a total of 2,000 CNN operations are performed. To improve the 
inefficiency of conducting 2,000 operations, the cropping process can be performed at the 
level of the feature map rather than at the level of an image to reduce the number of operations 
to one. However, to perform the classification, the size of the feature should be the same for all 
examples. In the R-CNN, warping is performed to convert regions of different sizes into 
images of the same size to perform the CNN operation. However, warping is not a suitable 
method because information loss can occur. To compensate for the disadvantage, spatial 
pyramid pooling (SPP) is used. SPP divides an image into a certain number of regions and 
applies bag of words (BoW) to each region to maintain some local information. In the fast 
R-CNN, only a single-level pyramid of the SPP layer is used, and thus, it is called the ROI 
pooling layer. The learning process and testing process become relatively faster by more than 
a factor of 10 and 20, respectively. However, it takes a relatively long time to extract the region 
proposal, and the faster R-CNN was proposed to overcome this disadvantage and inefficiency.  

The faster R-CNN algorithm is a combination of the region proposal network (RPN) and the 
fast R-CNN. The faster R-CNN algorithm generates a feature map by processing an image 
through a pre-trained model. Thereafter, the RPN, which is implemented using convolution, is 
applied, and the input values of the RPN are the feature maps extracted from the previous base 
network. An n × n spatial window is slid onto the feature maps to generate the region proposals. 
Multiple region proposals are predicted for each point determined by the sliding window. The 
highest number of region proposals is denoted by k, which is called the anchor. Typically, nine 
anchors exist per point in each sliding window, and three aspect ratios and three scales are 
combined to have the same central point (Xa, Ya). The depth of the feature map from the 
sliding window takes a lower dimension (e.g., 512 depth ≥ 256 depth). Subsequent output 
values are split into two convolutional layers with a 1 × 1 kernel. In the classification layer, 
two prediction values are derived per anchor, and this value is a probability value determining 
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whether the object is an object or not. The regression layer (or bounding box adjustment layer) 
derives four values—ΔXcenter, ΔYcenter, Δwidth, and Δheight—for each anchor, and these 
values are applied to anchors to obtain the final proposals. The training data for training the 
classifier are anchors and ground truth boxes (data of boxes that a person drew) obtained from 
the RPN. All the anchors should be classified as either foreground or background, and the 
criteria for the classification are as follows: an anchor is a foreground anchor if it overlaps with 
a ground truth box by a large area, and it is a background anchor if the area overlapping with a 
ground truth box is small. Given that the P value distinguishes the foreground from the 
background at each anchor, it can be expressed as follows: 

 

 
where Intersection over Union (IOU), which denotes intersection over union, is defined as 
follows: 

  

 
 
The bounding box regression uses four coordinate values and receives values of the proposed 
regions with different sizes after the Region Proposal Network (RPN) is implemented as the 
outputs. In other words, the feature maps produced from the CNN as outputs have different 
sizes. If the maps differ in size, it becomes more difficult to classify them later. To address this 
issue, a technique called ROI pooling can be used. Using the ROI, feature maps with different 
sizes can be converted to the same size. The logic of the ROI divides each region proposal into 
equal-sized sections. The size of the section is the same as the output size of the ROI pooling. 
It finds the maximum value for each section and produces the maximum value that was found 
for each section as an output. 

The faster R-CNN algorithm can be combined with various feature extractors to increase 
accuracy. The Inception [20–22] and Resnet models [23, 24] are the most popular feature 
extractors. The Inception V1 model sparsely connects the CONV (convolutions) layer and 
densely processes the matrix operation to increase efficiency. However, the change from the 
existing Inception V1 model to the V2 version involves a heavy convolution operation, which 
needs to be improved. After the convolution and pooling operations are performed in parallel, 
they are concated to reduce the computational complexity, and the CONV layer is used to 
reduce the representational bottleneck. Thereafter, the Inception V3 model, a slight 
modification of the Inception V2 model, was proposed, and the Inception V4 and 
Inception-Resnet models were developed by adding features and improving the convergence 
speed by introducing Resnet. We conducted a simple test using the faster R-CNN Inception 
V2 algorithm. Figs. 3 and 4 show the detection results for the stop line and the center line 
using the faster R-CNN Inception V2, respectively.  
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Fig. 3.  Example of stop line detections using faster R-CNN inception V2 

 
Fig. 4.  Example of center line detections using faster R-CNN Inception V2 

 
The Resnet model presents the residual learning framework to help the system easily learn 

and optimize a deeper and larger network, and to provide higher accuracy even if the depth 
increases. Resnet is based on the plain network and includes a shortcut connection. Various 
experiments were conducted as the number of layers was increased, and it was found that the 
deeper network showed a better performance. Fig. 5 shows the results of road line detection 
using the faster R-CNN Resnet 101 algorithm, which is somewhat slower than the faster 
R-CNN Inception V2 but has higher accuracy.  
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Fig. 5.  Example of road line detections using faster R-CNN Resnet 101 

 
It is possible to detect various objects based on the object detection algorithm. Using a 

Tensorflow detection model, zoo group [25], a pre-trained model can be applied using COCO 
(Common Object in Context), KITTI (Karlsruhe Institute of Technology and Toyota 
Technological Institute at Chicago), and open images datasets. These models are combined 
with algorithms, including single shot multibox detector (SSD), SSDlite, faster R-CNN, 
region-based fully convolutional networks, and mask R-CNN algorithms, and feature 
extractor models, including MobileNet, Resnet 50, Inception V2, Resnet 101, and Inception 
Resnet V2, to provide a feature to detect pedestrians, vehicles, and stop signs.  

A typical algorithm of the unified detection algorithm is You Only Look Once (YOLO) [17]. 
The first version of YOLO was released in 2015, and it considers the bounding box and class 
probabilities in the image to be a single regression problem to estimate the type and location of 
an object by looking at the image just once. When an image is received as an input, it is divided 
into an S × S grid, and each grid cell has B bounding boxes and a confidence score for each 
bounding box. If there is no object in a cell, the confidence score is 0, and each grid cell has C 
conditional class probabilities. Each bounding box consists of x, y, w, h, and confidence. x and 
y indicate the center points of the bounding box, and values relative to the range of the grid cell 
are entered. Relative values for the width and height of the entire image are entered for w and 
h. The class-specific confidence score is obtained in the test time by multiplying the 
conditional class probability by the confidence score of the bounding box. YOLO's network 
architecture for the image classification model is based on GoogLeNet. Since it consists of 24 
convolutional layers and 2 fully connected layers, and has a simple structure, it is much faster 
than the 2-stage detection algorithm. In addition, the background error is low due to the high 
contextual understanding of the class as it views the whole image at once. Given that it learns 
the generalized characteristics of objects, if the artwork is used to test the system after a 
learning process on the system is performed using a natural image, it provides higher 
performance than other detection algorithms. However, it shows relatively low accuracy for 
small objects.  
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YOLO V2 [18] is an improved version of its predecessor in terms of speed and performance 
as the first version of YOLO suffered from disadvantages such as low recall and localization 
errors. To overcome these aspects, batch normalization, high-resolution classifier, convolution 
with anchor boxes, dimension cluster, direct location prediction, fine-graded features, and 
multi-scale training processes are performed. Batch normalization is used to alleviate the 
necessity of regularization and improve convergence. Furthermore, as removing the dropout 
from the model does not cause overfitting, the dropout can be removed.  

The high-resolution classifier increases the size of the existing 224 × 224 inputs to 448 × 
448 inputs, and fine-tunes the classification network with 10 epochs using ImageNet to allow 
it to operate normally at high resolutions. The learned network is fine-tuned at the detection 
stage and in the convolution with anchor boxes, the location of YOLO’s bounding box is 
directly estimated using the fully connected layers of the feature vector extracted from the 
fully convolutional feature extractor. However, in the faster R-CNN, the offsets and 
confidences are estimated based on each anchor box using human-selected hand-picked priors. 
As the last layer is convolutional, the box location information at every location is expressed 
as offsets, which simplifies the problem and makes learning easier. The existing class is 
separated from regional locations, and the class and objectness are separately estimated for 
every anchor box. Using anchor boxes lowers the accuracy but allows more boxes to be 
estimated. Dimension clusters are designed to automatically determine the appropriate size of 
a box by applying k-means clustering to a training set, instead of a person manually 
determining the size by applying an anchor. In this process, instead of using the Euclidean 
distance for the distance value, the following equation was used. 

 
The k-value of k-means is set to 5. These automatically produced boxes are different from 

the manually produced counterparts and they include low-height and wide boxes or thin and 
long boxes. The direct location prediction estimates the relative values with respect to the grid 
cell in YOLO V2. The range of possible values is between 0 and 1, and logistic activation is 
used for this purpose. The network estimates five bounding boxes for each cell, and each cell 
estimates five elements of location information: tx, ty, tw, th, and to. If the location of the cell is 
(cx, cy) from the upper left corner of the image and the size of the bounding box is Pw and Ph, the 
size of the estimated box can be expressed as follows. tx, ty, tw, and th are predictions made by 
YOLO. cx and cy are the top left corner of the grid cell of the anchor. pw and ph are the width 
and height of the anchor. bx, by, bw, bh are the predicted boundary box. σ(E) is the box 
confidence score. 

 
The location information is parametrized to make the system easier to learn for stable network 
use. For fine-graded features, YOLO’s 13 × 13 feature map is sufficient to find large objects, 
but it requires more granular features to find smaller objects. Therefore, another method is 
used to obtain the features of the 26 × 26 feature map. The original input size of the multi-scale 
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training is 448 but it is changed to 416 to use the anchor box. However, since the model itself 
consists of convolution and pooling, the size of the model can be changed as much as required. 
Rather than using a fixed size input, the input image size is randomly changed every 10 
batches to continue the learning process. As the input is downsampled to a multiple of 32, the 
random size should be a multiple of 32. Furthermore, to improve speed, a new model called 
Darknet-19, which has 19 convolutional layers and 5 maxpooling layers, was proposed in 
YOLO V2.  

In YOLO V3 [19], various minor changes were effected to improve the performance, and 
the system was changed to use logistic regression for the objectivity score. If one of the 
bounding boxes overlaps more than the other bounding boxes, the value becomes 1. The boxes 
that overlap more than a certain threshold are ignored in the estimation process, the value 
becomes 0.5. The ignored boxes are regarded as having zero loss in the estimation processes 
for the location and class information, and only the objectness loss is calculated. Each box uses 
a multi-label classification to estimate the classes in the box. Unlike the previous method, as it 
can perform well without using Softmax, it uses an independent logistic classifier for each 
label. Binary cross-entropy loss is used for learning. YOLO V3 estimates the box on three 
different scales. Features are extracted from three scales in a fashion similar to the feature 
pyramid network. First, several convolutional layers are added to the existing feature extractor 
to estimate the 3-D tensor, which contains information about box, objectness, and class. The 
feature extractor of YOLO V3 is a new network that merges the residual network with YOLO 
V2. Darknet-53, which has 53 convolutional layers on account of having repeating 3 × 3 and 1 
× 1 convolutional layers and shortcut connections, was proposed.  

Some researchers [26, 27] have extracted information from the self-driving environment to 
assist self-driving based on the 2-stage detection algorithm or unified detection algorithm. Ref. 
[26] involved detecting traffic lights in a self-driving environment by combining a feature 
extractor with the faster R-CNN algorithm. The feature extractor uses various models such as 
Resnet-101, Inception V2, Inception V3, and MobileNet. There is a tradeoff between the 
architecture and the feature extractor in terms of speed and accuracy. Therefore, it is also 
important to select the appropriate architecture and feature extractor according to the 
application needs, and the Inception V2 model was used in [26]. Based on the collected data 
sets and the pre-trained model, transfer learning was performed to conduct relearning. 
Transfer learning is a machine learning technique in which learning is improved for new tasks 
by transferring knowledge based on previously learned tasks. When the relearning is 
performed and the application is executed, object detection proceeds based on the relearned 
data. Ref. [27] claimed that it is difficult to use the 2-stage detection algorithm in a real-time 
detection environment due to the slow response time, and thus, object detection is performed 
using the unified detection algorithm, YOLO, to improve the speed. The YOLO V3 algorithm 
is used to detect traffic participants, including cars, trucks, pedestrians, traffic signs, and traffic 
lights. For an input video of 1920 × 1080 pixels, the system detects 23 frames per second on 
average. 

2.3 Lidar Algorithms 
Some of the autonomous driving approaches utilized simultaneous localization and 

mapping (SLAM) methods [28-32] based on a graphical representation in the map. The SLAM 
methods predicted the relative positions of a robot and infers the map of the environment at the 
same time. An approach learning globally consistent maps [28] measured relaxation algorithm 
to remain geometric consistency in a map. The robot repeatedly drove until some arbitrary 
stopping threshold was satisfied to maintain geometric consistency in the map. A method 
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utilizing the Atlas framework [29] performed SLAM in large areas, and consists of a graph of 
coordinate frames of limited size with each vertex and edge between adjacent frames. The 
method decided a transition to a neighbor map-frame and predicts the location in a wide range. 
The approach built a map with the robot position and local environment. A robust SLAM 
approach [30] utilized energy nodes to interact with state nodes, for pose or feature 
measurements. It calculated relative positions between energy and state nodes, using gaussian 
measurement models, as well as features with uncertainty relative to robot position transitions. 
GraphSLAM [32] is a mapping algorithm using sparse constraint graphs, that estimates 
consistent maps and paths using standard optimization techniques with nonlinear data. It 
incorporated GPS information to localize the moving vehicles and control features. However, 
the SLAM approach generated estimation errors, and the accumulated errors lead to 
continuous prediction errors during autonomous driving. It is still limited to solve the problem 
of building consistent environment maps, as well as localizing the moving vehicles in 
real-time and in different environments.  

One of the main challenges in driverless car technology is to precisely (and robustly) locate 
the vehicle in real-time. A LIDAR sensor is able to improve the localization performance for 
self-driving cars, as illustrated in Fig. 6. It shows to sense the surrounding area where red lines 
were extracted using Lidar in Las Data, using the difference in intensity between the floor and 
the lane. Centimeter-level localization in high definition maps, is important for perception, 
safe driving, and prediction. A map-based localization approach [33] generates 
high-resolution environment maps by combining GPS, IMU, wheel odometry, and LIDAR 
data obtained from sensors installed in vehicles in urban environments. The GPS, IMU, and 
wheel odometry are utilized to measure autonomous vehicle velocity. LIDAR is a remote 
sensing instrument which utilizes an infrared laser to map the environment using light 
detection and ranging. LIDAR identifies road surfaces by filtering normalized brightness and 
standard deviation using infrared reflectivity. A robust vehicle localization algorithm [34] 
extends the map-based localization approach, using the ability to learn and improve maps 
(with probability distributions) over time, in urban environments. This algorithm utilized a 
probabilistic grid, and each cell contained a gaussian distribution as a spatial grid of infrared 
remittance values. 
 

 
Fig. 6. Example of extracted result using Las data collected by LIDAR 
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The algorithm generated a grid-cell representation to build a map, and each cell includes the 
average and variance of infrared reflectivity observed at that location. These algorithms are 
suitable for localizing autonomous vehicles in the 10-centimeter range, but the performances 
of the LIDAR sensors are irregular, according to different beam measurements and 
manufacturers, as well as dynamic environments. These are necessary to handle fine-tuning of 
each sensor in the vehicles to achieve highly accurate measurements. 
 

 
Fig. 7. Rasterization process performed on gaussian mixture map. 

 
A fast LIDAR localization approach [35], with a multi-resolution gaussian mixture 

algorithm, improved building a traffic map for driverless vehicles in urban environments. A 
recent road surface reflectivity approach, utilized LIDAR range scanning and 
three-dimensional light detection to build a precise map. However, the classification results of 
existing approaches were sensitive to weather conditions when identifying traffic objects on 
the road. This research made a grid and measured gaussian mixture on z-score distribution in 
each cell integrating with GPS, odometry, GPS, and pose-graph scan matching constraints. 
Each grid cell was computed by expectation maximization with a gaussian mixture model. A 
multi-resolution map was constructed by creating many overlapping coarse blocks to calculate 
upper-bounds, as illustrated in Fig. 7. The upper bounds could be precisely measured by 
taking each discretization from an observed point cloud. The use of multi-resolution rasterized 
maps was suitable for robust online localization measurements of self-driving vehicles in 
different weather conditions. However, this approach is limited to the inference speed which 
was not satisfied with real-time requirements for the autonomous driving localization. 

A real-time localization system [36] with online LIDAR sweeps and intensity map, using a 
deep learning algorithm, achieved centimeter-level accuracy in different environments. The 
system utilized deep neural networks that utilize both pre-built LIDAR intensity maps for the 
localization, and online LIDAR sweeps of the same area. The intensity maps were built from 
multiple passes, using point cloud data collected from the return strength of a laser pulse, and 
deep neural networks. The online LIDAR sweeps generated the orthographic bird’s eye view 
intensity images of the ground. 
 

 
Fig. 8. A Process of a LIDAR localization framework by 3D convolutions. 

 
A Recent research by the Baidu company [66] has developed a LIDAR localization 
framework [64] using deep learning algorithms in a self-driving environment as shown in Fig. 
8. It designed and developed a deep neural network architecture using LIDAR scans by 3D 
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convolutions with the eigenvalue of the neighbors of a 3D point. It selected a set of key points 
extracted by linearities and scattering which are defined as the eigenvalues of its surrounding 
3D point.  Feature descriptors are extracted by a single mini-PointNet method and regularized 
by 3D CNNs. It measured the matching probabilities of all the dimensions and then 
determined optimal results filtering by deep Recurrent Neural Networks (RNNs). It calculated 
an estimated offset in the process and could make a loss function with both the offset and its 
ground truth offset as shown in the below equation. The research achieves to boost 
centimeter-level localization accuracy performance with the measured loss. The estimated 
offset are ∆ˆx, ∆ˆy, and ∆ˆψ in 3D dimension, and the ground truth offset are ∆x∗, ∆y∗, ∆ψ∗, 
and α is the balancing factor.  
 

 
 

Current approaches are still limited to delivering precise and accuracy performances for 
online localization of self-driving vehicles, in real time and in practical environments. 
Although some of the research for online localization showed desirable accuracy, they need to 
be fully evaluated and verified in different environments. 

2.4 Road Infrastructure Algorithms 
In an efficient (self-driving) transportation system, smart traffic light control is important for 
reducing traffic congestion. Traditional traffic light control [37, 38] provides pre-timed signal 
control with an assigned (fixed) time, without considering situations in real-time. Intelligent 
control systems can be dynamically utilized in real-time with an effective deep reinforcement 
learning model [39-42]. The system can be intelligently adjusted to traffic congestion by 
observing the traffic. Existing reinforcement learning methods are limited to representing 
different environments and to building a decision model with the environments. Some recent 
research [40, 43] utilized deep learning methods to intelligently control traffic lights, 
combining traffic conditions and light phases to build prediction models. This recent research 
in traffic light control is still being developed to be applied in adaptive, realistic traffic 
environments, and they are required to be fully evaluated and verified in various realistic 
traffic settings.  

Pedestrian protection research [44-49] for crossing a road is essential in improving the 
safety of people who are walking, as well as those inside self-driving vehicles. Crosswalks are 
one of the dangerous locations on a road and people are often injured in crosswalk accidents. 
There are several studies for classifying pedestrian flows at traffic lights [44-48]. One study 
[47] analyzed distances between pedestrian crossings to determine the flow estimations. 
Another mobile-based study [48] classified users’ daily behaviors and predicted the activities 
requiring them to cross roads. A smart pedestrian crossing management study [49] utilized a 
fuzzy logic method to dynamically manage traffic light phases with real-time decision making 
in signalized pedestrian crossing.  

A recent cooperative study [50] in intelligent transportation systems, investigated 
efficiently (and safely) fuse road infrastructure for autonomous vehicles. Vehicle driving can 
be adjusted depending on environmental conditions, such as weather or road status, and these 
adjustments help improve safety. This technology aims to manage this transition period 
efficiently, integrating with sensor techniques, communications and intelligent information 
management. 
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3. Infrastructure 

 
Fig. 9. Infrastructure of V2X 

 
Vehicle-to-everything (V2X) [51] is a wireless communication technology that interacts 

with information between a vehicle and its surroundings for traffic safety, pollution reduction, 
economic benefits, time saving, and convenience. V2X can improve traffic efficiency by 
communicating useful information (e.g. road information, geography, traffic congestion and 
accidents) with any entity for pollution and accident rate reduction, as well as for safety. V2X 
technologies are connected to infrastructure, networks, pedestrians, grids, devices, and 
vehicles, as illustrated in Fig. 9. Vehicle-to-infrastructure (V2I) is a wireless exchange model 
that allows vehicles to communicate information with road infrastructure. V2I technology 
wirelessly shares and receives information with infrastructure such as cameras, traffic lights, 
road signs, lane markings, and parking meters. The Vehicle-to-network (V2N) technique 
typically utilizes broadcast and unicast communications to inform the network of accidents, 
congestion or other traffic information. This technology can provide on road information to 
mobile devices, tablets, and navigation systems. Vehicle-to-vehicle (V2V) technology 
wirelessly exchanges information such as speed, direction, location, loss of stability, and 
braking between vehicles to avoid accidents. This information can be retransmitted to other 
cars within several hops on the WiFi network. Vehicle-to-pedestrian (V2P) technology is 
aimed at improving pedestrian safety (from accidents and fatalities on the road), using wireless 
communication between vehicles and nearby pedestrians. V2P technology allows vehicles 
within close proximity to detect and locate pedestrians via their smartphones, or other 
communication enabled personal devices. Vehicle-to-device (V2D) communication is a 
wireless connection between vehicles and is for a particular or any electronic devices to 
exchange information for keyless cars. Vehicle-to-grid (V2G) technology uses and produces 
the electrical energy stored in vehicle batteries by communication with the electricity grids. 
The transition of V2G is suitable for vehicle and power grid electricity use to be improved by 
efficient collaborative strategies. 

Self-driving technologies are developing to safely and efficiently drive vehicles to their 
destinations. The development of associated technologies can be accelerated by improving 
investment resources and overall road infrastructure. Commercial companies are preparing 
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these road enhancements for the transition to automated vehicles. These companies aim to 
adapt, upgrade, design and test both physical and digital aspects of the road infrastructure for 
efficient and safe transportation.  

TrafficVision [52] is one of the road infrastructure companies that makes V2I products to 
share information with components. They develop cameras, traffic lights, street meters, road 
signs, etc. This helps create an intelligent transport system with V2I sensors that can collect 
road data to provide road conditions, accidents, traffic congestion, construction areas and so 
on. SWARCO [53] develops an intelligent road marking product which can communicate with 
autonomous motors through V2I. They provide road infrastructure for a cooperative system by 
offering dynamic speed limit and friction coefficient factor functionalities. A ConVeX project 
[54] builds a V2X integration system into LET and 5G network infrastructure, via both the 
telecommunication and automotive industries in Germany for traffic safety and efficiency 
using their mobile solutions. Nissan [55] operated a pilot test using V2V and V2I technologies 
for autonomous driving. The V2V technology shared speed, location, heading, throttle status, 
braking, lane change, wipers and gear position information. It also utilized V2I traffic signal 
phase, stop and intersection sign, and temperature information. A V2P application by Savari 
[56] can detect a pedestrian’s location and provide alert information through users’ 
smartphones by using an integration sensor connected to traffic signal systems and receiving a 
pedestrian signal. It calculates pedestrian locations using a measurement between the 
pedestrian’s phone and the nearest traffic signal box. BMW [57] provides a mobile application 
and smart key fob using the V2D technology. The application can control certain vehicle 
functions remotely, and the smart key fob monitors vehicle information and statistics. 
AutoCrypt [58] offers a V2G system that can use a plug and charge service and shares 
information exchanged between the EV and EVSE with a secured authentication service.  

Recently, C-V2X [62, 63], also known as Cellular vehicle-to-everything, have been 
developing to support wide area communication over a cellular network.  KT Corporation [65], 
South Korea's largest telephone company, and Essys company have teamed up with a 
Qualcomm global technology company and they succeeded developing a V2V and 
V2V2V(Vehicle to Network to Vehicle) service in a world first using C-V2X and 5G NR(New 
Radio) networks. The service provides driving videos, stop information, warning messages, 
etc. in a real time for achieving efficient and safe driving. 

There has been much enthusiasm in automated driving functions, and many attempts to 
improve and advance car technology in the automobile industry. Automotive companies 
mainly compete to offer reliable and robust automated driving functions. Most of these studies 
emphasized improvement of road infrastructure for the industry to prepare for the gradual 
deployment of automated vehicles. Advancement of road infrastructure is required for a highly 
cost-intensive and time-consuming process. As well as, it needs to develop physical or digital 
infrastructure factors to be flexible, fast, and cost-effective. 

4. Commercial Autonomous Driving Research 

4. 1 Commercial Self-driving Vehicle Technologies 
A remarkable number of companies manufacture self-driving vehicles or develop 

self-driving technologies. Each company develops self-driving vehicles and technologies 
using its own systems and algorithms. Fig. 9 shows an example of the test platform for 
self-driving vehicles. Two light detection and ranging (LIDAR) instruments, a communication 
antenna, and a geographical positioning system (GPS) antenna are attached to the outside of a 
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car. A camera detecting the front is placed inside the car. Table 1 shows a comparative chart of 
self-driving technologies developed by various companies based on the sensors used. 

 
Table 1. Comparison of commercial self-driving cars by companies 

Component Tesla Google Uber GM 
Manufacture 

their own cars O X X O 

Ultrasonics O X O X 

Cameras O O O O 

Radar O O O O 

Lidar X O O O 

Audio X O X X 

GPS X O O X 

Telematics X X O O 

VIM X X O X 

 
Fig. 9. An example of the test platform for a self-driving car 

 
Tesla [5] develops vehicles and technologies independently. Its self-driving technology is 

called “Autopilot,” A Tesla vehicle uses 8 cameras, 12 ultrasonics sensors, and a radar sensor. 
Furthermore, the vehicle is equipped with a self-developed onboard computer to process 
vision, sonar, and radar software. A camera detects the front, sides, and rear of the vehicle, and 
can detect for distances up to 250 m in the front and up to 100 m at the rear. The combination 
of various sensors mounted on the vehicle helps it to automatically steer, accelerate, and brake 
in a lane.  

Google launched Waymo, a self-driving vehicle project [6], in 2009. It has developed 
self-driving technology by collaborating with various vehicle manufacturers but does not 
manufacture vehicles of its own. The sensors mounted on the vehicle consist of a vision 
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system, lidar system, radar system, and supplemental sensors. The vision system is designed 
with multiple sets of high-resolution cameras so that the system can obtain a view of 360° 
instead of 120°, that is the complete visual field of the human eye. The radar uses wavelengths 
to sense vehicular motion with respect to objects, and the wavelengths can be effectively used 
in various climates. A radar is placed on the front, rear, and both sides of the vehicle, which 
makes it easy to track the speed of road users. Lidar emits millions of laser pulses per second 
for 360° and measures the time that a reflected laser from an object surface returns to the 
vehicle. The lidar mounted on Waymo consists of short-, medium-, and long-distance lidars. 
Supplemental sensors include various sensors such as an audio detection system, which can 
detect sirens, and a GPS.  

 Uber has also developed self-driving technology [7] but does not manufacture its own cars. 
Each Uber self-driving vehicle uses lidar, cameras, radar, GPS, a self-driving computer, 
telematics, ultrasonic sensors, and a vehicle interface module. Lidar can identify objects 
within 100 m. The camera can identify objects in near, medium, and long ranges for 360°. It 
also recognizes people and objects within 5 m from the vehicle and helps with parking, lane 
changes, and other tasks. The GPS helps to collect vehicle location data and map data. A 
self-driving computer is equipped to run a variety of software. Telematics supports the carrier 
network. Ultrasonic sensors recognize objects and people within 5 m around the vehicle and 
help to stop, depart, change lanes, and park. The vehicle interface module is a gateway to 
communicate with various vehicle control systems.  

General Motors (GM) owns several automobile brands and develops self-driving 
technology [8]. In 2017, Volt EV vehicles were equipped with a self-driving system. The 
vehicle is equipped with multiple cameras, lidar sensors, a radar sensor, and 4G LTE 
Connected. A total of 10 cameras were installed to allow a 360° view outside the vehicle. Each 
camera installed in the self-driving car captures approximately 10 frames per second. 

4.2 Precision Road Map 
The existing map helps self-driving vehicles to detect the location of the vehicle using GPS 

and to operate within the range of the road. However, because it is difficult to update according 
to the changes in the map (e.g., road extension and installation of facilities), the self-driving 
vehicle may not be able to detect real-time location changes. Furthermore, if the self-driving 
vehicle cannot detect such changes by using sensors, an accident may occur. Therefore, the 
map in the self-driving vehicle needs to be updated consistently. Since the environmental 
changes cause errors when the location of the vehicle is detected by using the Global 
Navigation Satellite System (GNSS) only, a precision road map was developed to overcome 
this problem.  

Precision map [59] is an electronic map that expresses various kinds of road information 
necessary for self-driving in three dimensions, and it is accurate within 25 cm. The precision 
map collects data by mounting the mobile mapping system (MMS) on the vehicle. The MMS 
is equipped with sensors such as GNSS, inertial navigation system (INS), distance measuring 
instrument (DMI), lidar, and cameras to collect location and visual information of various 
topographic objects around the vehicle. Based on the collected data, standard data are 
produced, and the parts that need to be modified are checked and edited manually. The map 
comprises various detailed items such as lane markings, road facilities, marking facilities, 
self-driving facilities, and self-driving prohibited areas. The geographic information system 
(GIS) software for precision maps consists of five files, among which the file with the 
extension Shp contains vectors with geometric location information. The file with the 
extension Shx contains geometric index information, whereas spatial index information is 
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present in the files with the extensions Sbx and Sbn. The file with the extension Dbf contains 
the database of attribute information. Projections that refer to projection and coordinate system 
information appear in the file with the extension Prj.  

5. Conclusion 
Autonomous vehicle technologies are increasingly being developed and are offering 
innovative solutions for road safety, convenience, and economic and environmental benefits. 
Vehicle users have to spend the majority of their time paying attention to the road while in 
their cars; autonomous driving will, however, free up time for activities such as playing mobile 
games, sleeping, and other work. Self-driving cars can help reduce concerns related to 
accidents caused by driver, recognition, decision, performance, and non-performance errors. 
Autonomous vehicles are anticipated to impact our society in terms of its direct implications to 
our society’s behavior and our environment, thus saving on costs, time and effort. Researchers 
in the field of autonomous vehicles are working to develop advanced technologies to achieve 
precise and accurate performance, as well as efficiency. They have been improving the 
self-driving car technologies of intelligence, automation, and connectivity using computer 
vision, localization, and intelligent communication methods. These studies investigate 
achieving efficient and safe driving by advancing V2X communication, camera-based vision 
using deep learning algorithms, and LIDAR-based localization techniques.  

Several challenges are however presented. The difficulty of creating maps, demanding 
driving requirements in many complex social interactions, harsh weather environments, 
regulations, security, etc., are all challenges the industry faces in increasing precision and 
accuracy of self-driving vehicle performance (in real-time), and in practical environments. 
Self-driving vehicles are required to be fully evaluated and verified in different environments. 
We expect that fully autonomous vehicles will be achieved through more innovation efforts 
from researchers in the near future. 
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