
TPSS: A Flexible Hardware Support for Unicast
and Multicast on Networks-on-Chip

Wenmin Hu1,2, Zhonghai Lu2, Hengzhu Liu1, Axel Jantsch2
1School of Computer, National University of Defense Technology, Changsha, P.R. China

2KTH The Royal Institute of Technology, Stockholm, Sweden
1{huwenmin,hengzhuliu}@nudt.edu.cn 2{whu,zhonghai,axel}@kth.se

Abstract—Multicast is an important traffic mode that runs
on multi-core systems, and an efficient hardware support for
multicast can greatly improve the performance of the whole
system. Most multicast solutions use the dimension-order
routing to generate the mutlicast trees, which are neither
bandwidth nor power efficient. This article presents a syn-
thesizable router for network-on-chip (NoC) which supports
arbitrarily shaped multicast path based on a mesh topology.
In our scheme, incremental setup is adopted to simplify the
process of multicast tree construction. For each sub-path
setup, we present a novel scheme called two period sub-path
setup (TPSS). TPSS is divided into two periods: routing to
a predeterminate intermediate router, and updating lookup
tables from the intermediate router to destination. This novel
setup makes it feasible to support arbitrarily shaped path
setup. In our case study, Optimized tree algorithm (OPT)
and Left-XY-Right-Optimized tree algorithm (LXYROPT)
are proposed for power-efficient path searching, but they
need to be pre-configured for the reason of high computation
cost. Moreover, Virtual Circuit Tree Multicasting (VCTM)
is also supported in our scheme for dynamic construction
of multicast path, which needs no computation in path
searching. The performance is evaluated by using a cycle
accurate simulator developed in SystemC, and the hardware
overhead is estimated by using a synthesizable HDL model.
Compared to VCTM (without FIFO, multicast table and
network adapter), the area overhead of implementing our
router is negligible (less than 0.5%).

Index Terms—Network-on-Chip, System-on-Chip, Multi-
cast

I. INTRODUCTION

Many-core architectures have become the mainstream
for designing System-on-Chip. Efficient communication
among the cores is key to the performance of the whole
system. The traditional bus structure works efficiently in
systems with limited amount of cores. For MPSoCs with
a large number of cores, increased contentions over buses
lead to poor performance. The concept of Network-on-
Chip (NoC) has emerged as a scalable solution to the
global interconnection problem of these systems. Various
NoCs have been developed, such as NOSTRUM [1],

Some parts of this material appeared in proceedings of the 16th Asia
and South Pacific Design Automation Conference (ASP-DAC2011) held
in Yokohama, Japan, between January 25th and 29th, 2011[W. Hu et.al.
2011]. This paper significantly improves over the ASP-DAC 2011 paper
by expanding the validation section, implementing the router in HDL,
including a new section (Section VI) that shows the multicast setup
using existing path.

RAW [2], TRIPS [3], SPIN [4], etc. Furthermore, Intel
Teraflop [5] and Tilera [6] have benefited from high
communication bandwidth via 2D mesh-based NoCs.

Multicast is commonly seen in large-scale multiproces-
sor systems which run numerous parallel algorithms, such
as parallel search and parallel graph algorithms [7]. In the
single-program multiple-data (SPMD) model, the same
programm instructions are executed on several processors
and some data are processed in parallel, which is still not
immune to multicast [7]. In the data-parallel programming
model, collective communication plays an important role
in improving the performance of replication and barrier
synchronization [7]. In distributed shared-memory sys-
tems, coherence protocol can benefit from multicast when
the shared data are invalidated and updated [7].

Current state-of-the-art NoCs can implement traffic
multicasting by replicating multiple unicast messages to
different destinations. However, this is inefficient since
the limitation of network interface causes late startup
times for some messages. It also wastes valuable network
bandwidth. Therefore, hardware support for efficient mul-
ticasting is desirable for these applications.

Most hardware-based multicasting schemes on regular
mesh networks, for example, VCTM [8], use dimension-
order routing to generate multicast trees. This is simple,
but not efficient in power and bandwidth. Overcoming the
shortcomings of previous approaches, this paper has the
following main contributions:

• Multicast path setup: We propose a novel path setup
approach that supports arbitrarily shaped multicast path.
In this approach, a two-period setup process is used
to construct the sub-paths, and the incremental setup
is adopted to combine the sub-paths into a complete
multicast tree.
•Multicast path searching: We present two power-

efficient and bandwidth-efficient tree-based algorithms:
Optimized tree(OPT) and Left-XY-Right-Optimized
tree(LXYROPT). VCTM [8] is also supported in our
router by disabling the first period of the sub-path setup.
•Incremental multicast setup expansion: We propose a

scheme to utilize an existing multicast path to form a new
path instead of evicting the existing path and rebuilding
a new one.

The remainder of the paper is organized as follows.
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Section 2 discusses related work. Section 3 presents the
multicast path setup scheme and its protocol. In Section 4,
our router architecture is presented. Section 5 introduces
three tree-based algorithms: OPT, LXYROPT and VCTM.
In Section 6, an approach utilizing an existing multicast
path to rebuild a new multicast path is described. Section
7 shows experiment results that validate our approach
in performance, power consumption and area overhead.
Finally, we conclude in Section 8.

II. RELATED WORK

Multicast in off-chip networks were well researched
[9]–[12]. The results show that multicast in off-chip
networks has outstanding effect on improving perfor-
mance. Such advantage can also be applied in on-chip
communications. Both Æthereal [13] and Nostrum [1]
NoCs declared multicast support in their NoC architec-
tures. They used a time-division multiplexing approach to
support multicasting. However, verification and evaluation
of multicast performance on their NoCs and the way to
solve the deadlock problem have not been published so
far.

Multicast algorithms can be classified into two cate-
gories: path based [14]–[17] and tree based [8], [18]. In
a path-based approach, the number of outgoing ports is
limited to at most two, one of which should be the local
port. In the path based approach, if the destination nodes
are spread widely, it may lead to longer latency compared
to the tree-based approach.

In a tree-based approach, the number of outgoing ports
to forward packets can be 1 to n − 1, where n is
the number of outgoing channels that a router has. The
advantage of a tree-based method lies in the low latency
for message transmission. A hardware support for tree-
based multicast named XHiNoC is proposed in [18]. In
this scheme, they used ID-manager (IDM) to manage
multicast [18]. Each multicast is assigned a table ID at
a port, by which the packet can get the routing result.
The same multicast packet may get a different ID at
a different router. When the packet is transferred to an
outgoing channel, the IDM will change the ID field of
the packet with the new table ID [18]. Another tree-based
routing approach named Virtual Circuit Tree Multicasting
(VCTM) is introduced in [8]. Different from XHiNoC,
VCTM used an identical ID to manage multicast. VCTM
constructs the multicast tree incrementally by sending
several unicast setup packets to destinations. Each setup
packet is routed using the Dimension-Ordered Routing
(DOR) algorithm and the routing result is stored in a
table according to the identical ID [8]. For multicast on an
irregular network, the work presented in [19] implements
multicast using a logic-based broadcast within a domain,
which makes isolating of the traffic into different domains
possible.

However, the aforementioned approaches [8], [18], [19]
cannot support routing on a predetermined path based on
special requirements. In this paper, we focus on designing
a hardware-based multicast scheme for arbitrarily shaped

multicast path. Our scheme inherits the efficiency of
VCTM while it provides flexibility to support optimized
multicast path.

III. THE MULTICAST PATH SETUP SCHEME

Arbitrarily shaped multicast path support is integrated
in our router by using a novel path setup method. In
this section, we discuss the packet format supported by
our scheme, and offers an example to walk through the
process of multicast path setup.

A. Example of multicast path setup

Each multicast forms a tree connecting the source
with the destination set, which is identified by a Mul-
ticast ID number to each source node and its destination
nodes combination. For a tree-based approach, a multicast
packet travels along a common path until it arrives at
a branch node, where it is replicated and forwarded to
corresponding outgoing ports. Once a multicast tree is
set up, the packet will be routed based on the multicast
table (MCT) number at each router. At the source node,
a destination set content addressable memory (CAM)
is integrated to record the destination set for multicast
trees. Each entry is a n-bit vector, where n represents the
number of nodes on the NoC. If one bit is set, it means
that the corresponding node is the destination node. One
additional bit indicating whether the entry is valid is also
included. At each router, a MCT is partitioned into n sub-
tables corresponding to each source node. Each sub-table
has 16 entries or more.

In our scheme, incremental setup is adopted to simplify
the process of multicast path building which is similar to
VCTM [8]. In VCTM, each setup packet is routed using
the Dimension-Ordered Routing (DOR) algorithm and the
routing result is stored in a table according to the identical
ID. The sub-path begins from the source node and ends at
one destination node. So for a certain source-destination
set, the multicast path shape is determinate. However,
in our approach, the process of each sub-path setup is
divided into two periods (TPSS), where during the first
period the setup packet just routes to a predeterminate
intermediate node, and during the second period, the
packet routes to the real destination node with the routing
results stored in the lookup table in the router passing
through. The intermediate node is a branch node of the
multicast tree, which is determined by a path searching
algorithm. A sub-path begins from the intermediate node
and ends at one destination node. Multiple unicast setup
packets can be injected into the network to setup the sub-
paths in parallel. When all are done, a multicast tree is
constructed successfully.

Fig. 1 walks through the process of constructing a new
multicast tree, which begins at node 0 and ends at node
5, node 7. In the first step, the source node initiates setup
packets according to the result of path searching. Here are
the packet A and B1 shown in Fig. 1 (c). Packet A sets up
the path from node 0 to node 7, of which PKT TYPE field
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is set as MC SET 2. The routing information is obtained
via lookahead routing unit and encoded into the fields
of X DIR, Y DIR, X DIS, Y DIS and OUTPUT PORT.
Different from packet A, packet B1 is set to MC SET 1,
which means the setup process would have two periods.
Not only the routing information from node 0 to node 4
is encoded into the packet field , but also that from node
4 to node 5 is filled into the first 11 bits of PAYLOAD
field. Both two packets’ MCT# fields are set 0 to indicate
updating of the first entry of the table .

VCID
FLIT
TYPE

PKT 
TYPE SRC

MCT
#

X
DIR

Y
DIR

X
DIS

Y
DIS

OUTPUT
PORT PAYLOAD

2 bit 2 bit 3 bit 6 bit 4 bit 1 bit1 bit 3 bit 3 bit 3 bit PAYLOAD

01 101 x0 x0 1 0 x0 x2 000

01 010 x0 x0 1 0 x0 x1 000
11_000000_

000

01 101 x0 x0 1 1 x0 x0 000
11_000000_

000

Fig. 1. A multicast tree setup example

Each packet is injected into the network sequentially.
They are all routed by the XY routing unit. Fig. 1 (d)
shows the snapshots of the multicast table in router 4 at
different times. Before packets A and B1 reach node 4,
the entry bits highlighted are all set to 0. After A has
traversed , the bit denoting S outport is set to 1. Before
packet B1 arrives at router 4, it routes like unicast with
no operation to MCT. After arriving at router 4, it will
be changed to packet B2 as shown in Fig. 1 (c), of which
PKT TYPE field is reset to MC SET 2 and the fields of
X DIR, Y DIR, X DIS, Y DIS and OUTPUT PORT are
covered by the first 11 bits of PAYLOAD field. Hence,
after packet B2 traverses, the bit denoting E outport is set
to 1. The similar updates happen in other routers where
MC SET 2 traverses.

After packets A and B2 have been injected into the
destination node, two reply packets are sent to node 0
to acknowledge the setup success. Once node 0 receives
the reply packet, the corresponding bit in the destination
vector of CAM will be set. Fig. 1 (a )shows the previous
content of the CAM while Fig. 1 (b) exhibits the content
after getting all the reply packets.

When a multicast destined for 5 and 7 reaches node 0,
a destination set matching is performed in the destination
set CAM. A MCT number will be generated according to
the matching result, which is filled into the MCT# field
of the packet. Later, it will be used to lookup the MCT
at each router to get the outgoing ports. The multicast
packet sharing the same links until it arrives at node 4,
which is a branch node of the tree. It is replicated and

transferred to the downstream router 5 and 7. Finally, two
packets are injected into node 5 and node 7 successfully.

B. Protocol

VCID
FLIT
TYPE

PKT
TYPE

SRC MCT#
X

DIR
Y

DIR
X

DIS
Y

DIS
OUTPUT

PORT
PAYLOAD

2 bit 2 bit 3 bit 6 bit 4 bit 1 bit 1 bit 3 bit 3 bit 3 bit payload

00
Head

000
UC

XXXUnicast

01
HBT

010
MC_SET_1

11 bits 2nd
DST

Multicast 
Setup_first

01
HBT

101
MC_SET_2

Multicast 
Setup_second

01
HBT

110 
MC_NORM

AL

Multicast 
Normal

01
HBT

100
MC_CLR

Multicast 
Clear

01
HBT

001
MC_CLR_R

PLY

Multicast 
Clear_reply

01
HBT

011
MC_SET_R

PLY

Multicast 
Setup_reply

Valid field for corresponding packet kinds

Fig. 2. Packet format supported in the proposed router.

As shown in Fig. 2, packets supported in our router are
classified into four categories: MC SET 1, MC SET 2
and MC SET RPLY are multicast setup; MC CLR and
MC CLR RPLY are multicast evicting,; MC NORMAL is
multicast data packet; and UC is unicast data packet. The
fields of packet are defined as follow: X DIR and Y DIR
indicate the directions of destination node, X DIS and Y
DIS are the Manhattan distance between the source node
and destination node in the X direction and the Y direc-
tion. Since lookahead routing is employed in our router,
OUTPORT field stores the routing result of downstream
router. MCT# is the id of multicast table entry. Source
address is also encoded in SRC. Four different flit types
are supported by a 2-bit field of FLIT TYPE: Head, Body,
Tail and HBT (single flit packet).

TPSS is executed by routing packet MC SET 1 and
MC SET 2. During the first period, the setup packet
MCT SET 1 routes like unicast packet until it reaches
the intermediate node. On arriving at the intermediate
node, the first 11 bits of PAYLOAD is replicated to the
field of X DIR, Y DIR, X DIS, Y DIS and OUTPORT to
form the new destination while the PACKET TYPE is also
changed to MC SET 2. TPSS enters the second period.
When the packet traverses a router, the routing result
is used to update multicast table entry corresponding to
the combination of SRC field and MCT# field. Once the
MCT SET 2 reaches destination, a multicast reply packet
(MC SET RPLY) is sent to the source. The other setup
packets can be injected into network without waiting for
the reply of the former setup packet. Each branch of the
tree can be built simultaneously. When the source node
receives the replies of all the destination nodes, the setup
process is completed.

When a multicast destination set is missed in the CAM
and there is no free entry to be utilized, a used multicast
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tree has to be evicted. Only the source node has the
right to evict a multicast tree. MC CLR packet will be
routed by looking up MCT just like normal multicast data
packet (MC NORMAL). After getting the outgoing ports,
the corresponding table entry will be cleared in the next
cycle. When the MC CLR packet sinks at the destination
node, the destination node will generate a reply packet
(MC CLR RPLY). Once the source node receives all the
reply packets, the multicast tree is evicted.

IV. PROPOSED ROUTER STRUCTURE

A special router architecture is proposed to support
multicast. We will first introduce the router micro-
architecture, and then present the routing mechanism
of unicast/multicast. Afterwards, we discuss the packet
type conversion approach, which plays a key role in our
contributions.

A. Micro-architecture

We use the wormhole router due to its small buffer
requirement and high throughput. Fig. 3 shows the ar-
chitecture of the proposed router. It has five input ports,
each of which contains four Virtual Channels (VCs).
A register file with five read ports and one write port
is integrated into the router to store outgoing ports for
the multicast packet. Both unicast and multicast fol-
low the pipeline stages: buffer write/routing computa-
tion (BW/RC), switch allocation/virtual channel alloca-
tion(SA/VA), switch traversal/link traversal(ST/LT). We
use look ahead routing [20] to compute the output port for
the next router and store it into the OUTPUT PORT field
of the head flit. Output directions of head flit in current
router is achieved by selecting one from OUTPUT PORT
field and OP2 from the multicast table. The criterion
for selecting output direction is the packet type. For
example, MC NORMAL and MC CLR use OP2 as the
output direction while others use the OUTPUT PORT
field in their head flit. MCTSG shown in Fig .3 is the
logic block to generate operation signals to the multicast
table according to some fields of head flit (FLIT TYPE,
PKT TYPE, SRC, MCT#). The operations to the multicast
table involve reading outgoing ports from the multicast
table (MC NORMAL, MC CLR), setting some bits in one
entry of the multicast table (MC SET 2), and clearing all
the bits in one entry of the multicast table (MC CLR).

For the multicast packet routing, the result may contain
multiple ports. The flit is replicated to one port at one
ST/LT stage when successfully getting the grant signal in
SA/VA. Only when the flit is successfully transmitted to
all the destination ports, can the flit be deleted from the
buffer. To keep the state of each multicast flit, the input
virtual channel (VC) reserves a separate VC state register
and buffer pointers. It is necessary to forward and control
the pipeline stage by using the state register and buffer
pointers. If the port belongs to the RC results, then its
state register will be set to advance to SA/VA. Otherwise
the state will be idle. The buffer pointers contain a head

M
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T
#

W
E

C
le

ar

S
E

T
O

P
1

O
P

2

OUTPUT PORT

Route_by_table

bypass

V
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ID

CrossBar

E S W N C
0 1 0 0 0

0 1 0 1 1

Credits out

Credits in

E

S

W
N

C

E
S

W
N

C

Fig. 3. Router micro-architecture

pointer for an input VC, and five read pointers for all the
destination ports.

B. Packet type conversion logic

As mentioned previously, arbitrarily shaped multicast
path is supported in our NoCs by injecting multiple
setup packets to form the multicast path incrementally.
MC SET 1 needs to be changed to MC SET 2 at an
intermediate node. So packet type conversion logic (PTC)
should be integrated into the router. Here we propose two
solutions to achieve this goal.

(a) Integrated in router (b) Integrated in network
adapter

Fig. 4. Packet type convert logic

•The first approach sets PTC in the input port, as
shown in Fig. 4(a). In the PTC module, if MC SET 1’s
X DIS field and Y DIS field are 0, it will be changed to
MC SET 2. The first 11 bits of PAYLOAD is also copied
to X DIR, Y DIR, X DIS, Y DIS and OUTPUT PORT. This
routing information is for the downstream router which
is computed at the source node, so it is not necessary
to compute the output direction due to the change of
destination.
•The second approach sets PTC in the network adapter

(NA), as shown in Fig. 4(b), which we call it absorb
and re-inject. When MC SET 1 reaches an intermediate
router, it is absorbed by the local port, converted by PTC
and then re-injected into network after some cycles.
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Comparing the two approaches, we conclude that the
second is better than the first for the following reasons:
•As shown in Fig. 4, the first approach needs four PTCs

while the second needs only one. The function of the PTC
is also different between the two approaches. The first
needs to check if X DIS field and Y DIS field are 0 to make
sure the current node is an intermediate node; the second
does not need to do so, because only the packet arriving
at the destination can be injected into the local port. Most
importantly, the first one causes more complexity to the
arbiter and multiplexer in the router. In some cases, the
setup packet needs to turn back via the same port to build
the sub-path. So each input port should have five possible
output ports. However, the absorb and re-inject method
can reduce the number of output ports to four, as shown
in Fig. 4(b). Thus, the second approach is more area-
efficient.
•The drawback of the second approach lies in possibly

longer setup latency, because the packet’s entering NA,
being converted by PTC, and waiting at the end of the
FIFO will consume some cycles. Since most optimized
path searching algorithms are expensive and impossible to
be implemented in hardware. The applications that have
limited number of multicast groups with high reusing rate
would be suitable. In this situation, the multicast setup
can be pre-configured before application runs. So the two-
period sub-path setup is not sensitive to the setup time.

Base on the above reasons, we decided to implement
the second approach in our HDL model.

V. MULTICAST MECHANISM AND ALGORITHM
REALIZATION

We first propose two multicasting algorithms, which are
both tree based. A tree can be decomposed into several
node pairs. The first node of the pair is considered as
the starting point of a branch (the intermediate node
aforementioned), while the second node is the end point.
The multicast tree is built incrementally by adding branch
one by one to the existing tree. The initial tree is just
the source node. The first step of constructing multicast
tree is to find all the node pairs that form the tree. The
same destinations may be covered by different shape
of trees, which may cause different performance and
power consumption. Both proposed algorithms are power-
efficient and bandwidth-efficient. In the last subsection,
we introduce how to implement VCTM [8] in our scheme.

A. Optimized Tree (OPT) Algorithm

OPT is an optimized tree based on the west-first turn
model [21], which avoids deadlock on mesh networks.
In order to minimize the number of links in the tree, an
algorithm similar to the minimal spanning tree algorithm
is proposed, which is shown in Fig. 5. Dpair is defined
as the pair set that forms the tree. Dnode is the set of
the nodes covered by the existing tree, which contains
the forwarding nodes that are not the destination nodes.
It is used as candidates of branch nodes for the proposed
algorithm. D is the set of destinations. The first step is to

add the most western node to the multicast tree. Add all
the nodes in the path from the source node to the most
western node into Dnode. This makes it possible to find
a node later in Dnode to connect other destination nodes
to conform to the west-first turn model. Add the source
node and the most western node as an element of Dpair.
The most western node is removed from D.

Algorithm: Generate the optimized multicast tree based
on the west-first turn model
Input: Destination set D, Source node s : (x0, y0);
Output: Pair set Dpair;
Define: k(a, b) = |a.y − b.y|+ |a.x− b.x|;
Initial: Dnode ← s,Dpair ← ∅;

1: Find the node v ∈ D, ∀a ∈ D, v.y ≤ a.y. Add (s, v)
into Dpair, remove v from D, add the nodes on the
path from s to v into Dnode

2: while D is not empty do
3: Dpair tmp ← {(u, v)|u ∈ Dnode, v ∈

D, that∀a ∈ Dnode,∀b ∈ D, k(u, v) ≤ k(a, b)}
4: Select (u, v) ∈ Dpair tmp, that ∀(a, b) ∈

Dpair tmp, v.y ≤ b.y
5: Add (u, v) into Dpair, remove v from D, add the

nodes on the path from u to v into Dnode

6: end while

Fig. 5. Algorithm for generating OPT.

Then the algorithm enters a stage similar to the minimal
spanning tree construction when D is not empty. First,
find a pair of nodes (u, v) from Dnode and D which has
the shortest distance and conforms to the west-first turn
model. If some pairs have the same shortest distance,
select the pair whose v is more towards western. This
makes it more possible to later find a node pair with the
shortest distance and less branches. Second, add (u, v)
to Dpair . Add all the nodes in the path from u to v
to the set Dnode. Remove v from D. If D is not empty,
the sequence will be repeated. Note that it is possible
to find a node pair that u and v are the same node, for
the reason that the first path may contain the destination
nodes. However, this does not matter and we can just put
the pair to Dpair. When D is empty, the procedure is
finished.

B. Left-XY-Right-Optimized Tree (LXYROPT) Algorithm

OPT is a power-efficient and bandwidth-efficient mul-
ticasting algorithm which optimizes the multicast tree
generation globally by using less links. But this may
increase multicast latency. To obtain both low latency and
low power consumption, we propose another algorithm
named Left-XY-Right-Optimized tree (LXYROPT). In
this algorithm, the destination set is partitioned into two
subsets. One contains the nodes that lie to the left of
the source node, while the other contains the rest. For
the destinations that are left of the source node, the XY
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algorithm is used to generate multicast path. For the rest
of nodes, the algorithm takes both the minimum hops for
each node and the link sharing into consideration. Fig.
6 shows the details of LXYROPT. For the purpose of
optimization, it should first make sure that the routing
distance from the source node to a destination node on
the multicast tree is the same as the Manhattan distance
from the source node to the destination node. Base on this,
we select node u from Dnode, v from Dmid−right that the
Manhattan distance between u and v is the minimum. This
means that a new destination node is added to the existing
tree with minimum links. Similar to OPT, pair (u, v) is
added into Dmrpair, and v is removed from Dmid−right.
The nodes from u to v are also added into Dnode. If
Dmid−right is not empty, the sequence will be repeated.
Otherwise, the procedure is finished.

Algorithm: Generate the LXYROPT multicast tree
based on the west-first turn model
Input: Destination set D, Source node s : (x0, y0);
Output: Pair set Dlpair, Dmrpair;
Define: k(a, b) = |a.y − b.y|+ |a.x− b.x|;
Initial: Dnode ← s,Dlpair ← ∅, Dmrpair ← ∅;

1: Dleft ← {(x, y)|(x, y) ∈ D, y < y0}
2: Dmid−right ← {(x, y)|(x, y) ∈ D, y ≥ y0}
3: while Dleft is not empty do
4: Find a node v ∈ Dleft, add (s, v) into Dlpair,

remove v from Dleft

5: end while
6: while Dmid−right is not empty do
7: Dpair tmp ← {(u, v)|u ∈ Dnode, v ∈ Dmid−right,

that k(s, v) = k(s, u) + k(u, v)
8: Select (u, v) ∈ Dpair tmp, that

∀(a, b) ∈ Dpair tmp, k(u, v) ≤ k(a, b)
9: Add (u, v) into Dmrpair, remove v from

Dmid−right, add the nodes on the path from u to
v into Dnode

10: end while

Fig. 6. Algorithm for generating LXYROPT.

C. VCTM

VCTM is also supported in our scheme by disabling
the first period of the sub-path setup. Compared with
OPT and LXYROPT, VCTM does not need computation.
When the setup packets are injected into network, they
are set as MC SET 2 directly. VCTM is suitable under
the condition that the multicast group number of running
application is larger than the number of table entries and
can be reconfigured dynamically. Other optimized algo-
rithms, such as OPT, LXYOPT, etc., are more efficient in
bandwidth, performance and power consumption. They
are convenient when the multicast group number is fixed
and less than the available number of table entries. We
can construct and configure the multicast trees before the
application runs.

D. An example for proposed algorithms

Fig. 7 shows 3 multicast trees built with different
algorithms. Node 36 wants to send a multicast packet to
node 9, 10, 3, 20, 29 and 22. VCTM routes the packet
following the XY algorithm, and uses about 20 links to
connect all the destinations with the source; LXYROPT
optimizes the part tree located on the right side of the
source node, which costs about 18 links; OPT optimizes
the multicast tree globally, and just occupies 14 links. This
suggests that our proposed algorithms can reduce the cost
significantly.

33 34 35 36 37 38

1 2 3

9 10 11

17 18 19

25 26 27

4 5 6

12 13 14
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Fig. 7. An example for VCTM, OPT, LXYROPT

VI. MULTICAST PATH SETUP BY UTILIZING EXISTING
PATH

As mentioned previously, if a new multicast destination
set is missed in destination set matching in the CAM, an
existing multicast tree will be selected and evicted. The
replacement policy can be LRU or FCFS, etc, which we
do not discuss in detail. A MC CLR packet is injected
into the network to clear the corresponding entry of the
multicast table in the router on the path. The packet is
routed like multicast data packets, so it will reach all
the routers on the multicast tree. After the packet is
injected into the destination node, a MC CLR RPLY is
sent back to the source node. Once all the reply packets
from destination nodes are received at the source node, the
evicting process is finished. Then the source node sends
out multiple setup packets to construct the new multicast
tree.

Generally, the setup process of a new multicast tree
consists of evicting and constructing. However, we find
that if the destination set to be evicted is a subset of the
new multicast destination set, it is unnecessary to evict
and rebuild. It just needs to inject the setup packets into
the network to add some destinations to existing multicast
tree. This reduces not only the overhead of setup time but
also the number of packets injected into the network. To
realize this, only a little hardware resource is needed.

Fig. 8. The logic of setup vector generator

Fig. 8 shows the logic of setup vector generator. Here
the destination vector is 16 bits, which means that the
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number of total nodes is 16. If the nth bit is set, it means
that the nth node belongs to the destination set. N DST
denotes the new destination set while O DST is the one to
be evicted. As for the input signals of the multiplexer, one
is the original vector N DST while the other is the result
of N DST minus O DST. The selected signal is generated
by the judgment logic which indicates whether O DST
is a subset of N DST. If so, the vector resulted from
N DST minus O DST outputs as Set vector to initiate
the setup packets. Otherwise, the N DST outputs directly
as Set vector. Before sending out the setup packets, the
evicting process must be completed first.

VII. EXPERIMENTAL EVALUATION

We developed a simulator in SystemC. The simulator is
a wormhole on-chip network with the mesh topology. The
number of virtual channels is set to 4, while the depth of
FIFO is 5. The credit-based flow control is used to avoid
buffer overflow.

To verify the flexibility of our scheme, we simulated
VCTM, OPT and LXYROPT on the simulator. The per-
formance was obtained by evaluating them with different
synthetic multicast workload and mixed traffic. We define
the packet latency as the interval between the packet
entering to source queue and the tail flit being absorbed
by the destination node.

A. Multicast traffic profile

We evaluated multicasting performance with different
network sizes. To facilitate the explanation, the simulation
configuration parameter is defined as (a, b, c, d), where a
indicates the network size, b denotes the simultaneous
source number at each injection slot, c is the destination
set size range, and d is the number of flits for a packet.
For example, (256, 4, 5-10, 3) means in each injection
slot, four sources send a 3-flit packet to 5-10 destinations
on a 16 × 16 NoC. The source and destination are uni-
formly distributed. The number of destination is selected
randomly ranged from 5 to 10.

We set two scenarios: (64, 8, 5-20, 5), (256, 8, 10-40,
5). Since OPT and LXYROPT are off-line algorithms, the
setup time is not included in the performance comparison,
we assume 100% entries of multicast table reusable for
VCTM. As can be seen in Fig. 9, LXYROPT outperforms
other algorithms. Compared with VCTM , LXYOPT is
about 2%-4.5% lower in terms of packet latency while
OPT is about 10%-22% higher; The results are consistent
with our expectations. Small-sized packets (here are 5
flits) are sensitive to the maximum hops between the
source and destination. LXYROPT and VCTM, in which
the distance between destination to source is always
minimum, perform better than others. OPT, of which
the purpose is to get a bandwidth-efficient and power-
efficient tree, may increase the distance by connecting
the destination node to branch node which is far away
from the source node during the path searching.

B. Multicast and Unicast (mixed) traffic profile

We also investigated the performance of mixture of
unicast and multicast traffic. The multicast traffic is set
as (64, 2, 5-20, 5), (256, 2, 10-40, 5). The unicast is also
uniformly distributed, and the injection rate is the same
as the multicast. As can be seen in Fig. 10, LXYROPT
still delivers better performance than others.

C. large-sized packet performance

We also investigated the performance of large-sized
packets for these algorithms. In Section 5.4, Fig. 7
gives an example showing the distribution of source-
destination communication under different algorithms. We
selected it as the experiment configuration. We evaluated
the performance with different packet sizes under both
multicast only traffic and mixed traffic. As can be seen
in Fig. 11, when the packet size is small(a1 and a2),
LXYROPT and VCTM outperform OPT, which reduce
latency about 20%. In this situation, the maximum man-
hattan distance plays a key role in performance. As the
packet size increases, the maximum manhattan distance
becomes negligible, and the packet size is more important.
In scenario a5, the difference between LXYROPT and
OPT is only 0.5%. VCTM gives the worst result in
performance, because node 36 has 3 branches, and our
router transfers one flit to only one desired output port at
one ST stage, the bandwidth is only 1/3 of the unicast.
For other algorithms, the maximum branch number in
the tree is 2. Hence, the bandwidth is about 1/2 of the
unicast. The latency of VCTM should be about 1.5 times
as that of other algorithms. The result shown in Fig.
11 a5 is consistent with our expectation. Although the
experiment is a special case, and it may not allow for
general conclusion, it is certain that when the network
load is low, the large-sized packet affects the latency
significantly [22].

In the mixed traffic scenario, unicast is uniformly dis-
tributed. In this scenario, the packet latency contains the
waiting time. Waiting time includes the time waiting for
routing and switching. The result shows that LXYROPT
gives the best performance when the packet size is large.
VCTM is still worst due to its bottleneck in node 36.

D. Multicast path setup

We also evaluated the efficiency of our multicast path
setup scheme. As aforementioned, the existing multicast
path is used to construct a new multicast path when it
is a subset of the new one. Fig. 12 shows the mapping
relation between the nodes on the mesh and the bits in
the destination set vector. We set four different scenarios
for multicast setup, which are shown in Table I. They are
different in old group size and new group size. From the
simulation results in Fig. 13, we can conclude that if the
multicast group to be evicted is a subset of the new one,
our scheme can significantly reduce the setup cycles. The
performance improvement comes from two main sources:
elimination of evicting process and reduction of setup
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Fig. 9. Multicast packet latency under the multicast only traffic
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Fig. 10. Multicast Packet latency under the mixed traffic

2
5

3
1

4
6

3
1
6

3
0
1
6

2
5

3
8

5
0

3
1
9

3
0
2
3

3
1

3
7

4
7 2
2
7

2
0
2
7

3
1

3
7

4
7

2
7
6

2
8
2
8

2
4

2
8

3
8 2
1
8

2
0
1
8

2
9

3
9

4
8

2
8
1

2
4
5
1

0

500

1000

1500

2000

2500

3000

3500

4000

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5

P
a
ck
e
t&
La
te
n
cy
(c
y
cl
e
s)

VCTM OPT LXYROPT

Fig. 11. Packet latency. Series a is the multicast only traffic. a1: 1 flits/packet; a2: 5 flits/packet; a3:10 flits/packet; a4: 100 flits/packet; a5:1000
flits/packet. Series b is the mixed traffic, other nodes (except the source node of multicast) send unicast packets at the rate of 0.1 (flits/cycle/sending
node), the unicast traffic is uniformly distributed. b1: 1 flits/packet; a2: 5 flits/packet; b3:10 flits/packet; b4:100 flits/packet; b5:1000 flits/packet.

packets. This scheme is only suitable for the VCTM,
which can re-configure the multicast tree at runtime.
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E. Power

We calculated the power consumption by using the
library of Noxim [23]. In this power model, the power
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TABLE I
DESTINATION SET FOR MULTICAST

scenario multicast tree (bit vector) /source node: 8
a old: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00011111

new: 00000000 00000000 00000000 00000000 00000000 00000000 00111110 00011111
b old: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00011111

new: 00000000 00000000 00000000 00000000 00000000 00011111 00111110 00011111
c old: 00000000 00000000 00000000 00000000 00011111 00011111 00111110 00011111

new: 00000000 00000000 00000000 00011111 00011111 00011111 00111110 00011111
d old: 00000000 00000000 00000000 00011111 00011111 00011111 00111110 00011111

new: 00000000 00000000 00011111 00011111 00011111 00011111 00111110 00011111

TABLE II
POWER PARAMETER

Operation energy(nJ)
routing 0.185
incoming 0.002
selection 0.006
forwarding 0.384
standby 0.00005

consumption contains the power of routing, selection,
forwarding, incoming and standby, which is added to the
total consumption when corresponding operation happens
during the simulation. Table II shows the energy for each
operation. We ignored the static power of multicast table
which is sensitive to the size of register file. Furthermore,
OPT, LXYROPT and VCTM are integrated in the same
router, they should consume the same static power. The
power consumption of VCTM is normalized as 1. We
calculated the power consumptions in 7 groups of experi-
ments. s1(256, 8, 10-40, 5), s4(64, 8, 5-20, 5) are executed
in the multicast only traffic mentioned previously, while
a1-5 are executed in the large-sized packet evaluation.

As can be seen from Fig. 14, OPT achieves the most
power reduction. Compared with VCTM, it saves 16%-
31% power dissipation. LXYROPT, on the other hand,
reduces about 7%-12%. The power saving comes from
reducing redundant link switching and buffer operations.
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Fig. 14. Power consumption under only multicast traffic

F. Area comparison

Our router and the baseline unicast router have been
synthesized using a CMOS stand-cell technology library
from Chartered Semiconductor Manufacturing. Table III
shows the synthesis results with 90-nm CMOS stand-cell
technologies. Compared with the unicast router, area of
each component increases significantly for our router. Un-
like unicast, maintaining the status of information for mul-
ticast packet is more complicated, and about four times
registers are needed to store the information of multi-
port and virtual channel id. More arbiters, multiplexer and
other combinational logic are also needed to be integrated.
With respect to FIFO (depth:5 width: 44 bits), our router
increases about 30% due to the asynchronous replication

mechanism. The Packet Conversion Logic (PTC) is set
in NA (Network adapter) which leads to about 3% more
area overhead. Since VCTM [8] did not present the router
micro-architecture in detail, we assume that it is similar to
our proposed router in VA, SA, SW, FM (Flow Manager)
and RC. FIFO, NA and MCT are sensitive to the size of
buffers, so we ignore the area of them in comparison to
VCTM. PTC only brings about extra 0.5% area compared
with VCTM, though the area of FIFO, NA and MCT is
excluded.

TABLE III
ROUTER AREA BREAKDOWN (µm2)

VA SA SW FM RC FIFO MCT NA
unicast 21848 2962 6346 6332 6860 123200 0 12085
proposed 39518 6635 6346 6881 8985 159940 113164 (PTC)12443

VIII. CONCLUSIONS

In this paper, a flexible multicast support scheme
(TPSS) is proposed. Its basic idea is to divide the sub-path
setup into two periods: routing to an intermediate node,
and updating the multicast table from the intermediate
node to the destination node. It supports arbitrarily shaped
multicast path construction by adding little logic to the
existing VCTM router. VCTM can be easily supported
in our router by disabling the first period of the sub-
path setup. Two power-efficient and bandwidth-efficient
algorithms, OPT and LXYROPT, are proposed to explore
this scheme. Experimental results show that LXYROPT
gives the best performance and a modest power reduction.
OPT achieves the most power saving with the cost of
decreased performance, which is suitable for the scenario
that is sensitive to power dissipation. We also optimize
the setup scheme by utilizing the existing multicast path
when it is a subset of the new one. Simulation results
indicate it can reduce the setup latency significantly.

For future work, since increasing the network size may
cause the multicast table to consume large hardware area,
we plan to explore the dynamic partition scheme to save
area.
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