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Abstract

Load latency remains a signi�cant bottleneck in dynamically scheduled pipelined pro-

cessors. Load speculation techniques have been proposed to reduce this latency. Depen-

dence Prediction can be used to allow loads to be issued before all prior store addresses are

known, and to predict exactly which store a load should wait upon. Address Prediction can

be used to allow a load to bypass the calculation of its e�ective address and speculatively

issue. Value Prediction can be used to bypass the load forward latency and avoid cache

misses. Memory Renaming has been proposed to communicate stored values directly to

aliased loads.

In this paper we examine in detail the interaction and performance tradeo�s of these

four load speculation techniques in the presence of two mispeculation recovery architectures

{ reexecution and squash. We examine the performance of combining these techniques to

create a load speculation chooser which provides performance improvement over using

any one technique in isolation. We also examine the accuracy of these load speculation

techniques for predicting data cache misses.

1. Introduction

Accurate determination of memory dependencies between store and load instructions is
critical for performance on future superscalar processors. Processors with large execution
windows to expose the ILP necessary to reach future generation performance goals will
also expose more store/load communication and require precise load/store scheduling. In
performing this scheduling, processors have to deal with aliasing between store and load
instructions. One possible alternative is to require loads to wait for the completion of all
previous stores before beginning execution. This avoids the problem of aliasing, but can
result in many wasted cycles due to false dependencies.

Four approaches have been proposed for load speculation to reduce the impact of load
instructions on processor performance { Dependence Prediction, Address Prediction, Value
Prediction, and Memory Renaming. This paper examines which of these techniques are
appropriate for future superscalar processors, how they interact, and how to combine them
for improved performance.

Dependence prediction is used to predict aliases between load and store instructions.
Dependence prediction will either predict that the load is independent of all prior stores, or
it will predict which store the load is dependent upon. This allows a load to speculatively
issue without waiting upon potentially independent stores after its e�ective address becomes
available.
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A load operation consists of two parts: the e�ective address calculation and the memory
access. Address prediction can be used to predict the e�ective address calculation. This
can eliminate the load's dependence on the e�ective address calculation and allow the load
to more quickly detect store aliases. In addition, the predicted addresses can be used for
data prefetching. Value prediction predicts the actual data that is to be brought in from
memory, allowing instructions dependent on the load to speculatively execute with the
predicted value.

The last form of load speculation we examine is Memory Renaming. Memory renaming
involves predicting dependencies between loads and stores, and forwarding values directly
from stores to loads using registers or a value cache, bypassing memory. Memory renaming
relies on the observation that some loads typically alias the same store, even if the address
or value accessed is not always the same. Moreover, these stores may not necessarily be in
the current instruction window.

This paper provides a detailed analysis of the interaction between Dependence Predic-
tion, Address Prediction, Value Prediction, and Memory Renaming. It is an extension of
our prior comparison of these four load speculation architectures in [1]. In this paper we
describe in more detail the implementation of each of these four architectures, related work,
and provide additional results and analysis.

To examine the interaction of these four techniques we evaluate the performance of
a chooser predictor, which selects between the four types of load speculation to achieve
increased processor performance. We also examine the simultaneous use of multiple predic-
tions for a load instruction, thereby predicting its address, dependence, and value at the
same time.

Our baseline architecture and simulation methodology are described in Section 2. Sec-
tion 3 describes using con�dence counters and the misprediction recovery architectures for
load speculation. Dependence prediction architectures and performance are described in
Section 4. Address prediction architectures and results are described in Section 5. Value
prediction architectures and results are described in Section 6. The Memory Renaming ar-
chitecture and results are described in Section 7. We combine all four types of speculation
and describe their performance in Section 8. Our �ndings are summarized in Section 10.

2. Methodology and Baseline Architecture

The simulator used in this study is derived from the SimpleScalar/Alpha 2.1 and 3.0 tool
set [2], a suite of functional and timing simulation tools for the Alpha AXP ISA. The timing
simulator executes only user-level instructions, performing a detailed timing simulation of
an aggressive 16-way dynamically scheduled microprocessor with two levels of instruction
and data cache memory. Simulation is execution-driven, including execution down any
speculative path until the detection of a fault, TLB miss, branch misprediction, or load
mispeculation.

To perform our evaluation, we collected results for the SPEC95 benchmarks for all
the C programs and 2 FORTRAN programs. The programs were compiled on a DEC
Alpha AXP-21164 processor using the DEC C and FORTRAN compilers. We compiled the
SPEC benchmark suite under OSF/1 V4.0 operating system using full compiler optimization
(-O4 -ifo). Table 1 shows the data set we used in gathering results for each program, the
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# instr Base % ld % st
Program Input fastfwd (M) IPC exe exe

compress ref 0 1.93 26.7 9.5
gcc 1cp-decl 400 2.33 24.6 11.2
go 5stone21 2000 1.98 28.6 7.6
ijpeg specmun 2000 4.90 17.7 5.8
li ref 2000 3.48 28.2 18.0
m88ksim ref 2000 3.96 22.1 10.9
perl scrabbl 400 3.03 22.6 12.2
vortex vortex 2000 4.28 26.5 13.7
su2cor ref 2000 3.79 18.7 8.7
tomcatv ref 2000 3.81 30.3 8.7

Table 1: Program statistics for the baseline architecture.

number of instructions fast forwarded through before starting our simulations (in millions),
the baseline architecture IPC, and the percent of executed instructions that were stores or
loads. We used the -fastfwd option in SimpleScalar/Alpha 3.0 to skip over the initial part
of execution. We determined the amount of instructions to fast forward using [3]. Results
are then reported for simulating each program for 100 million instructions.

2.1 Baseline Architecture

Our baseline simulation con�guration models a future generation microarchitecture. We've
selected the parameters to capture three underlying trends in microarchitecture design.

First, the model has an aggressive fetch stage, employing a variant of the collapsing
bu�er[4]. The fetch unit can deliver two basic blocks from the I-cache per fetch cycle,
but no more than 8 instructions total. If future generation microarchitectures wish to
exploit more ILP, they will have to employ aggressive fetch designs like this or one that is
comparable, such as the trace cache [5].

Second, we've given the processor a large window of execution, by modeling large re-
order bu�ers and load/store queues. Large windows of execution expose the ILP necessary
to reach future generation performance targets; and at the same time they expose more
store/load communication and thus bene�t from more precise load/store scheduling. The
out-of-order processor can issue 16 operations per cycle, and has a 512 entry re-order bu�er
with a 256 entry load/store bu�er. Loads in the baseline architecture can only execute
when all prior store addresses are known. To compensate for the added complexity of dis-
ambiguating loads and stores in a large execution window, we increased the store forward
latency to 3 cycles.

Third, processor designs are including larger on-chip and o�-chip caches. Larger caches
are creating longer load latencies for hits in the L1 data cache. The Alpha 21264 processor
has a 3 to 4 cycle �rst level data cache latency [6]. The processor we simulated has a 64K
direct map instruction cache and a 128K 2-way associative data cache. Both caches have
block sizes of 32 bytes. The data cache is write-back, write-allocate, and is non-blocking
with four ports. The latency of the data cache is 4 cycles, and the cache is pipelined to
allow up to 4 new requests each cycle. There is a uni�ed 2nd level 1 Meg 4-way associative
cache with 64 byte blocks, with a 12 cycle cache hit latency. A 2nd level cache miss has a
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68 cycle miss penalty, making the round trip access to main memory 80 cycles. We model
the bus latency to main memory with a 10 cycle bus occupancy per request. There is a 32
entry 8-way associative instruction TLB and a 64 entry 8-way associative data TLB, each
with a 30 cycle miss penalty.

The branch predictor is a hybrid predictor with an 8-bit gshare that indexes into 16k
predictors + 16k bimodal predictors [7]. There is an 8 cycle minimum mis-prediction
penalty. The processor has 16 integer ALU units, 8-load/store units, 4-FP adders, 1-integer
MULT/DIV, and 1-FP MULT/DIV. The latencies are: ALU 1 cycle, MULT 3 cycles, Integer
DIV 12 cycles, FP Adder 2 cycles, FP Mult 4 cycles, and FP DIV 12 cycles. All functional
units, except the divide units, are pipelined allowing a new instruction to initiate execution
each cycle.

2.2 Issuing a Load

When executing a load or store instruction, the instruction is e�ectively split into two micro
instructions inside the processor. One instruction calculates the e�ective address, and the
other instruction performs the memory access once the e�ective address computation and
any potential store alias dependencies have been resolved. In the baseline architecture, each
store and load instruction must wait until its e�ective address calculation completes. In
addition, each load and store must wait until all prior store addresses are calculated before
it can issue. This is the default memory disambiguation for the baseline architecture we
modeled.

In the baseline architecture, when a load issues it performs a lookup in the store bu�er
for a non-committed aliased store and it performs its data cache access in parallel. If a
store alias is found, the load has a 3 cycle latency. If there is no store alias, and there is a
data cache hit, the load has a 4 cycle latency because of the pipelined data cache. If there
is a miss in the data cache, the miss will only be processed if no alias is found in the store
bu�er.

Figure 1 illustrates an example showing the dependencies used for the default memory
disambiguation. This example will be used throughout the paper to show the bene�ts of
each of the load speculation techniques. The example shows the execution of a multiply
instruction, followed by two store instructions (ST2, and ST3), followed by the execution
of two load instructions (LD4 and LD5), followed by a divide (DIV) and an add (ADD).
The lines in Figure 1(a) represent true data dependencies between the instructions. Only
the MUL, ST2, ST3, LD4, LD5, DIV and ADD are in the current instruction window.
The �rst store, ST0, has already updated memory and passed through the processor. In
this example, assume that LD4 and ST2 access the same address, so there exists a true
dependency between them. Similarly, LD5 and ST0 access the same address. Figure 1(b)
shows all the dependencies that the processor enforces between the di�erent instructions.
For the baseline memory disambiguation, the two load instructions must wait until the
e�ective address of the two prior stores have been calculated before they can issue.

Table 2 shows the load latency statistics for the baseline architecture. The �rst column
shows the percent of loads that su�er from stalls due to data cache misses. The next
three columns show the percent of cycles a load spends, (1) waiting on its e�ective address
calculation (ea), (2) waiting for prior store addresses to be calculated so the load can issue
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possible alias 
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0) ST r1,0(r2)...
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4) LD r7,0(r0)
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(a) Original Code
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Figure 1: Code example used throughout this paper to show the bene�ts of load speculation.
Instructions one through seven are in the processor's active instruction window.
The solid arrows in (a) show the true data and alias dependencies. The arrows in
(b) show the register dependencies and the dependencies enforced by the baseline
memory disambiguation architecture due to potential aliases.

(dep), and (3) the latency for fetching the data (mem). The 2nd to last column shows the
average number of instructions in the ROB during execution. The last column shows the
percent of executed cycles the fetch unit stalled due to a lack of free ROB entries. Table 2
shows that on average for the SPEC C programs, each load spends 6.3 cycles waiting for
its e�ective address. After the e�ective address is calculated, a load waits an additional
5.1 cycles on average for memory disambiguation. This is the number of cycles the load
waits while all prior store addresses are calculated, ensuring the detection of any potential
aliases. Finally, a load spends 4.4 cycles on average reading the loaded data value from the
data cache for the C programs. The FORTRAN programs we examined waited considerably
longer to read the loaded value from the data cache, around 40.5 cycles on average.

3. Speculating a Load

In this paper we examine speculatively issuing a load before all prior store addresses are
known using dependence prediction, issuing the load using a predicted address using address
prediction, and predicting the output value for a load using value prediction and memory
renaming. For each of these techniques, information (dependence, address, or value) is
predicted and later used by either the load instruction itself, or a dependent instruction, as
in the case of a predicted value. Con�dence prediction is used to guide when a prediction
should be used. If the prediction is incorrect, misprediction recovery action must take place
to correct the state of the pipeline.
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Dcache Load Delay (in cycles) ROB % cycles
Program % Stalls ea dep mem occ fetch delay

compress 10.6 15.3 11.0 4.7 190 4.0
gcc 2.0 6.7 3.9 4.1 103 1.6
go 0.6 6.1 3.1 4.1 100 0.5
ijpeg 2.9 6.1 4.6 4.8 141 2.4
li 5.8 4.5 4.3 4.0 110 0.3
m88ksim 0.1 2.1 2.3 4.1 66 0.0
perl 1.0 5.0 4.6 4.4 158 7.5
vortex 3.6 4.8 7.1 4.8 274 18.0
C average 3.3 6.3 5.1 4.4 143 4.3

su2cor 48.0 6.9 2.4 21.3 280 11.9
tomcatv 48.1 1.1 3.9 59.7 480 45.1
F average 48.0 4.0 3.1 40.5 380 28.5

Table 2: Load latency statistics for the baseline architecture. Dcache Stalls is the percent of
loads that su�er from stalls due to cache misses. The next three columns show the
total cycles a load spends waiting on its e�ective address calculation (ea), waiting
for memory disambiguation (dep), and for memory access (mem). ROB shows the
average number of instructions in ROB during execution. Last column shows the
percent of executed cycles the fetch unit stalled because of no free ROB entries.

3.1 Producing and Consuming Predictions

Each of the four load speculation architectures we examine produce predictions which allow
the load or its dependent instructions to speculatively execute. These predictions are pro-
duced early in the pipeline while the load is being fetched from the instruction cache and
being decoded. When a load has a predicted dependency, address, or value, we label this
load as producing a prediction [8]. Just because a load has a predicted dependency, address,
or value, it does not mean that the prediction will be used. The prediction may be used
later in the pipeline to either speculatively issue the load or its dependent instructions.
When this occurs the prediction is consumed by the load or its dependent instructions.
If the prediction is incorrect, and has been consumed then it will cause a misprediction
recovery action. If the prediction was incorrect and not consumed, it will not cause any
misprediction penalty. This relationship will be discussed in more detail in each of the four
speculation sections.

3.2 Con�dence Estimation

The address, value and rename load speculation techniques in this paper use a form of
con�dence estimation to decide when a prediction is a candidate for being consumed. We
use con�dence counters for each of these predictors. Con�dence counters have been shown
to be e�ective at reducing the miss rate of branches, while maintaining a high coverage of
branch predictions [9, 10].

We use two di�erent sets of con�dence counters { a conservative one for squash recovery
and a more forgiving one for reexecution recovery. There are four parts to the con�dence
counters. These are (1) saturation, (2) predict threshold, (3) misprediction penalty, and
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(4) increment for correct prediction. We examined many di�erent values for these four
parameters, and chose two con�gurations { a 5-bit counter (31,30,15,1) for squash, and a
2-bit counter (3,2,1,1) for reexecution. The parameters are read as follows. For squash, a
con�dence counter can have a max value of 31, and the con�dence indicates a prediction
can be used when the counter is 30 or above. If the counter is below 30, the prediction is
not used. If an incorrect prediction occurs, the saturating counter is decremented by 15. If
the prediction is correct, the predictor is incremented by 1.

In modeling address, value and rename prediction, we update the predictor's values
speculatively, and the values are repaired in the commit stage if there was an incorrect
prediction. More importantly, we update the con�dence counters in the write-back stage,
and correct the con�dence counter if the instruction is not committed. In our simulations,
the prediction accuracy for some programs degraded due to the late update of the con�dence
counter. This is one reason for the high con�dence threshold for squash recovery.

3.3 Load Mispeculation Recovery

In this paper we model squash and reexecution recovery for load mispeculation. The pro-
cessor model we simulate uses a reorder bu�er (ROB) and reservation stations to hold the
state of the out-of-order processor.

3.3.1 Squash Recovery

When a data mispeculation occurs, Squash recovery ushes all the instructions out of the
ROB after the mispeculated load instruction, and refetches the instructions from the cache
starting at the next instruction after the mispeculated load. This is identical to the miss
recovery approach used for branches.

3.3.2 Reexecution Architecture

A more aggressive recovery scheme would be to only reexecute instructions dependent upon
the mispeculated load. We model reexecution recovery, which only reexecutes those instruc-
tions dependent (directly or indirectly) on the mispeculated load. This is accomplished by
re-injecting the correctly loaded value onto the result bus. Instructions that had used the
speculative value would detect the corrected value and be re-queued for instruction issue.
This in turn may cause further reexecutions.

3.4 Load Speculation Architecture Costs

In the following sections we examine several di�erent load speculation architectures. In
gathering these results, we simulated several di�erent hardware structure sizes and chose
structures that were large enough to eliminate most of the aliasing e�ects. The goal of
this study was to examine the interactions of these architectures without worrying about
capacity misses.

In the next four sections we will go through each of the four di�erent types of load
speculation. For each predictor we will (1) describe the prior work for the predictor, (2)
describe the hardware predictors we implemented for that type of speculation, and (3)
examine the performance results for those predictors.
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4. Dependence Prediction

Many current processors allow loads and stores to execute out-of-order by comparing the
load's address to prior active store addresses. If the load address is independent, the load
can issue out of order. Delaying this comparison until all prior active store addresses have
completed can create long load latencies. Dependence prediction has been proposed to
remove this latency by predicting if loads are independent of prior stores, or by predicting
which store a load is dependent upon.

There are several varieties of dependence prediction. Kourosh et al. [11] proposed blindly
speculating loads (always predicting that there are no store aliases), applying this prediction
in the presence of memory consistency. They showed that the common case is for a load to
be independent of prior stores.

Independence prediction can be used to predict that a load address does not depend upon
any prior active store addresses. When a load is independence predicted, it can perform
its cache access as soon as its e�ective address is available. Existing architectures, such as
the DEC Alpha 21264, provide a simple but very accurate form of independence prediction.
The 21264 uses a Wait Table to record the load instructions that have been found to be
dependent upon a prior store [6]. If a load is found to be dependent upon a store, then its
corresponding bit in the load table indexed by the instruction PC is set. When the load
executes, if the bit is not set then the load will speculatively issue, otherwise it will wait for
all prior store addresses to complete before issuing.

The second type of dependence prediction predicts the exact store (if one exists) that
the load is dependent upon [12, 13]. Chrysos and Emer introduced Store Sets [14] which
dynamically clusters loads and stores which have aliased the same memory addresses in the
past. Their implementation allows multiple loads and stores to be clustered together to
guide prediction. They avoid memory order violations by enforcing in-order issue of loads
and stores within the same store set.

Figure 2 shows the bene�t of dependence prediction on our prior code example described
in section 2.2. Dependence prediction can correctly identify that LD4 is aliased with ST2,
and that no prior uncommitted store is aliased with LD5. LD4 can issue once its e�ective
address has completed and ST2 has issued. LD5 can issue as soon as its e�ective address
is calculated.

4.1 Dependence Prediction Architectures

In the architecture we modeled, when a load is predicted to be independent of all prior
stores, the load will issue as soon as its e�ective address has been calculated.

When a load is predicted to be dependent upon a particular store, the load will issue as
soon as both the store issues and the load's e�ective address is calculated. A store issues
only after its e�ective address and input operand are calculated. When a load is predicted
in this manner, the value of the aliasing store is not directly communicated to the load,
but instead, the load goes through its usual pipeline steps - checking the store bu�er for an
alias while looking up its address in the data cache in parallel (as described in Section 2.2).

Not every dependence prediction will be used. The dependence prediction is performed
early in the pipeline during the fetch and decode stage. By the time the e�ective address
for the load has been calculated, all prior store addresses might be known. In this case, a
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EA2

EA3
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(a) Default Disambiguation
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LD5 DIV
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Figure 2: The bene�t from using dependence prediction. Dependence prediction is shown
in (b) to correctly predict the alias dependence between ST2 and LD4, and to
predict that LD5 has no store alias.

dependence prediction for the load will not be used, and no misprediction penalty would
occur if the prediction was wrong.

A dependence misprediction occurs when a prior store address is found to be the most
recent alias of a load, after the load has issued. We modeled an aggressive miss-handling
architecture to handle dependence mispredictions. Each time a store address completes, all
the issued loads that occur after the store in the instruction window have their addresses
checked for an alias. If an alias is found, misprediction recovery action is taken for the load,
and the load re-issues. This miss recovery has an advantage in that as soon as a mispredict
occurs, the load speculatively re-issues, even though there might still exist some unresolved
prior store addresses before the load. Note that this could cause the load to be mispredicted
several times, until the load �nally �nds the correct store dependency. Our results showed
that e�ects from multiple mispredictions are much smaller than the bene�ts.

We will now describe the di�erent dependence prediction architectures compared in this
paper.

4.1.1 Blind

Blind prediction is an aggressive form of prediction that keeps predicting independence for
a load until it gets it right. After the load's e�ective address has been calculated, the
load speculatively issues, searching the store bu�er for known aliases and performing its
data cache lookup. If it �nds a store alias, the load uses the value to be written by the
store. Later, if a prior store's address resolves and it is a more recent alias, misprediction
recovery action is taken for the load and the load re-issues, predicting that this recent store
is its dependency. As described earlier, this may occur several times until the load �nds its
correct dependency, if one exists.
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SSIT

 LFST index

 LSFT indexindex by pc

index by pc

store1...
store2...
load

LFST

 LFST index

index by pc

Last Fetched Store

Figure 3: Structure of the Store Sets predictor. The SSIT maps memory operations to store
set ids. The LFST contains the last fetched store instruction for a particular store
set.

4.1.2 Wait

A Wait dependence predictor [6] has a table with one prediction bit for each instruction in
the instruction cache. The predictor will speculatively issue a load if the wait bit associated
with that load instruction is not set (turned o�). The load speculatively issues as soon as its
e�ective address is calculated. On a misprediction, the wait bit is set to avoid mispredictions
in the future. If the wait bit is set, the load waits until all prior store addresses have been
calculated before issuing. To prevent the predictor from being too conservative, all wait
predictor bits in the instruction cache are cleared every 100,000 cycles. Moreover, on an
instruction cache miss, the wait bits are cleared for the instructions in the incoming cache
line.

4.1.3 Store Sets

Store sets [14] attempt to chain together memory operations that alias the same location.
Memory operations are assigned store set id numbers, and those operations which are
found to alias the same memory location are given common id's. The store set architecture
contains two tables shown in Figure 3. A cache called the Store Set Id Table (SSIT) [14]
is used to keep track of store set id numbers for each load and store instruction. When a
store or load is fetched, their PC is used as an index into the SSIT and an id is returned.
This id is then used to index into a table called the Last Found Store Table (LFST) [14],
which tracks the last store operation to issue with that particular store set id. The LFST
returns a store identi�er indicating which uncommitted store instruction may be aliasing the
memory address the load is referencing. If a store dependence is found, the load instruction
will delay its issue until that store issues and its own e�ective address is calculated. If no
dependence is found, the load will issue as soon as its e�ective address has been calculated.

If a load is speculatively issued, and is found to be mispredicted because of the existence
of an unknown prior store alias, the load and store will be made members of the same store
set. This occurs by storing both the store and load in the SSIT, and having them point to
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Dependence Predictor
Blind Wait Store Sets

Indep Dep
Program % mr % ld % mr % ld % mr % ld % mr

compress 9.0 82.7 0.0 77.9 0.0 22.1 0.0
gcc 4.2 89.9 0.2 82.9 0.2 17.1 0.1
go 3.5 85.3 0.2 83.4 0.1 16.6 0.0
ijpeg 6.3 84.1 0.0 77.6 0.0 22.4 0.0
li 14.4 67.7 0.1 47.6 0.0 52.4 0.0
m88ksim 4.9 91.7 0.1 82.4 0.2 17.6 0.0
perl 5.2 84.1 0.0 75.7 0.0 24.3 0.0
vortex 2.2 95.6 0.0 60.2 0.0 39.8 0.0
C average 6.2 85.1 0.1 73.4 0.1 26.5 0.0

su2cor 4.8 91.9 0.0 91.9 0.0 8.1 0.0
tomcatv 1.4 98.6 0.0 98.6 0.0 1.4 0.0
F average 3.1 95.2 0.0 95.2 0.0 4.8 0.0

Table 3: Prediction statistics for dependence prediction.

the same entry (store set id) in the LSFT. See [14] for a complete description of how store
set ids are allocated.

In our simulation, stores do not use dependence prediction to speculatively issue, only
loads. A store must wait until all prior store addresses have been calculated before it can
issue. Loads with a valid pointer to a store in the LFST entry can speculatively issue once
the store has issued. If the load does not have a valid LSFT entry, then the load is predicted
as being independent of all prior store addresses. We use a 4K entry direct mapped SSIT
and a 256 entry direct mapped LFST. To prevent store sets from growing too large, and
from establishing false dependencies, we ush the store set data structures every 1 million
cycles as described in [14].

4.1.4 Perfect

A perfect dependence predictor is one that issues a load only after all prior aliasing stores
have issued. No recovery mechanism is required, and false dependencies are avoided. This
predictor exposes the maximum possible gain obtainable from dependence prediction. It
relies on oracle knowledge of all prior store addresses and the current load address.

4.2 Performance of Dependence Predictors

Figures 4 and 5 show the percent speedup obtained for Blind, Wait, Store Sets, and Perfect
dependence prediction over the baseline architecture for squash and reexecution recovery
respectively. Results show that the Store Sets con�guration achieves performance close
to Perfect. It also shows that aggressive Blind speculation with reexecution can achieve
performance close to Store Sets. For squash recovery, the wait bits provide a simple and
e�cient solution to dependence prediction with a speedup of 7% on average.

Table 3 shows the percent of loads predicted and the misprediction rate for each of the
predictors. Store Sets prediction rates are broken up into the loads that are predicted as
independent of prior stores, and the loads that are predicted to be dependent upon a prior
store. The Wait results show the percent of loads that were predicted as being independent
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Figure 6: The bene�t of address prediction. Figure (b) shows that when using address
prediction LD5 does not have to wait on its e�ective address calculation, which is
waiting on the multiply. The load only has to wait for the store addresses to be
calculated before it can issue, so it can be sure that the predicted address does
not have a store alias.

be bene�cial to speculate the value of the address and load the data as soon as possible, or
even prefetch the data.

Address prediction predicts the e�ective address for a load. The load then has only
to wait on potential store aliases before issuing. When a load instruction uses address
prediction, its e�ective address (EA) calculation still executes normally. Once the e�ective
address calculation �nishes, it checks this address against the predicted address to determine
if the load's address was correctly predicted. If the address was incorrectly predicted, the
load is re-issued with the correct address.

Figure 6 shows the bene�t of address prediction on our prior code example described in
section 2.2. Using address prediction can allow LD5 to speculatively issue as soon as the
e�ective addresses are calculated for the two store instructions. This could allow LD5 to
overlap with the multiply operation, which its e�ective address is dependent upon.

Several predictors have been proposed for address prediction, speci�cally to be used to
reduce the latency of load instructions via prefetching [15, 16, 17]. Gonzalez and Gonza-
lez [18] observed that source operands of load and store operations could be predicted with
considerable accuracy. They used a stride address predictor to speculatively issue both
loads and stores, and to guide data prefetching.

Black et al. [19] proposed a hybrid load e�ective address predictor to reduce load la-
tency. Their hybrid predictor consists of a last address predictor, a stride predictor, and a
global dynamic predictor. They implemented a classi�cation scheme which controlled both
the selection of which predictor to use for a particular load, and the selection of which
predictor(s) to update. This classi�cation is inuenced both by con�dence counters at each
predictor, and by a �xed ordering of predictors - based on spatial e�ciency.
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5.1 Address Prediction Techniques Examined

In our simulations, the following predictors have their values (addresses) and strides up-
dated speculatively, and repaired in the commit stage if an incorrect update was performed.
However, the con�dence counters, which are used to guide when to use the prediction infor-
mation, are updated in the writeback stage, once the outcome of the prediction is known.

5.1.1 Last Value (Address) Prediction

A last value predictor (LVP) [20] preserves the last value seen for a particular load (in this
case the address of the memory reference), and speculates that the load will re-use the same
memory location during its next execution. We implement LVP predictors using a direct
mapped, tagged cache with 4K entries. Each entry contains the tag, the predicted value,
and a con�dence counter.

5.1.2 Stride

A stride predictor [15, 17, 21] keeps track of not only the last address referenced by a load,
but also the di�erence between the last address of the load and the last address before that.
This di�erence is called the stride. The predictor speculates that the new address seen by
the load will be the sum of the last value seen and the stride. We chose to use the two-delta
stride predictor [17, 21], which only replaces the predicted stride with a new stride if that
new stride has been seen twice in a row. Our implementation uses a direct mapped, tagged
cache with 4K entries. Each entry contains a tag, the predicted value, the predicted stride,
the last stride seen, and a con�dence counter.

5.1.3 Context

A context predictor [21, 22, 23] bases its prediction on the last several values seen. We chose
to look at the last 4 values seen by a load. A direct mapped tagged cache of 4K entries,
called the Value History Table (VHT), contains these last 4 values per entry. Another cache,
called the Value Pattern Table (VPT) of size 16K entries, contains actual values (addresses
in this case) to be predicted. A load's PC is used to index into the VHT, which holds
the past history of the load. The 4 history values in this entry are combined to produce
an index into the VPT. This entry in the VPT contains the value to be predicted. To
compute the hashing function, each value is folded onto itself using an XOR to include all
of its bits. The result is a value Id that is equal in size (in terms of bits) to the VPT table
index. These four value Id's are then combined by shifting each value by twice its position
in the value stream and XORing these values together. We did not include any PC bits
into this hashing function. In [8], we showed that including too many of the PC bits in the
hashing function resulted in a signi�cant degradation in the ability to provide predictions.
Not including PC bits into the hashing function allows separate static load instructions to
share entries in the VPT. An example of this occurs between two di�erent load instructions
that are traversing the same pointer list. One load instruction will initialize the VPT with
its values, and the other load instruction can achieve 100% value prediction accuracy when
traversing that same list.
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Con�dence counters are also used in the VHT to guide when to use the prediction.
Unlike stride predictors, context predictors do not perform well on values that have not
been seen before, although there is bene�t from correlated static loads as described above.

5.1.4 Hybrid

Our hybrid predictor is similar to that proposed in [23] and [19]. It is composed of one
context predictor and one stride predictor, which are of the sizes described above. Prediction
is guided by the con�dence counters. If both predictors hit (the con�dence is above their
predict threshold), then the value to be speculated is chosen from the predictor with the
higher con�dence. If both have the same con�dence, a global mediator counter of correct
predictions is consulted. Whichever predictor has the greater history of correct predictions
is declared the winner. Preference is given to stride prediction in the case of a tie. The
mediator counter is cleared every 100,000 cycles. The hybrid predictor combines the ability
of the context predictor to recognize repeated values without a �xed stride, and the ability
of the stride predictor to predict values that have not been seen, but that are a �xed stride
apart.

5.1.5 Perfect Confidence

We simulated the hybrid predictor with perfect con�dence prediction. The Perfect predictor
is the same as the hybrid predictor, except it only produces a prediction when the prediction
is correct, and it chooses not to predict when the prediction is going to be incorrect.

5.2 Performance of Address Predictors

Figures 7 and 8 show the percent speedup obtained for Last Address Prediction, Stride
Prediction, Context Prediction, Hybrid, and Perfect Con�dence prediction. The results
show stride prediction performs well on the Fortran programs, since stride prediction should
accurately predict array traversals. In comparison, context prediction is better suited for
predicting pointer addresses and provides decent speedups for the C programs.

Table 4 shows the percent of loads producing predictions above the con�dence threshold
and the miss rates for each of the four predictors. Results are shown using the squash
con�dence counters, and the last column is the percent of loads that could be accurately
predicted if one had perfect con�dence information. The con�dence mechanism we use
provides highly accurate predictions, as can be seen by the miss rates for the various pre-
dictors. However, the coverage provided is conservative as shown by the potential coverage
of perfect con�dence. This table corresponds to the speedups shown in Figure 7. As can
be seen, context prediction provides higher coverage than stride prediction for perl, and
this is reected in the IPC results for this benchmark. Vortex has slightly less coverage
from context prediction than stride prediction, but still shows more speedup with context
prediction because this technique covers di�erent loads that have more of an impact on
IPC. When the hybrid predictor is used with vortex we can see that the combination of
these two approaches captures more loads than either approach alone.

Table 5 shows the percent of executed loads that were correctly predicted by each
type of predictor. Each column represents the percent of loads correctly predicted by
all of the predictors listed in the column header. Each executed load for a program will
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Address Predictor - Using (31,30,15,1) con�dence
Lvp Stride Context Hybrid Perf

% % % % % % % % %
Program ld mr ld mr ld mr ld mr ld

compress 71.4 0.0 71.5 0.0 72.7 0.1 73.4 0.1 85.9
gcc 16.6 0.4 17.7 0.4 15.3 0.6 19.4 0.5 62.1
go 14.2 0.2 14.6 0.3 11.9 0.8 15.8 0.4 58.7
ijpeg 17.8 0.0 20.3 0.0 39.5 0.3 41.1 0.3 78.2
li 20.8 0.1 23.0 0.1 21.7 0.4 26.3 0.2 66.7
m88ksim 26.1 0.2 26.1 0.1 34.1 0.8 41.3 0.7 79.7
perl 40.3 0.0 40.8 0.1 51.1 0.4 57.4 0.4 80.7
vortex 33.9 0.0 33.9 0.0 30.0 0.2 36.3 0.0 67.0
C average 30.1 0.1 31.0 0.1 34.5 0.5 38.9 0.3 72.4

su2cor 26.8 0.0 85.0 0.1 30.2 0.3 85.2 0.1 89.9
tomcatv 1.5 0.0 91.3 0.6 34.5 0.8 91.4 0.6 99.5
F average 14.1 0.0 88.2 0.3 32.4 0.5 88.3 0.3 94.7

Table 4: Address prediction statistics for Last Value, Stride, Context, Hybrid, and Perfect
Con�dence Prediction.

Using (3,2,1,1) con�dence
Program l s c ls lc sc lsc miss np

compress 0.0 1.6 1.3 5.1 0.0 0.3 75.7 1.0 15.0
gcc 0.3 2.0 10.6 6.5 0.1 3.0 25.6 1.0 51.2
go 0.4 2.5 4.9 8.6 0.1 1.4 28.9 0.9 52.7
ijpeg 0.4 3.3 14.1 13.6 0.2 15.1 27.9 2.0 23.9
li 0.1 3.1 12.6 5.7 0.0 0.5 28.0 1.1 49.1
m88ksim 0.0 0.7 10.1 5.7 0.0 16.4 36.9 1.6 28.5
perl 0.0 0.9 24.7 4.0 0.0 0.3 44.0 0.8 25.4
vortex 0.0 0.1 16.1 3.2 0.0 0.0 34.4 1.2 45.0
C average 0.1 1.8 11.8 6.5 0.0 4.6 37.7 1.2 36.4

su2cor 0.0 56.6 0.1 0.1 0.0 6.1 26.7 0.0 10.5
tomcatv 0.0 49.7 0.1 0.0 0.0 48.2 1.5 0.0 0.5
F average 0.0 53.1 0.1 0.1 0.0 27.1 14.1 0.0 5.5

Table 5: Breakdown of correct address predictions. L = Last Value, S = Stride, C =
Context, NP = not predicted, Miss = all predictors mispredicted these loads. Each
column represents the disjoint percentage of executed loads that were correctly
predicted by the combination of predictors in each column header (and not by any
other combination). For example, the column labelled ls corresponds to the percent
of loads that were correctly predicted by both last value and stride prediction, but
not context prediction. The s column represents loads that were correctly predicted
by stride prediction, but not by either context or last value prediction.

Table 5 shows results using the reexecution con�dence counters and corresponds to data
shown in Figure 8. Perl and vortex are examples of two C programs which have higher
context predictor coverage, and have a corresponding higher IPC speedup. Su2cor and
tomcatv show higher stride predictor coverage, and show little improvement from context
prediction. Both of these benchmarks provide speedups using stride prediction that are
close to speedups attainable with perfect con�dence.
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Figure 9: The bene�t from using value prediction. Value predicting the result register for
the two load instructions allows the divide and add to speculatively execute in
parallel with the two loads.

6. Value Prediction

Value prediction predicts the actual data value that is to be brought in from memory,
allowing instructions dependent on the load to speculatively execute with the predicted
value. If the prediction is correct, this breaks true data dependencies since the value is
produced without having to wait on the load instruction.

When a load instruction produces a value prediction, the value is inserted into the in-
struction's allocated physical register. This value will then be seen and consumed (used) by
subsequent instructions. The predicted load instruction still takes its normal path of exe-
cution for a non-speculative load. When the predicted load's real value becomes available,
it is checked against the predicted value for mispeculation.

Figure 9 shows the bene�t of value prediction on our prior code example described
in section 2.2. Using value prediction allows the divide and add to speculatively execute
without having to wait on the load instructions to provide the values. The predictions are
then checked when the load instructions complete.

6.1 Value Prediction Pipeline

In the fetch stage of the processor, the value prediction table is accessed for the range of PCs
being fetched. The value table lookup could potentially take multiple cycles, and needs to
complete by the time the instruction enters the register rename stage. E�cient techniques,
like those proposed in [24], are needed to handle multiple value predictions, but modeling
this was beyond the scope of this paper.

After a load instruction is decoded, it then enters the register renaming stage, where
the instruction is allocated a physical register. The allocated physical register is normally
used to hold the result value for an instruction, but we also use it to temporarily hold
the predicted value for an instruction. If a value prediction was found in the table, the
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predicted value is stored into the physical register, to be potentially consumed by other
instructions. Once the instruction �nishes executing and the real result value is available,
it will overwrite any predicted value in its physical register. In this design, the register map
contains an additional bit indicating whether the physical register contains a real value
or a predicted value. A value prediction is only produced and stored in the register �le
if the prediction's con�dence is above the speci�ed threshold as described in section 3.2.
Otherwise, the predicted value is discarded.

During the issue stage of the processor, instructions are issued to reservation stations
when a free reservation station for a functional unit becomes available. Instructions are
then executed from the reservation stations when their operands become available. When
an instruction is inserted into a reservation station, the instruction reads its available inputs
from the register �le, storing the prediction bit from the register map along with the register
value in the reservation station.

Instructions are scheduled to execute from the reservation station, when there is an idle
functional unit. The input operands of an instruction in the reservation station can be in
one of the following states (1) ready, (2) pending, or (3) pending with value prediction.
When choosing which instruction to execute, priority is given to those instructions whose
operands are ready. If no instruction in the reservation station is ready to execute and
there is an idle functional unit, we try to �nd an instruction to schedule using a predicted
value. An instruction is a candidate for execution with value predicted operands if all input
operands are either ready or have predicted values.

When an instruction consumes a predicted value, this means that the instruction pro-
ducing this value has not completed. We keep a use bit associated with the instruction
producing the predicted value. In the reservation station, the consumer instruction already
keeps track of the reorder bu�er entry of the instruction producing the result value. When
an instruction uses a predicted value, it sets the use bit for the producer of the value to
indicate that an instruction has used its prediction. Once the producer �nishes execution,
it checks the use bit to see if its prediction has been consumed. If so, it will need to compare
the predicted value to the real value loaded to see if misprediction recovery is necessary. This
means that when a load is mispredicted, recovery will only be necessary if that prediction
is actually consumed by another instruction.

When an instruction that has consumed a value prediction �nishes executing, it stores
its computed value in its physical register. The value is also broadcast to all reservation
stations. This allows results from speculative values to propagate through the pipeline,
potentially allowing the execution of instructions well down the dependency chain to execute
in parallel with the load instruction.

6.2 Value Prediction Techniques Examined

Several architectures have been proposed for value prediction including last value predic-
tion [20, 25], stride prediction [26, 27], context predictors [21], and hybrid approaches [23].

We simulate the �ve prediction architectures described in Section 5.1 for value predic-
tion:

� Last Value Prediction - prediction based on last data value seen for a particular load.
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Value Predictor - Using (31,30,15,1) con�dence
Lvp Stride Context Hybrid Perf

% % % % % % % % %
Program ld mr ld mr ld mr ld mr ld

compress 44.1 0.0 65.1 0.0 46.1 0.2 67.8 0.0 75.3
gcc 16.2 0.4 16.2 0.4 14.9 0.7 18.6 0.5 61.5
go 8.9 0.5 9.0 0.5 7.0 1.3 10.5 0.7 56.2
ijpeg 10.9 1.2 11.5 1.2 21.9 0.8 24.5 0.8 57.5
li 23.4 0.3 26.2 0.3 22.2 0.6 28.8 0.4 75.9
m88ksim 26.9 0.6 27.7 0.6 24.9 1.3 34.4 0.7 77.6
perl 45.8 0.0 48.2 0.0 46.8 0.3 57.7 0.1 78.3
vortex 38.6 0.0 38.9 0.0 33.8 0.2 43.2 0.0 70.0
C average 26.9 0.4 30.4 0.4 27.2 0.7 35.7 0.4 69.0

su2cor 44.0 0.0 44.6 0.0 46.0 0.2 49.0 0.2 53.4
tomcatv 1.5 0.0 1.5 0.0 29.6 0.4 29.7 0.4 44.2
F average 22.8 0.0 23.1 0.0 37.8 0.3 39.4 0.3 48.8

Table 6: Value prediction coverage and misprediction statistics for Last Value, Stride, Con-
text, Hybrid Prediction, and Perfect Con�dence for squash recovery.

� Stride Prediction - prediction based on last data value seen and current stride for a
particular load.

� Context Prediction - prediction based on last 4 data values seen for a particular load.

� Hybrid Prediction - choose between context and stride predictors.

� Perfect Con�dence - use the hybrid predictor, but only use the prediction if correct.
This models having perfect con�dence information when value predicting.

These predictors are identical in function and size to the ones described in the previous
section on address prediction, but instead of predicting addresses, these predictors speculate
on the the actual contents of the memory location.

6.3 Performance of Value Predictors

The overall potential bene�t from value prediction is demonstrated by the average load
delay cycles seen in Table 2. By correctly predicting the value for the load, instructions
dependent upon the load can avoid stalling during the time the load spends calculating its
e�ective address, waiting on memory disambiguation, and performing its memory access.

Figures 10 and 11 show the percent speedup obtained for Last Value Prediction, Stride
Prediction, Context Prediction, Hybrid, and Perfect Con�dence prediction.

We are able to achieve speedups for value prediction using squash recovery for all pro-
grams, by only consuming predictions when the prediction has a high degree of con�dence,
using the 5 bit counter described in Section 3.2. The results show that squash recovery
is able to achieve close to a 12% speedup on average and 23% speedup for reexecution
recovery. A 30% reduction in execution time could be achieved with perfect con�dence.
In [8, 28], history based con�dence estimation was proposed to improve the con�dence used
by value prediction in the hope of attaining performance closer to that of perfect con�dence
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Using (3,2,1,1) con�dence
Program l s c ls lc sc lsc miss np

compress 0.0 17.7 2.9 6.9 0.0 4.3 42.5 0.6 25.2
gcc 0.2 0.5 11.1 8.0 0.1 0.4 26.8 1.7 51.4
go 0.4 0.6 8.1 10.3 0.1 0.4 21.5 1.7 57.3
ijpeg 0.4 1.0 13.8 9.9 0.1 0.7 24.8 2.0 47.7
li 0.0 4.3 19.4 4.2 0.0 2.7 33.8 1.6 34.0
m88ksim 0.1 1.9 13.4 5.9 0.1 2.4 44.2 1.9 30.1
perl 0.0 2.6 15.6 9.3 0.0 0.5 41.9 0.4 29.6
vortex 0.0 0.1 13.9 6.7 0.0 0.4 37.4 0.7 40.8
C average 0.1 3.6 12.3 7.7 0.0 1.5 34.1 1.3 39.5

su2cor 0.0 1.2 5.5 2.0 0.0 0.1 42.9 0.2 48.1
tomcatv 0.0 0.0 40.9 0.1 0.0 0.0 1.5 0.1 57.5
F average 0.0 0.6 23.2 1.0 0.0 0.0 22.2 0.1 52.8

Table 7: Breakdown of correct value predictions using reexecution recovery. L = Last Value,
S = Stride, C = Context, NP = not predicted, Miss = all predictors mispredicted
these loads. Each column represents the disjoint percentage of loads that were
correctly predicted by the combination of predictors in each column header (and
not by any other combination). For example, the column labelled ls corresponds
to the percent of loads that were correctly predicted by both last value and stride
prediction, but not context prediction. The s column represents loads that were
correctly predicted by stride prediction, but not by either context or last value
prediction.

% DL1 misses correctly predicted by value prediction
Squash Reexecute

Program lvp str ctx hyb lvp str ctx hyb perf

compress 0.1 0.1 0.0 0.1 0.9 0.9 1.0 1.9 5.0
gcc 6.8 7.0 7.3 10.1 21.0 21.8 29.5 34.8 50.7
go 2.8 2.8 1.6 3.3 18.0 18.2 14.3 22.8 38.9
ijpeg 0.1 0.1 1.4 1.5 48.3 48.5 13.7 37.0 62.6
li 36.5 36.5 23.3 43.0 43.7 46.3 58.2 61.6 76.3
m88ksim 0.7 0.7 0.6 1.0 8.0 23.7 5.4 24.8 46.6
perl 1.4 1.4 1.4 1.9 8.1 12.1 5.9 11.9 27.2
vortex 20.7 20.7 22.2 33.4 21.3 21.0 23.1 34.5 39.6
C average 8.6 8.7 7.2 11.8 21.2 24.1 18.9 28.7 43.4

su2cor 52.6 54.1 52.0 54.5 53.3 55.9 52.4 55.7 57.1
tomcatv 0.0 0.0 13.5 13.5 0.2 0.2 16.3 16.4 19.9
F average 26.3 27.1 32.7 34.0 26.8 28.1 34.4 36.0 38.5

Table 8: Percent of time that a predictor successfully predicts a load that is stalled by a
dl1 cache miss.
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prediction. The need for improved con�dence estimation is especially visible in Figure 10,
where we trade a signi�cant amount of coverage for prediction accuracy.

Table 6 shows the percent of loads producing predicted values above the con�dence
threshold and the miss rates for each of the four value predictors for the squash recovery
architecture, as well as the percent of loads correctly predicted for perfect con�dence pre-
diction. The results show that the hybrid predictor both increases the load coverage over
either stride or context prediction alone and decreases the miss rate. The data in this table
corresponds to speedups shown in Figure 10. As with address prediction, load coverage and
IPC speedup must be examined together to reveal the e�cacy of a predictor. Although
context prediction and stride prediction share similar coverage for vortex and perl, it can
be seen that context prediction has more of an impact on IPC for these two benchmarks.
However, the hybrid predictor is able to provide more IPC speedup than either technique
alone. The loads covered by context prediction are more often found on the critical path,
and so impact IPC more than the loads covered by stride prediction.

Table 7 shows the percent of executed loads that were correctly predicted by each type of
predictor. Each column represents the percent of loads correctly predicted by the predictors
listed in the column header. The results show that 10.3% of loads are covered by stride
prediction and not by context for the SPEC C programs, but slightly more (12.3%) are
only covered by context prediction. This e�ect is even more dramatic for the FORTRAN
programs we examined where 23.2% of loads are covered only by context prediction. The
data in this table corresponds to speedups shown in Figure 11. Table 7 reveals the disparity
in coverage between these two techniques. Compress shows greater speedup with stride
prediction than with context prediction in Figure 11. This can be explained by examining
the coverage of these predictors as seen in Table 7. Most of the correctly predicted loads
for compress could be covered with stride prediction, whereas only 3% of loads could only
be correctly predicted by context prediction.

The percent of loads that su�er from stalls due to data cache misses is shown in Table 2.
Table 8 then shows how e�ective value prediction is at predicting loads that su�er from data
cache misses. The table shows the percent of �rst level data cache misses that were correctly
predicted by the di�erent value predictors. The cache architecture we model is 128K, 2-way
associative, with 64 byte lines. The results show that a large number of cache misses can
be correctly predicted by value prediction. Even last value prediction accurately predicts
8% to 22% of the data cache misses on average for the SPEC C programs.

7. Memory Renaming

Memory renaming is the process of �nding dependencies between store and load instructions,
and communicating a predicted value from the store to the load. Research by Moshovos et.
al. [29] and Tyson and Austin [30] found that memory communication between store and
load instructions can be accurately predicted in hardware.

Memory renaming keeps track of store/load dependencies in order to directly commu-
nicate a predicted value from a store to a load, bypassing memory. The approach uses a
store cache to keep track of recently executed stores. When a load is found to be aliased
with a store in the cache, a relationship is recorded. When the load is executed again, if
the store has been resolved, the load will value predict the source value of the store from a
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Store Cache

store addr/vf index

index by
addr
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load

index by
addr

Finding Store/Load Relationships

Value FileStore/Load Cache

value file index

value file indexindex by pc

index by pc

store...
load

Finding the Value File Entry

Figure 12: The structure of the memory renaming architecture [30]. The Store Cache is used
to �nd the relationships between store and load instructions. The Store/Load
cache is used to keep track of which Value File entries to use for store and load
instructions. Store instructions use the value �le entry to store their last value
or a pointer to the instruction producing the value. Load instructions used the
value �le entry to predict the value to use for the load.

value �le. If the store has not been resolved, the value will be forwarded to the load when
it becomes ready.

Memory renaming is similar to dependence prediction, since it is used to predict depen-
dencies as well as values. The di�erence is dependence prediction speculates based on the
dependency, whereas memory renaming speculates based on the predicted value communi-
cated to the load. With dependence prediction, the load still performs the store bu�er and
cache access to get the value for the load. A misprediction occurs when there is a store/load
dependency and the load issued before that store was ready to issue. In contrast, memory
renaming predicts a dependency or value, and its dependent instructions can start using the
value as soon as it becomes available. A misprediction occurs only if the value is incorrect.

Another di�erence is that memory renaming keeps track of dependencies between store
and load instructions over a larger window of instructions than store sets [14] used for de-
pendency prediction. Memory renaming keeps track of prior store addresses in a store cache,
and this cache can include stores that are no longer in the current instruction window. The
store sets architecture does not need a store cache, since it is only concerned about predict-
ing dependencies between stores and loads in the processor's active instruction window.

7.1 Memory Renaming

We chose to study the memory renaming approach of Tyson and

Austin [30] shown in Figure 12. For e�ective memory communication, the architecture
has (1) a Store Cache to cache stores recently seen (4K entries direct mapped), (2) a
Store/Load Cache to hold the dependencies found (4K entries direct mapped), (3) a Value
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File for rename/value prediction (1K entries), and (4) a con�dence mechanism (not shown
in the �gure) to determine when to use the prediction.

When a store instruction is decoded, it indexes into the Store/Load Cache with the store
PC to �nd its Value File entry. If there is a miss, the store is allocated the least recently
used Value File entry and it updates its new Store/Load Cache entry to point to this Value
File entry. The store then updates the Value File entry with the current value of the store
or a pointer to the instruction producing the value for the store. When the e�ective address
for the store becomes available, the store indexes into the Store Cache with its address and
updates the entry to point to its current Value File index.

When a load instruction is fetched/decoded, it uses its PC to index into the Store/Load
Cache to �nd its Value File entry. If there is a hit, the Value File entry is then used for
predicting the value for the load instruction. After the load's e�ective address is known, the
load indexes into the Store Cache with its address to �nd an alias. If an alias is found, the
load updates its Store/Load Cache entry to have the same Value File index as the aliased
store. If an alias is not found, then the load updates its Store/Load entry to point to the
Value File index corresponding to indexing the Value File with the load's PC. This is used
to provide last value prediction the next time the load is executed. If there was no store
alias, then the load updates its Value File entry with the last value used by the load to
provide last value prediction. For further details, please see the complete description of the
memory renaming architecture in [30].

7.2 Consuming Predicted Values

The memory renaming architecture only needs to pay the cost of misprediction if a predicted
value was actually used (consumed) by a dependent instruction. Each load that hits in the
store/load cache will produce a predicted value/tag, but dependent instructions on that
load will only consume the predicted value once they are in the reservation station and
there are idle functional units.

For a predicted load instruction, the value �le provides either (1) a predicted value
or (2) a physical tag pointing to the instruction producing the value. When performing
memory renaming, a load producing a predicted tag from the Value File will be split into
two separate instructions { spec-move and the original load. Both of these instructions
will have the same register mapping and same physical register destination. The spec-move
will be hooked up to the the instruction producing the value, and acts as a register move.
The spec-move is only used when a load is predicting a value communicated by a store,
and the instruction producing the input to the store has not yet completed execution. The
spec-move is not used when the load predicts a value from the Value File. The value or
physical tag for the spec-move is stored in the result register for the load instruction after
the prediction is produced from the Value File.

The register �le is modi�ed to contain a speculative bit (spec bit) and a value bit. The
spec bit indicates if the register �le entry contains a real value or a speculative value/tag.
The value bit is used to indicate if the speculative data stored in the register is either a
speculative value or a physical tag to the spec-move. In addition, we modi�ed the reservation
station to contain the spec bit and value bit, to indicate the type of value stored for both
input operands in the reservation station.
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Consider an instruction Y, dependent upon a load Z, dispatched to a reservation station.
If the load instruction has completed, then no speculation will need to occur. If the load
has not completed and it has been predicted, the load destination register's spec bit will
be true and instruction Y will read the speculative value or tag from the register �le. If a
physical tag to instruction X is read from the register �le, then instruction X will be the
spec-move, which will produce the speculative value for the load. In addition to this, the
reservation station still holds a pointer to the original load instruction Z that is producing
the real value for instruction Y for the given operand. If the spec-move X completes before
load Z, then Y's reservation station will have the speculative value stored as one of its
input operands and the value-bit will be changed from tag to value. If at any time the load
Z �nishes executing before instruction Y starts executing, then the load will update the
correct operand value for instruction Y, the spec bit will be set to false, and the ready bit
for that operand will be set to true.

When deciding which instruction to execute next for a functional unit, the reservation
stations are �rst searched for instructions with ready, non-speculative operands. If no
ready instructions can be found, the architecture will choose to predict instructions whose
remaining operands have their value bit set to value. Note that in this architecture, a
predicted load instruction only causes a misprediction penalty if a dependent instruction
actually used the predicted value. If a dependent instruction does not use the predicted
value, then there is no mispeculation penalty.

Figure 13 shows the bene�t of memory renaming on our prior code example described in
section 2.2. Using dependence prediction can correctly communicate the dependence from
ST2 to LD4, which results in a spec-move added to the instruction stream to move the
predicted value produced by the multiply into the destination register for LD4. The divide
will then see this speculative value broadcast over the results bus and use it to speculatively
execute while LD4 is performing its memory lookup. In addition, the value stored by ST0
is communicated via the value table to LD5 resulting in a value prediction consumed by
the ADD.

7.3 Performance of Memory Renaming

Table 9 shows the speedup results for the memory renaming architecture, and memory
renaming with perfect con�dence prediction. The �rst four columns show the percent
speedup for squash over the baseline IPC, the percent of loads producing predictions for
squash, the misprediction rate for squash, and the percent of load data cache misses correctly
predicted using memory renaming. The next two columns show the speedup for reexecution
and the percent of data cache misses correctly predicted using renaming. The �nal three
columns show the speedup, load coverage, and data cache misses correctly predicted for
perfect con�dence.

One interesting performance aspect we saw occur occasionally with renaming is that
sometimes an incorrect store dependence is predicted for a load instruction, but the value
communicated from the store to the load was correct. In this case, a misprediction will
not happen, since the real result value of the load is compared to the predicted value to
determine a misprediction.
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Figure 13: The bene�ts of memory renaming. Memory renaming can correctly communi-
cate the result value of the multiply to the divide as a value prediction, and
provide a prediction from ST0 to the add via the value table.

Memory Renaming
Squash Reexecute Perfect

Program % Speedup % lds % MR % DL1 % Speedup % DL1 % Speedup % lds % DL1

compress 9.3 39.0 0.0 0.1 9.6 0.4 11.0 46.6 1.6
gcc 3.0 18.1 0.9 4.6 8.1 18.2 12.6 41.8 26.3
go 3.8 15.6 0.9 2.2 9.5 14.4 18.0 38.7 23.4
ijpeg 1.3 14.2 0.7 0.0 2.6 48.0 4.9 39.9 48.5
li 4.7 29.1 0.4 35.0 10.5 44.8 12.8 43.6 51.5
m88ksim 5.6 37.5 0.6 0.6 10.6 56.0 11.7 61.1 64.7
perl 13.6 41.4 0.1 0.8 15.1 17.5 20.3 53.4 27.8
vortex 9.6 34.6 0.1 28.1 10.7 29.6 14.0 46.6 31.8
C average 6.3 28.7 0.5 8.9 9.6 28.6 13.2 46.5 34.4

su2cor 5.2 45.2 0.1 51.1 4.9 51.5 5.1 46.3 52.5
tomcatv -0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.3 1.0
F average 2.6 22.6 0.1 25.6 2.5 25.8 2.6 23.3 26.7

Table 9: IPC Speedup and Prediction statistics for original rename predictor and merging
rename predictor for Squash and Reexecution recovery.
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Figure 14: Structure of the Load-Spec-Chooser. The boxes across the top represent in-
stances of the four basic types of load speculation predictors examined in this
paper. The boxes along the bottom represent the predictions of the Load-Spec-
Chooser.

Many of the renaming mispredictions arise from dependencies that are found to a store,
but an incorrect instance of that store is communicated to the load. This can happen with
loop carried dependencies as described in [30].

8. Interaction Between Load Speculators

In this section we examine the performance and interaction of combining all four types of
load speculation. To combine these four predictors we implemented a number of di�erent
choosers. All four predictors report their con�dence at predicting a particular load to the
chooser. The chooser then selects which of the predictions to follow according to a set of
heuristics. The chooser we found to perform the best, called the Load-Spec-Chooser, used
a �xed ordering among the di�erent predictors. In this section we examine the performance
of using all combinations of these 4 predictors using the Load-Spec-Chooser.

The Load-Spec-Chooser uses the following ordering to determine which speculation to
apply. Priority is given to (1) value prediction, then (2) memory renaming, and �nally to
(3) both dependence prediction and address prediction at the same time. We apply both
address and dependence prediction together (if the predictors choose to predict), since they
are used to speculate di�erent dependencies (address and alias) for the load.

For the Load-Spec-Chooser shown in Figure 14, each predictor performs its lookup in
parallel and returns a decision to predict or not. If the value predictor chooses to predict,
value prediction is used for the load. If not, and the memory rename predictor chooses
to predict, memory renaming is used. If neither value or rename prediction chooses to
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Figure 15: The advantage of check-load speculation. Part (b) shows the bene�t of com-
bining address prediction with dependence prediction. Part (c) shows the de-
pendencies removed by performing dependence and address prediction on a load
that has been value predicted.

predict, then either or both dependence and address prediction are used to speculate the
load depending upon their decision to predict.

We also provide results for a 2nd type of chooser called the Check-Load-Chooser. Dur-
ing value and rename prediction the normal load has to go through the baseline hardware
memory disambiguation before the load can issue. This can create a long misprediction
penalty for load value prediction and memory renaming. We call a load that has been value
or rename predicted a check-load. Since dependence and address prediction are very accu-
rate, these could potentially be used to speculate the check-load to decrease the value and
rename miss penalty. If the processor already has dependence and/or address prediction,
no major changes would be needed to allow check-load instructions to bene�t from this
prediction.

Check-load speculation can be bene�cial when the load dependence or address prediction
is correct and the value prediction is incorrect, since it decreases the miss penalty. If the
check-load prediction and the value prediction are correct, then there is no bene�t and
no harm caused by check-load prediction. If the check-load's address or dependency is
mispredicted and the wrong value is loaded this can cause the unfortunate e�ect of turning
a correct value or rename prediction into an incorrect prediction. Because of this, check-load
prediction should only be used if dependence and/or address prediction is very accurate.

Figure 15 shows the bene�t of using address prediction with dependence prediction, and
using check-load speculation with value prediction of our prior code example described in
section 2.2. Providing both dependence and address prediction allows LD5 to speculatively
issue right away. In (c), even if a predicted value is provided for the load, dependence and
address prediction can be used to process the check-load to sooner detect a mispredicted
value.
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Using (3,2,1,1) con�dence
Program d da vd rd vda rda rvd rvda other

compress 16.0 6.2 0.4 0.3 34.0 3.3 0.1 39.7 0.0
gcc 36.6 7.4 5.6 8.5 15.6 2.2 3.3 20.6 0.1
go 40.5 8.8 3.3 7.1 15.3 3.5 3.5 17.9 0.1
ijpeg 25.3 14.1 1.4 1.7 27.2 10.7 1.3 18.3 0.0
li 23.1 5.9 12.7 7.4 19.8 1.4 8.4 21.2 0.0
m88ksim 13.0 5.5 3.4 12.4 23.0 3.5 4.1 35.0 0.2
perl 14.2 5.9 1.1 8.8 29.6 2.7 4.2 33.5 0.0
vortex 21.8 4.4 5.9 14.4 26.9 2.1 5.0 19.4 0.0
C average 23.8 7.3 4.2 7.6 23.9 3.7 3.7 25.7 0.1

su2cor 9.9 35.2 0.1 0.3 8.8 3.0 0.3 42.4 0.0
tomcatv 0.7 56.9 0.1 0.0 42.3 0.0 0.0 0.0 0.0
F average 5.3 46.0 0.1 0.1 25.6 1.5 0.2 21.2 0.0

Table 10: Breakdown of correct predictions. R = Memory Renaming, D = Store Set Depen-
dence Prediction, A = Hybrid Address Prediction, V = Hybrid Value Prediction,
NP = loads that were not predicted by any of the predictors, Miss = all pre-
dictors mispredicted these loads, Other = the remaining contributions of loads
for the columns not shown. Each column represents the disjoint percentage of
loads that were correctly predicted by the combination of predictors in the col-
umn header. For example, the column labelled VD corresponds to the percent
of loads that were correctly predicted by both value and dependence prediction,
but not by either rename or address prediction. The \other" column contains
predictor combinations which were responsible for close to 0% of the load cov-
erage. For example, since almost all loads could be predicted with dependence
prediction, the "V", "A", and "D" columns were close to 0% and were combined
into the Other column, along with other combinations close to 0%.
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Data Cache Hits Data Cache Misses
Rename Value Address Rename Value Address

Program Cor Inc Cor Inc Cor Inc Cor Inc Cor Inc Cor Inc

compress 45.2 3.5 79.1 1.8 89.7 2.7 0.4 0.3 1.4 5.1 14.5 14.6
gcc 35.2 7.2 45.2 10.8 45.5 10.4 18.3 7.8 33.4 18.2 12.6 15.0
go 30.8 6.5 38.9 9.9 42.8 7.3 13.8 10.0 20.9 14.3 9.9 12.2
ijpeg 26.5 7.7 52.9 13.8 64.8 14.6 47.4 45.0 46.5 41.2 55.5 43.1
li 43.5 5.4 61.0 11.9 53.3 11.0 44.1 5.2 55.7 13.8 62.6 7.7
m88ksim 53.8 6.2 67.2 10.6 70.4 9.6 57.2 18.4 25.9 44.9 21.8 53.1
perl 45.9 4.4 65.8 8.7 72.2 4.4 9.9 9.7 10.1 26.3 6.3 21.6
vortex 38.0 5.1 58.7 9.5 56.9 8.7 30.0 0.8 21.3 15.1 1.9 3.0
C average 39.9 5.7 58.6 9.6 62.0 8.6 27.7 12.1 26.9 22.4 23.1 21.3

su2cor 25.8 0.2 32.0 2.5 98.3 1.1 51.7 0.3 56.0 0.7 97.8 1.5
tomcatv 0.0 0.0 60.0 4.2 99.4 0.6 0.0 0.5 16.5 8.5 98.4 1.6
F average 12.9 0.1 46.0 3.3 98.9 0.9 25.9 0.4 36.3 4.6 98.1 1.6

Table 11: Percent of correct and incorrect Rename, Value, Dependence, and Address pre-
dictions for Data Cache hits and misses.

Table 10 shows the contribution of di�erent predictor combinations. The numbers rep-
resent the percentage of executed loads that were correctly predicted by the combination of
predictors in the column header. For a given program all of the columns add up to represent
100% of the executed loads. To save space we do not show show the contribution columns
that were essentially all zero. Their contribution is instead accumulated in the last column
(Other) in the table.

In Figure 16, after combining value prediction with dependence and address prediction,
little performance improvement is seen by adding in memory renaming. One reason for this
can be seen in Table 10, which shows that value prediction correctly predicts 27.7% of the
loads, which memory renaming either mispredicts or chooses not to predict. In contrast,
memory renaming only predicts 9.3% of the loads, which value prediction does not predict.

8.2 Interaction with Data Cache

An interesting statistic for all these techniques, that has not been reported in prior research,
is the interaction of Data Cache hits and misses with load speculation. Table 11 shows the
breakdown of percent correct and incorrect predictions for each type of predictor for data
cache hits and misses. The best program performance would be expected for the predictors
that were able to correctly predict the most loads that resulted in data cache misses. The
results show that address, value and rename prediction can be very accurate for loads that
are stalled due to data cache misses for some programs.

9. Space and Performance Tradeo�s

Finally, we provide space/performance analysis for the predictors we examined in our study.
Figure 17 shows the average performance of the four predictors we examined for a variety
of predictor sizes. The size in bytes includes the bits needed to hold both the tags and the
data for the predictors.
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Figure 17: Analysis of the tradeo�s between performance and hardware cost for di�erent
predictor sizes. The x-axis shows the size of the various predictor structures used
in bytes and the y-axis shows the average percent speedup in IPC over the base
con�guration for all benchmarks that we examined. Six di�erent predictors
are shown: dependence prediction using store sets, rename prediction, value
prediction with a stride predictor, value prediction with a hybrid predictor,
address prediction with a stride predictor, and address prediction with a hybrid
predictor. Each predictor is shown for a variety of di�erent sizes (connected with
solid lines). Graph points with asterisks mark the size of the predictor used in
the remainder of the study. For example, the �nal point on the hybrid value
predictor curve is marked, as it corresponds to the predictor size used in our
study.
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The circular data points represent di�erent sizes of stride (hollow circle) and hybrid
(solid circle) value predictors. The �rst solid circle corresponds to a hybrid value predictor
with a 256 entry stride value predictor and a context value predictor with a 256 entry VHT
and 1K entry VPT. The �rst hollow circle corresponds to a 1K entry stride value predictor.
These two structures are roughly the same size, but the larger stride value predictor is
able to achieve better performance. However as the �nal set of circular points show, a
16K entry stride predictor is clearly outperformed by a hybrid predictor of roughly the
same size (4K stride, 4K VHT, 16K VPT). We conclude that a small stride predictor is
able to achieve reasonable performance gains, but that a hybrid predictor can ultimately
outperform a stride predictor given a greater hardware budget. In this graph, this transition
occurs around the third set of circular data points (a 4K entry stride predictor compared
to a hybrid predictor with a 1K entry stride, a 1K entry VHT, and a 4K entry VPT).

Similarly, the square data points represent di�erent sizes of stride (hollow square) and
hybrid (solid square) address predictors. The performance of the hybrid predictor eventually
exceeds that of a similarly sized stride predictor, but the disparity in performance is not as
great as we saw with value prediction.

Increasing the size of the rename or dependence predictors beyond the sizes we examined
in this study did not provide further improvement in IPC. However, it is interesting to note
that given a small predictor storage budget, a dependence predictor performs comparably
to a similarly sized stride value predictor. Moreover, a rename predictor performs similarly
to a comparably sized stride address predictor.

Figure 18 shows the performance for the di�erent predictors we examined for reexecution
recovery. Here we show the impact of combining predictors with choosers. The combination
of all four predictors (VRAD) performs a little better than just a combination of value and
dependence prediction, but requires over twice as much storage space. The V, A, R, and D

points on this graph correspond to the points on Figure 17 which have been marked with
asterisks.

10. Summary

As execution windows continue to grow and as load latencies increase, it becomes imperative
to provide aggressive load speculation to expose more instruction level parallelism. To this
end, a great deal of research has been invested in devising means to disambiguate stores
and loads, predict their addresses and values, and improve their communication.

In this paper, we provide a comparison of the interaction between Dependence Predic-
tion, Address Prediction, Value Prediction, and Memory Renaming. For Address and Value
prediction we examine four di�erent types of predictors { last value prediction, stride pre-
diction, context prediction, and a hybrid (choose between stride and context). For memory
renaming we examine the approach of Tyson and Austin [30] to communicate values. For
dependence prediction we examine Store Sets [14] as a technique to detect store aliasing.
We also examine choosers to combine these four types of prediction to increase performance.

These prediction techniques are used to eliminate stalls associated with loads, and will
be of bene�t if the stalls are removed from the critical path. Address prediction can be
used to reduce the average 5.9 cycle e�ective address latency shown in Table 2. Dependence
prediction can be used to eliminate the average 4.7 cycle alias disambiguation latency. When
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Figure 18: Analysis of the tradeo�s between performance and hardware cost for di�erent
predictor con�gurations. The x-axis shows the size of the various predictor struc-
tures used in bytes and the y-axis shows the percent speedup in IPC over the
base con�guration. Each point represents a particular load speculation con�g-
uration - R = memory renaming, D = store sets dependence prediction, A =
hybrid address prediction, V = hybrid value prediction. Combinations of pre-
dictors, mediated by the Load-Spec-Chooser are also shown (i.e. VR = hybrid
value prediction and rename prediction).
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a load is correctly value or memory rename predicted it can eliminate the latency from the
e�ective address, alias disambiguation, and the memory access (11.6 total cycles on average
as seen in Table 2) from load's data dependency path.

In summary, we made the following observations:

� Value prediction can provide the largest performance improvement out of any one
technique for both reexecution and squash recovery. Using just value prediction with
reexecution, we obtained a 21% speedup. Adding store set prediction to value pre-
diction increases speedup to 24%. Adding address prediction on top of this increases
speedup to 26% on average. Combining check-load prediction with this increased the
speedup to 28% on average.

� We found that 11.5% speedup can be achieved for squash recovery using value predic-
tion, and 10.5% using dependence prediction. A high con�dence counter was needed to
achieve this performance. When combined, they provide a 17% speedup. Check-load
prediction for squash recovery provided no performance gains, because the con�dence
threshold for value prediction was already very high in order to achieve speedups for
squash recovery.

� Value prediction provides larger speedups than renaming. In comparing the hit rates
of these two predictors, 27.7% of the time the value predictor hits and the rename pre-
dictor chooses not to predict or mispredicts. In comparison, rename correctly predicts
9.3% of the loads that the value predictor chooses not to predict or mispredicts.

� The di�erence in speedups for value and address prediction with squash recovery in
comparison to perfect con�dence prediction shows that there is still a lot of potential
for improvement. These results show that improving con�dence prediction and de-
signing predictors that intelligently select which instructions to speculate can achieve
signi�cant gains. This has led to another study where we improve value prediction
performance by intelligently selecting which instructions to value predict [8].

� In conducting this research, we experimented with updating the address, value, and
rename predictors speculatively and during the write-back stage. We found that there
is a de�nite performance advantage to updating the predictors speculatively rather
than waiting. We also examined the e�ect of using an oracle to update the con�dence
when the prediction is made. There are performance di�erences for some programs
between an oracle con�dence update and updating the con�dence once the outcome of
the prediction is known. It may take several cycles after the load is fetched before the
prediction is resolved and the con�dence counter can be updated, and this can lead
to a stale con�dence counter update. Future work entails quantifying these e�ects,
and examining techniques for speculatively updating the con�dence counters.

� We used the -fastfwd option in SimpleScalar/Alpha 3.0, to skip past the initializa-
tion phases of the programs examined. The load speculation speedups seen when
simulating just the start of the program compared to fast forwarding were very dif-
ferent. For example, tomcatv saw a 68% execution speedup using value prediction
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when simulating the initial part of the program, in comparison to 5.8% speedup af-
ter fast forwarding. In contrast, vortex saw an 11% execution speedup with value
prediction in the initial part of the program, but saw a 27% execution speedup after
fast forwarding. These results show that simulation studies need to fast forward past
the initialization stage of a program before gathering results. This led us to study the
time varying behavior of programs to �nd representative samples of the programs to
simulate [3].

This paper focused on the interaction of dependence prediction, address prediction,
value prediction, and memory renaming using table sizes large enough (sizes are given in
previous sections) to achieve good performance for each type of predictor.

Given the performance gains from dependence prediction and its small hardware needs,
dependence prediction should be added to future processor designs. In addition, store
sets should be included in future architecture simulation studies as the default memory
disambiguation architecture. Even the Wait bit independence predictor provided a 7%
speedup for squash recovery, by only associating a few bits with each cache line. Value
prediction and address prediction appear to be the next speculation techniques to evaluate
adding to a processor, because of their potential performance gains. Value prediction was
shown to provide larger gains in performance than address, but address prediction could
also be used to improve performance for data prefetching.
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