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Abstract

DRAM row-buffers have become a critical level of cache in the memory hierarchy

to exploit spatial locality in the cache miss stream. Row-buffer conflicts occur when

a sequence of requests on different pages goes to the same memory bank, causing

higher memory access latency than requests to the same row or to different banks.

In this study, we first show that the address mapping symmetry between the cache

and DRAM is the inherent source of row-buffer conflicts. Breaking the symmetry

to reduce the conflicts and to retain the spatial locality, we propose and evaluate a

permutation-based page interleaving scheme. We have also evaluated and compared

two representative cache mapping schemes that break the symmetry at the cache level.

We show that the proposed page interleaving scheme outperforms all other mapping

schemes based on its overall performance and on its implementation simplicity.

1 Introduction

Aiming at reducing the memory access latency, architects have built increasingly deep mem-

ory hierarchy to exploit data locality at multi-levels. Besides multi-level caches, the row-

buffers of multiple DRAM banks form another level of cache that can be used to exploit the

spatial locality in cache miss streams. Researchers have proposed cache mapping schemes

to reduce cache conflict misses (e.g. [1, 2, 3, 4]), and DRAM bank interleaving schemes to

reduce row-buffer conflicts (e.g. [5, 6]). Instead of focusing on a single level of the memory

hierarchy, we examine the inherent source causing conflicts at DRAM row buffers in existing

cache and memory mapping structure, and provide effective solutions to reduce the conflicts.

This study is built upon our previous work to reduce DRAM row-buffer conflicts [5].

Mathematically, the term of “symmetry” is described as invariance in results under a

group of transformations. A simple modular function is the most commonly used for memory

address mapping so that only bit selections can be used. For a given memory hierarchy, using

different portions of the memory address for cache mapping and DRAM bank interleaving are

considered as a group of transformations. We have shown that any L2 conflicting addresses

are also row-buffer conflicts under a weak constraint [5]. This finding indicates that address

mapping symmetry exists in the conventional address mapping structure that can propagate
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conflicts from a higher cache level to the lower levels in the memory hierarchy. In order

to break the address mapping symmetry, conventional transformations (cache mapping or

memory interleaving scheme) must be changed. The permutation-based page interleaving

scheme we proposed in [5] is such an example, which breaks the address mapping symmetry

at the DRAM level to reduce row-buffer conflicts. Conducting execution-driven simulations

with SPEC2000 benchmark, we provide following new findings and contributions in this

study:

• We show that the address mapping symmetry between the cache level and the DRAM

level is the architectural source of row-buffer conflicts. Breaking the mapping symmetry

can remove this source.

• Examining existing cache mapping schemes and their effects on reducing the conflicts

at DRAM row buffers, we show that breaking the address mapping symmetry at the

cache level is effective to reduce conflicts at both cache and DRAM row-buffer levels.

However, the reduction of average cache miss rates is insignificant, and the increase

of processor core complexity by this approach is nontrivial. The results in this study

show that our permutation-based page interleaving scheme has the lowest row buffer

miss rates and the best overall performance, while the increase of complexity by this

approach is trivial and is outside the processor core.

• We evaluate the effects of large cumulative DRAM row-buffer sizes on the effectiveness

of the permutation-based page interleaving scheme. We find that the scheme can still

be effective for large row-buffers, even when the cumulative row-buffer size is larger

than the L2 cache size.

The organization of the paper is as follows. We briefly overview the background of DRAM

technology in Section 2. We describe our performance evaluation methodology in Section 3.

In Section 4, we provide insights into the address mapping symmetry and show how the

conflicts is caused by the symmetry. We present the permutation-based page interleaving

scheme, and the performance results in Section 6. We evaluate the effectiveness of several

cache mapping schemes on reducing row-buffer conflicts, and discuss their merits and limits
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in Section 7. In Section 8, we investigate the case that the cumulative row buffer size is very

large. We discuss related work in Section 9, and conclude our study in Section 10.

2 DRAM Memory System Considerations

2.1 DRAM Access Steps

An access to DRAM may consist of three steps of operations: precharge, row access and

column access. A DRAM memory system consists of a number of DRAM banks. Every

DRAM access uses one of the banks that is determined by the DRAM address mapping.

During precharge, the bank is charged to prepare for the following row access. During row

access, a row of data (which is also called a page of data) containing the desired data is loaded

into the row buffer. During column access, the data is read from row buffer or written to

row buffer and DRAM core according to the column address.

Not all the operations are necessary for every access, depending on the state of the bank

and the data address to be accessed. A bank can be in active or idle state. A bank in active

state keeps the data in the row buffer valid. If the data to be accessed is in the row buffer,

only the column access is necessary (then the memory access is called a row buffer hit),

otherwise all three operations are required in the order of precharge, row access, and column

access (then the memory access is called a row buffer miss). A bank changes from active

state to idle state after a precharge. The data in the row buffer is lost when the precharge

starts. A bank in idle state does not keep the previously accessed data in the row buffer.

Row access and column access are required for any access to the bank. The bank returns to

the active state after the row access.

The page can be either open or closed after an access finishes. Both strategies have their

advantages and disadvantages. In the open-page strategy, if the next access to the same bank

goes to the same page, only column access is necessary1. However, if the next access is a

row-buffer miss, the DRAM precharge does not start until the request arrives. The close-

page strategy allows the precharge to begin immediately after the current access. Which

1One cycle is normally required for bus turn-around between read and write accesses.
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strategy is better depends on the access patterns of applications. If the row-buffer hit rate

is high, the open-page strategy should be more beneficial.

2.2 Concurrent Memory Accesses

Contemporary superscalar processors exploit the instruction-level parallelism (ILP) aggres-

sively by performing out-of-order executions, speculative executions, and non-blocking loads.

A superscalar processor may issue multiple memory requests simultaneously. Contemporary

memory systems can also serve multiple accesses in a pipelined style. In general, concurrent

memory accesses have one of the following three patterns:

1. Accesses to the same page in the same bank. These accesses fully exploit the spatial

locality at the row buffer and can be well pipelined. Precharge and row access are

needed to initiate the first access. Subsequent accesses only require column accesses.

2. Accesses to different pages in different banks. Since the accesses can be done in parallel,

the corresponding operations can also be well pipelined.

3. Accesses to different pages in the same bank. These accesses cause row-buffer conflicts.

Precharge and row access are needed to initiate each access. The operations cannot

be pipelined. Thus, the access patterns belonging to this category have much higher

latency than those belonging to the first two categories, and only partially utilize the

memory bandwidth.

In summary, row buffer conflicts affect the DRAM-level concurrency very negatively.

Reducing row buffer conflicts not only reduces latency but also improves effective DRAM

bandwidth.

2.3 Address Mapping Schemes

Almost all computer systems today use conventional interleaving schemes for both caches

and DRAM. Figure 1 shows the bit representations of a memory address for conventional
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cache-line and page interleaving, and gives the relationship between the cache-related rep-

resentation and the memory-related representation for given memory hierarchical configura-

tion. The memory system is characterized by a group of parameters in Table 1.

Parameter Parameter descriptions

m the length of the memory address in bits.

Cache-related Parameter descriptions

C the cache size in bytes.

S the number of sets in the cache.

N the number of blocks in a set.

B the block size in bytes.

s the length of the cache set index in bits. s = log S = log C/(BN).

b the length of the cache block offset in bits. b = log B.

t the length of the cache tag in bits. t = m − (s + b).

Memory-related Parameter descriptions

K the number of memory banks.

P the page size in bytes, which is also the size of the row buffer.

R the number of pages (rows) in a memory bank.

k the length of the memory bank index in bits. k = log K.

p the length of the page offset in bits. p = log P .

r the length of the page index in bits. r = log R = m − (k + p).

Table 1: Parameters of a memory system.

tag set index

t

block offset

s b

page index bank index

r

page offset

k p

cache-related 
representation

cache line 
inteleaving page index

r

page offset bank index

k

page offset

bp-b

page 
inteleaving

Figure 1: Bit representations of a memory address for both cache addressing and memory addressing with

conventional cache-line and page interleaving schemes.
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The cache-line interleaving scheme uses the k bits above the low order b bits (L2 block

offset) as the memory bank index. In the uniprocessor system, the processor usually requests

data from the memory in a unit of an L2 cache line. The cache-line interleaving scheme

attempts to access multiple memory banks uniformly (e.g. [7]). However, since continuous

cache lines are distributed in different memory banks, this scheme can not effectively exploit

the data locality in the row buffer.

The conventional page interleaving scheme uses the k bits above the low order p bits

(page offset) as the bank index. This balances between exploiting the data locality in row

buffer and referencing memory banks uniformly. However, it may cause severe row buffer

conflicts in some typical cases which we will discuss next.

The high order interleaving scheme uses the high order k bits as the bank index. This

exploits higher data locality than low order interleaving, but also makes accesses to multiple

banks less uniform. In addition, continuous accesses in DRAMs crossing the page boundary

will incur precharge and row access. Thus, there is no benefit to exploit spatial locality

beyond the page size.

3 Experimental Environment

We use SimpleScalar [8] 3.0b as the base simulation. We inserted simulations of MSHR [9],

DRAM, memory controller, contention bus, split bus transaction, and in-order memory

access scheduling to the original simulation. Bank contention, DRAM precharge, DRAM

refresh, and processor/bus synchronization are also considered in the simulation. We use

sim-outorder to configure an 8-way processor, to set the load/store queue size to 32, and

to set the register update unit size to 64 in the simulation. The processor allows up to 8

outstanding memory requests, and the memory controller has the ability to accept up to 8

concurrent memory requests. Reads are allowed to bypass writes. The outstanding writes

are scheduled to memory modules as soon as there are no outstanding reads. Table 2 gives

the major architectural parameters.

We use the SPEC2000 [10] as workloads, which are more memory-intensive than SPEC95.

There are thirteen programs with significant memory stall times (measured by the differences
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CPU Clock rate 1.6 GHz

L1 inst. cache 32 Kbytes, 2-way, 32-byte block

L1 data cache 32 Kbytes, 2-way, 32-byte block

L1 cache hit time 2 processor cycles

L2 cache 2 Mbytes, 2-way, 64-byte block

L2 cache hit time 10 processor cycles

memory bus width 32 bytes

memory bus frequency rate 133 MHz

number of memory banks 4∼256

row buffer size 1∼8 Kbytes, and 64 KBytes

DRAM precharge time 24 ns

DRAM row access time 24 ns

DRAM column access time 24 ns

L2 MSHR 8 entries

Write buffer 8 entries

Table 2: Architectural parameters of simulation

using two simulations, one with an infinite L2 cache and one with a 2-way 2-MByte L2

cache). We include all those programs in experiments, as shown in Table 3. We use the

precompiled SPEC2000 benchmarks provided by Weaver [11](ISA-Alpha). For all programs,

we fast-forward 4000M instructions and collect program execution statistics on the next

200M instructions (here 1M = 106).

4 Mapping Symmetry and Row Buffer Conflicts

We consider row buffer conflicts in the context of writeback caches with the conventional

cache address mapping and DRAM memory with the page-interleaving scheme. We define

that two addresses are cache-conflicting if they have the same cache index but different cache

tags. In other words, they are in different blocks that are mapped to the same cache set.

We define that two addresses are row-buffer-conflicting if they have the same bank index

but different page indices, i.e., they are in different pages of the same bank. We have the

following findings:
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Program Description

181.mcf Combinatorial Optimization

197.parser Word Processing

168.wupwise Physics / Quantum Chromodynamics

171.swim Shallow Water Modeling

172.mgrid Multi-grid Solver: 3D Potential Field

173.applu Parabolic / Elliptic Partial Differential Equations

178.galgel Computational Fluid Dynamics

179.art Image Recognition / Neural Networks

183.equake Seismic Wave Propagation Simulation

187.facerec image Processing: Face Recognition

188.ammp Computational Chemistry

189.lucas Number Theory / Primality Testing

301.apsi Meteorology: Pollutant Distribution

Table 3: Applications selected for experiment that have significant memory stall time. The program

181.mcf and 197.parser are integer programs. The others are floating point programs.

• Two cache-conflicting addresses are row-buffer-conflicting, provided the cache size di-

vided by the cache associativity is larger than or equal to the cumulative row buffer

size. We call this condition as large-cache condition.

Proof: When the large-cache condition holds, the bits for selecting the bank index is

a subset of the bits for selecting the cache set index, and the bits for selecting the page

index is a super set of the bits for selecting the cache tag, as shown in Figure 1. Two

cache-conflicting addresses have the same cache set index, thus they have the same

bank index. On the other hand, they must have different cache tags, so their page

indices are different. Therefore, they are row-buffer-conflicting.

• Assume the large-cache condition holds. For writeback caches, the block address of a

writeback is row-buffer-conflicting with the block address of the miss that causes the

replacement.

Proof: Writeback happens when a miss causes a replacement on dirty block. The

two block addresses must be mapped onto the same cache set, and thus are cache-
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conflicting. Thus, they are row-buffer-conflicting.

• Assume the large-cache condition holds. Cache conflict misses may possibly result in

row-buffer conflicts. We will use examples to explain this effect in Section 4.3.

Mapping symmetry refers to the fact that both cache and DRAM address mappings use

the simple interleaving scheme, and use many common bits for selecting the module to map

(cache set at cache level and bank at DRAM level). In particular, when the large-cache

condition holds, all bits for selecting DRAM bank are used in the bits for selecting cache set.

4.1 Large-cache Condition in Computer Systems

The large-cache condition is common in today’s computers. For a given cache and DRAM

chip configuration, there is a threshold of memory size under which the large-cache condition

will hold, and this threshold is generally large. For example, assume a computer has a 2MB

2-way associative L2 cache, and its memory system uses DRAM chips that have 8192 rows

(pages) per bank2. For those chips, the ratio of row buffer size to DRAM capacity is 1:8192.

In this example, the large-cache condition holds until the memory size increases beyond

8 GBytes. In practice, it is possible that the memory size is larger than the threshold.

However, row buffer conflicts can still be severe. We will discuss this in Section 8.

4.2 Effect of Cache Writebacks

The writeback policy is commonly used for L2 cache on reducing memory bandwidth de-

mand, which has been a crucial issue as the processor speed increases [12]. When a writeback

happens, as discussed above, the addresses of the related miss and writeback are row-buffer-

conflicting. For writeback and write-allocate cache, either a read miss or a write miss results

in a memory read request. The writeback results in a memory write request. Normally, pro-

grams have spatial locality. When a sequence of replacement on dirty cache blocks happens,

the read requests and the write requests conflict on the row-buffer. This causes frequent

row-buffer conflict misses while the pages with the read addresses and the write addresses

are replaced and retrieved back and forth.
2This is common for 256Mbit SDRAM chips commercially available.
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We will use the following example to show this effect:

double X[N], Y[N], sum = 0;

int i;

...

for (i = 0; i < N; i ++)

X[i] = i;

...

for (i = 0; i < N; i ++)

sum += Y[i];

We assume that the cache is direct-mapped, array X and array Y are mapped onto the

same cache sets, and array Y is not loaded into cache at the beginning of execution. At the

time array Y is accessed, a sequence of misses happens and each miss causes a writeback.

From DRAM point of view, a sequence of read requests and a sequence of write requests come

to different pages in the same bank during a short time frame when the bank is accessed. In

this worst case, each read or write results in a row buffer miss.

Write buffers can be used to reduce processor stalls waiting for memory writes [13, 14].

The write buffer can be implemented with read bypass (read misses have higher priority

than writes) or with no-bypass. The write buffer with no-bypass will not change the access

patterns causing row-buffer conflicts. The write buffer with read bypass can alleviate row

buffer conflicts by postponing the writebacks and grouping consecutive reads together. The

effectiveness of the write buffer depends not only on its size, but also on when the buffered

data are written to the memory. One write policy for reducing the row-buffer conflicts is

to write the buffered data to memory only when the number of pending writes reaches a

threshold. However, since writebacks are not issued immediately when the memory system is

free, the delayed writebacks may compete with subsequent reads and increase their latencies.

Another write policy is to write the buffered data to main memory whenever there are no

outstanding reads. However, the memory access patterns do not change so much in this case.

In Section 6.3, we will show with experiments that using write buffers may reduce row-buffer

miss rates but fails to reduce memory stall time.
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4.3 The Effect of Cache Conflict Misses

Some typical patterns of cache conflict misses will result in row buffer conflicts. For example,

double X[N];

...

double Y[N], sum, i;

...

for (i = 0; i < N; i ++)

sum += X[i] * Y[i];

Without losing generality, assume the cache is direct-mapped, the arrays are contiguous in

the physical memory space, and X[0] and Y [0] are mapped to the same cache block. Severe

cache conflict will happen and each access to X[i] or Y [i] will result in a cache miss. From

DRAM point of view, two sequences of read requests come to the same bank interleavingly

during a short time frame while the bank is accessed. Each read request will result in a row

buffer miss.

Cache conflicts may be reduced by increasing cache associativity, by using victim cache [15],

or using other hardware/software approaches. However, this does not alleviate the row-buffer

conflicts due to writeback. In those cases, cache conflict misses can be a secondary source of

row buffer conflicts.

5 A Permutation-based Page Interleaving

In order to address the problem of row-buffer conflicts caused by cache writebacks and cache

conflict misses, we introduce a new memory interleaving scheme which generates different

bank indices in a way that retains spatial locality and reduces row-buffer conflicts.

5.1 The Scheme and its Properties

Our memory interleaving scheme, called permutation-based page interleaving, is shown in

Figure 2. The low order k bits of the L2 tag and the original bank index are used as the

input to a k-bit bitwise XOR logic to generate the new bank index. The page index and the
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page offset are unchanged. The selection of k bits from the bank index under the conventional

page interleaving scheme keeps the same degree of data locality, while the selection of k bits

from the L2 tag attempts to make a wide distribution of pages among banks for exploiting

concurrency. Other design choices could be used with the same mapping principle. We will

discuss these later.

bank index page offset

r

t

k p

k

XOR

k
k

k

page offsetpage index
new  

bank index

Figure 2: The permutation-based page interleaving scheme

Let 〈am−1am−2 · · · a0〉 be the binary representation of a memory address A. Then the

bank index under the conventional page interleaving, I, is 〈ak+p−1 · · · ap〉. The new bank

index after applying the permutation-based page interleaving scheme, I ′, is

a′

i = ai ⊕ am−t+i−p for i = p, . . . , k + p − 1 (5.1)

This interleaving scheme has the following properties, which are useful in achieving the

objectives of exploiting both the concurrency and the data locality:

1. Cache-conflicting addresses are distributed onto different banks.

Given any two cache-conflicting addresses, their bank indices in conventional page

interleaving are identical, but their t-bit L2 tags are different. As long as the low order

k bits of the two tags are different, the k-bit XOR function will produce two different

bank indices. Figure 3 shows an example of mapping four L2-conflict addresses onto

16 banks. All the four addresses are mapped onto the same bank in conventional page

interleaving. After applying the permutation-based page interleaving scheme, they are

distributed onto four different banks.
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Figure 3: An example of mapping four memory addresses with the conventional page interleaving and the

permutation-based page interleaving schemes. Only the k-bit bank index and the low order k-bit of L2 tag

are shown for each address.
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Figure 4: An example of mapping continuous pages onto four memory banks under the conventional and

the permutation-based page interleaving schemes, where L is the number of pages the L2 cache can hold.

2. The spatial locality of memory references is preserved.

All addresses in the same page are still in the same page after applying our interleaving

scheme.

3. Pages are uniformly mapped onto multiple memory banks.

The permutation-based page interleaving scheme still uniformly maps continuous pages

onto multiple memory banks, since the conventional bank index information is used in

the mapping. Figure 4 gives an example to show that continuous pages are uniformly
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mapped onto four memory banks by both the conventional and the permutation-based

page interleaving schemes.

One would think that spatial locality of memory references could be maintained and page

conflicts could be reduced by using only the low order k bits of the L2 tag as the bank index,

thus avoiding the XOR operation. The limit of this approach is that it maps a large fraction

of the memory space (of the L2 cache size) onto the same bank. This would create hot spots

on some memory banks and introduce a new source of page conflicts.

There are several alternatives to the selection of k bits among the t-bit L2 tag. Since

programs have data locality, it is more likely that higher order bits of L2-conflict addresses are

the same. Our experiments show that choosing the low order k bits achieves or approaches

the lowest row-buffer miss rate for all the benchmark programs used.

We will later show in the paper that the risk for the XOR operation to cause more row-

buffer conflicts is very small in practice. A major reason for this is discussed as follows. The

memory space can be divided into segments in the unit of the cache size. The XOR operation

uses the same k-bit L2 tag for the addresses in each segment. Thus, it does not change the

conflicting relationship between any pair of addresses in each segment, which is defined as

whether the pair is mapped onto the same row-buffer or not. Our analysis also shows that

the XOR operation may increase the chance of conflicts only for addresses in some specific

segment boundaries. Since the cache size is sufficiently large in current computer systems,

these addresses form a very small subset in the entire memory address space.

The mapping function of a memory interleaving scheme must satisfy the one-to-one prop-

erty [16]. For a given memory address A, we can obtain its memory location A′ using the

permutation-based interleaving scheme by computing its bank index I ′ using equation (5.1).

Conversely, for a given memory location A′, we can obtain its address A by computing

〈ak+p−1...ap〉 as a′

i ⊕ a′

m−t+i−p for i = p, . . . , k + p− 1. When the large-cache condition holds,

(s + b) > (k + p). Thus, for i = p, . . . , k + p − 1,

a′

i ⊕ a′

m−t+i−p = (ai ⊕ am−t+i−p) ⊕ am−t+i−p = ai. (5.2)

Therefore, the permutation-based mapping function has the one-to-one property.
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5.2 Comparisons with the Swapping Scheme

The swapping scheme is another interleaving scheme that is proposed to reduce the row

buffer conflicts. Zurawski, Murray, and Lemmon [17] present the scheme that swaps partial

bits of the L2 tag and partial bits of the page offset, which is used in the AlphaStation 600

5-series workstations. We call it the swapping scheme in this paper. Wong and Baer [18]

study the performance of the swapping scheme for selected SPEC92 benchmark programs

by finding the optimal number of bits to be swapped for these programs.

Figure 5 describes the swapping scheme. This scheme maps every 2n L2 conflict addresses

(with the same 〈ap−1 . . . ap−n〉) to the same page. Thus, if two L2 conflict misses have the

same high order n bits in their page offsets, they will cause page hits. However, if two L2

conflict misses have different high order n bits in their page offsets, they will still cause page

conflicts. In addition, the swapping scheme may degrade the spatial locality of memory

references because the block size of continuous addresses inside a page is decreased from 2p

to 2p−n. The more bits that are swapped using this method, the more conflict misses can be

removed, but the less spatial locality is retained. In contrast, the permutation-based scheme

reduces page conflicts and preserves data locality at the same time.

bank index

page offset

r

t

k p

n

bank index

page offset

page index n

page index

n

Figure 5: The swapping scheme

The swapping scheme attempts to convert accesses to different pages in the same bank

into accesses to the same page. The permutation-based scheme attempts to convert accesses

to different pages in the same bank into accesses to different banks. The permutation-based

scheme not only reduces the row-buffer conflicts of current accesses, but also potentially

increases the row-buffer hit rates for subsequent accesses.
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6 Performance Evaluation of Permutation-based Page

Interleaving Scheme

In this section, we evaluate the permutation-based page interleaving scheme by comparing

it with three other interleaving schemes: the cache-line interleaving, the page interleaving,

and the swapping.

6.1 Reductions of Row-buffer Miss Rates

Figure 6 shows the row buffer miss rates of SPEC2000 programs with the four interleaving

schemes: the cache-line interleaving (cacheline), the page interleaving (page), the swapping

interleaving (swap), and our permutation-based page interleaving (page-xor) schemes. The

memory system contains 32 memory banks. The row-buffer size of each bank is 2KB. We

use sim-outorder in the Simplescalar toolset to collect the row buffer miss rate.

We have following observations:

• All programs using cache-line interleaving have the highest row buffer miss rates com-

pared with the other three interleaving schemes. The average miss rate is 88.7%. Since

the cache-line interleaving is normally associated with the close-page mode, its high

row-buffer miss rates do not necessarily mean poor overall performance. The other

schemes are used with the open-page mode, where the high miss rates do mean poor

performance.

• All programs using page interleaving have lower miss rates than those using cache-

line interleaving. However, the miss rates are still very high. The average miss rate

(arithmetic mean) is 58.6%. Only one program has a miss rate less than 30.0%.

• The swapping scheme may reduce the row-buffer miss rates for some programs but

increase the miss rates for others. The average miss rate is 66.3%, higher than that of

the page interleaving scheme. The swapping scheme could make programs exploit less

locality than page interleaving, as we have discussed in Section 5.
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Figure 6: Row buffer miss rates for different interleaving schemes when the number of banks is 32, and

the row buffer size is 2KB. The cacheline represents cache-line interleaving, the page represents conventional

page interleaving, the swap represents the swap scheme, and the page-xor represents the permutation-based

page interleaving.

• For almost all programs, our permutation-based interleaving scheme obtains the lowest

row-buffer miss rates compared with the other three interleaving schemes. The only

exception is 178.galgel whose miss rate is slightly higher than that using the swapping

scheme. The average miss rate is 26.8%. Six programs have miss rates less than 15.0%.

6.2 Effects of Memory Organization Variations

Changing the number of memory banks and the row-buffer size of each memory bank, we have

evaluated the effects of memory system organization variations on the interleaving schemes

and on memory performance. Due to the space limit, we only present the performance of

selected programs 171.swim and 173.applu, which is memory intensive and well representative
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for the group of workloads. Figure 7 shows the row-buffer miss rates of the program using

the four interleaving schemes as the number of banks varies from 4 to 256 and the row-buffer

size varies from 1 KBytes to 8 KBytes.
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Figure 7: Row buffer miss rates of program 171.swim and 173.applu using the conventional page interleaving

scheme (without ”-xor”) and the permutation-based page interleaving (with ”-xor”). The left figure shows

the effect of changing the number of bank from 4 to 256 with a fixed 2-KByte row buffer size. The right

figure shows the effect of changing the row buffer size from 1-KBytes to 8-KBytes with fixed 32 banks.

For each memory system variation, our experiments show that the permutation-based

page interleaving scheme reduces the row-buffer miss rate effectively. Furthermore, the

permutation-based scheme reduces row-buffer miss rate more closely proportional to the in-

crease in the number of memory banks or the row buffer size than the conventional page

interleaving schemes. The reason behind this fact is that the permutation-based bank in-

dex generation can widely distribute the conflicted pages among the memory banks. The

larger the number of memory banks, the more effective of the permutation-based bank index

generation.

6.3 Effects of Write Buffers

For the thirteen programs, the ratios of the number of memory writes to the number of

memory reads range from 0.10 to 0.76. Using SPEC2000 programs 172.mgrid as an example,



19

we show the effects of write buffer3 with different write policies on the row-buffer miss rates.

The performance of the other workloads is similar. We have compared the following two write

policies: write after reaching threshold (writes are issued together only when the number of

writes reaches a threshold), and write when memory is idle (writes are scheduled to memory

banks whenever there are no outstanding reads). The later one is what we have used through

all other experiments.

Although workloads scheduled by the write after reaching threshold policy normally get

lower row-buffer miss rates than those scheduled by the policy of write when memory is

idle, the write after reaching threshold policy may cause higher total execution time due

to longer memory stall time. For example, our experiments show that program 172.mgrid

scheduled by the write after reaching the threshold policy has a 23% row-buffer miss rate

with page interleaving scheme, compared with a 56% row-buffer miss rate using the policy of

write when memory is idle, however, the CPI is increased from 0.68 to 0.92. This is because

buffered write requests will stall read requests when those requests are issued together, and

in turn they stall the processor. For this reason, the policy of write when memory is idle is

used for comparing the overall performance of different interleaving schemes in our study.

A major function of the write buffer is to allow memory reads bypass memory writes

so that write requests will not stall the processor. To improve the bus utilization, write

requests should be issued as long as the bus is idle and there is no pending read. To avoid

row buffer conflicts, however, write requests should be held until no future reads will access

the same pages. To design a scheduling policy to meet the two conflicting goals is difficult,

and may significantly increase the size requirement for the write buffer. In contrast, using

our interleaving scheme to avoid such conflicts is much simpler.

6.4 Overall Performance Improvement

Figure 8 gives the CPI of twelve SPEC2000 programs (excluding 181.mcf) using the four

schemes. We exclude 181.mcf because its CPI values are much higher than other programs

which would distort other bars. The close-page mode is used for cache line interleaving,

while the open-page mode is used for the other three schemes. We also show the CPI of

3This write buffer is located between the L2 cache and the main memory and is used to hold writebacks.
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a base system, which is a system with an infinitely large L2 cache to eliminate all main

memory accesses. The CPI of the base system provides a lower bound for any performance

improvement on DRAM memory systems. We use CPI instead of IPC so as to show how

much the permutation-based mapping reduces the memory stall time, which is represented

by the difference between the CPI of the base scheme and those of other schemes. We will

use the harmonic means of IPC to compare the average performance.
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Figure 8: CPI of the twelve SPEC2000 programs using the four interleaving schemes. The number of

memory banks is 32, and the row buffer size is 2KB.

Among the three mapping schemes except our permutation-based page interleaving, the

average performance of cache-line interleaving is better than the other two. This is because

it uses the close-page mode, and because the row buffer miss rates for the other two schemes

are very high. The permutation-based page interleaving is better than the cache-line inter-

leaving on all programs except 181.mcf, which is not shown in Figure 8. The CPI values of

181.mcf are 7.3 and 7.0 for the permutation-based mapping and the cache-line interleaving,
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respectively. This program is bandwidth-bounded. Except 181.mcf, the permutation-based

scheme outperforms all other schemes on all programs. The harmonic mean of IPC for the

cache-line interleaving, the page interleaving, the swap scheme, and the permutation-based

interleaving are 0.70, 0.61, 0.57, 0.77, respectively (including 181.mcf). Using this metric,

the average improvement of the permutation-based scheme over the cache-line scheme is

11%.

7 Breaking Mapping Symmetry at Cache Level

Researchers have studied cache mapping schemes to reduce cache conflict misses. Two repre-

sentative schemes are bitwise-XOR [2] and polynomial mapping [19, 2, 3]. Those cache map-

ping schemes also break the address mapping symmetry but at the cache level. Thus, they

may also reduce the row buffer conflicts. For this purpose, the effectiveness of those schemes

is determined by how successfully they reduce the possibility that two cache-conflicting ad-

dresses are row-buffer-conflicting.

In this section, we examine cache mapping schemes aiming at reducing row buffer miss

rates, and discuss the tradeoffs between using cache mapping schemes and using DRAM

interleaving schemes.

7.1 Bitwise-XOR and Polynomial Mapping

In the bitwise-XOR scheme, the least significant s bits of the tag are XORed with s set

index bits to form the new cache set index, where s is the number of bits in cache set index.

The polynomial mapping scheme [19] uses equation R(x) = A(x) mod P (x) to map a given

address onto a module (here a cache set), where R(x), A(x), P (x) are polynomials over

Galois Field GF(2). In the equation, A(x) is the polynomial associated with the address

to be mapped, R(x) is the polynomial associated with the cache set index, and P (x) is an

irreducible polynomial of order s. The polynomial mapping is effective in avoiding conflicts

for strided access patterns. It has been proven that any sub-sequence of length M within

strides of form 2k will be evenly mapped onto M module, which k is a positive integer. The

bitwise-XOR scheme can be implemented using single-level XOR gates with two inputs. The
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polynomial mapping can be implemented using single-level XOR gates with multiple inputs.

7.2 Reduction of Miss Rates

We first compare the cache miss rates of the two cache mapping schemes with the conven-

tional cache mapping. We use those schemes only for L2 caches but not for L1 caches. For

the polynomial mapping, we choose arbitrarily the polynomial P (x) associated with prime

number 1572821. Table 4 shows the L2 cache miss rates for the thirteen SPEC2000 pro-

grams. The cache-xor2 represents a revised bitwise-XOR that we will discuss soon in this

section.

The miss rates of the two cache mapping schemes are almost identical with the conven-

tional mapping schemes except for program 178.galgel, 179.art, 188.ammp, and 189.lucas.

For 178.galgel, the polynomial mapping scheme reduces the cache miss rate dramatically,

but the bitwise-XOR does not. For 179.art, both schemes increase the cache miss rates by

almost two times. For 188.ammp, both schemes reduce the miss rates and the bitwise-XOR

does better. For 189.lucas, the bitwise-XOR increases the miss rate by almost 35%, but the

polynomial mapping reduces the miss rate by more than 20%. On average, the polynomial

mapping reduces the miss rate from 23.5% to 22.0%, and the bitwise-XOR increases the miss

rate to 25.0%. The increase or decrease of the average miss rate is not significant, which

confirms the previous studies.

We show the row-buffer miss rates of the two cache mapping schemes in Figure 9. We

also include the row-buffer miss rates of the permutation-based DRAM page interleaving for

comparison, where the conventional cache mapping is used. The bitwise-XOR scheme has

the highest row buffer miss rates for all programs. If we compare it with the conventional

DRAM mapping (in Figure 6), we will find this scheme only moderately reduces the row

buffer miss rate. The row buffer miss rates using the polynomial mapping are close to those

of the permutation-based DRAM page interleaving. However, the later one is still better

for all applications. The average row buffer miss rates are 47.6%, 34.4%, and 26.8% for the

bitwise-XOR cache mapping, the polynomial cache mapping, and the permutation-based

DRAM mapping, respectively.

Here is our explanation on why the bitwise-XOR scheme results in high row buffer miss
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Programs Default Cache-xor Cache-poly Cache-xor2

mcf 44.1% 43.2% 44.1% 44.0%

parser 8.4% 8.5% 8.6% 8.4%

wupwise 39.7% 39.7% 39.8% 39.7%

swim 27.9% 27.9% 28.0% 27.9%

mgrid 22.8% 22.8% 22.9% 22.8%

applu 37.2% 37.2% 37.1% 37.2%

galgel 18.2% 18.3% 1.7% 1.4%

art 3.2% 11.8% 11.5% 12.0%

equake 10.6% 10.6% 10.8% 10.6%

facerec 22.7% 22.3% 23.0% 22.8%

ammp 6.5% 2.9% 3.9% 7.0%

lucas 43.5% 58.6% 33.3% 33.3%

apsi 21.2% 21.2% 21.2% 21.2%

Average 23.5% 24.0% 22.0% 22.2%

Table 4: L2 cache miss rates for the conventional cache mapping (default), the bitwise-XOR (cache-xor),

the polynomial mapping (cache-poly), and the revised bitwise-XOR (cache-xor2).

rates. In this scheme, the k tag bits that are XORed with the k bank index bits are not the

least significant k bits in the tag. In the program memory space, cache-conflicting addresses

that differ only in the least significant k bits have a shorter distance than other cache-

conflicting addresses. Thus, because of program locality, the least significant k bits change

more frequently than other bits in the access stream generated by a program. Under this

scheme, the least significant k bits are XORed with bits for selecting DRAM page offset,

and the k bits XORed with the bank index changes less frequently. Consequently, from the

DRAM point of view, two cache-conflicting addresses appearing within a short time frame

are likely to have the same bank index, causing them conflicts at the row buffer.

To confirm this, we switch the two portions of the tag bits such that the least significant

k bits are XORed with the bits for selecting the bank index. This revised bitwise-XOR is

labeled as cache-xor2. The new scheme significantly reduces the row buffer miss rates, and is

slightly better than polynomial cache mapping. The average row buffer miss rate is 30.0%.

The cache miss rates of this scheme are also shown in Table 4.
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Figure 9: Row-buffer miss rates for the permutation-based mapping (page-xor), the bitwise-XOR mapping

(cache-xor), the polynomial mapping (cache-poly), and the revised bitwise-XOR (cache-xor2).

7.3 Comparisons of Overall Performance

Figure 10 shows the CPI of the programs (again 181.mcf is excluded). For the cache mapping

schemes, we do not consider in the simulation the possible delay of critical path by using the

mapping. The bitwise-XOR cache mapping has the worst performance for most programs

because of the severe row buffer conflicts and the slightly higher average cache miss rate

compared with other schemes. Its performance for 189.lucas is extremely worse than the

other schemes because the other schemes have both lower cache miss rate and lower row

buffer miss rate. The permutation-based DRAM mapping has the best performance for

most programs because it has the lowest row buffer miss rates. It is much better than the

others for 179.art because the other three schemes increase the cache miss rate. However, it is

worse than the polynomial mapping and the revised bitwise-XOR for 178.galgel because the
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Figure 10: CPI of twelve SPEC2000 programs using the permutation-based DRAM mapping (page-xor)),

the bitwise-XOR cache mapping (cache-xor), the polynomial cache mapping (cache-poly), and the revised

bitwise-XOR cache mapping (cache-xor2).

two cache mapping schemes reduce the cache miss rate dramatically. When being successful

in reducing cache miss rates, the polynomial cache mapping and the revised bitwise-XOR

cache mapping perform better than the permutation-based DRAM mapping. Otherwise,

the permutation-based DRAM mapping performs slightly better than the revised bitwise-

XOR cache mapping, and the later one performs slightly better than the polynomial cache

mapping, because of the difference in row buffer miss rates.

The harmonic means of IPC are 0.77, 0.60, 0,74, and 0.75 for the permutation-based

DRAM mapping, the bitwise-XOR cache mapping, the polynomial cache mapping, and the

revised bitwise-XOR cache mapping, respectively. The result indicates that the advantage of

the permutation-based DRAM mapping on reducing the row buffer miss rate is so effective

that its disadvantage of no consideration of cache miss reduction becomes insignificant.
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7.4 Tradeoffs between Cache Mapping Schemes and DRAM In-

terleaving Schemes

As discussed in the previous subsection, using different cache mapping schemes (for exam-

ple, the polynomial one or the revised bitwise-XOR) may significantly reduce the row buffer

miss rate. However, our performance results have shown that the average performance im-

provement from reducing cache conflict misses is insignificant. Compared with conventional

cache mapping and DRAM interleaving, almost the entire overall performance gain comes

from the reduction of row buffer conflict misses. Nevertheless, using a polynomial cache

mapping scheme may have the advantage of good predictability of cache behavior [3]. If the

predictability of cache behavior is important, cache mapping schemes like the polynomial

mapping are attractive because they can reduce conflicts at both cache and row buffer levels.

However, the implementations of these cache mapping schemes are nontrivial [3]. They

should not increase the delay in the critical path. When multiple-level caches maintain

the property of inclusion, i.e., the data cached at a higher level must be cached at the

lower level, it is necessary to enforce explicit invalidation in the higher level cache when a

cache block in the lower level cache is replaced. Although those issues are addressable, the

solutions do increase the complexity of the processor core. In comparison, the permutation-

based page interleaving scheme does not have such implementation concerns, and the logic

is implemented outside the processor core. In short, the scheme is much more cost-effective

by considering both the significant performance gain and its simplicity.

8 Considerations of Large Cumulative Row Buffer Sizes

All of our analyses on row buffer conflicts so far have been based on the large-cache condition,

which is normally realistic. However, if the memory size is very large, the cumulative row

buffer size may be larger than the cache size divided by the cache associativity. In this

section, we examine a memory size threshold for the large-cache condition to hold, and

investigate how the increase of memory size beyond the threshold will affect the effectiveness

of the permutation-based scheme.

Assume W is the value of the cache size divided by the cache associativity. In a DRAM
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memory system, the ratio of DRAM capacity to the row buffer size is usually a constant R

for all DRAM chips. Thus, the ratio of the memory size, m, to the row buffer size is R. The

product of W and R, denote as M , is a threshold for m. The large-cache condition holds

when and only when m ≤ M . R is large in practice, for example, 8192 for today’s 256Mbit

SDRAM chips. In other words, the threshold M is 8 GBytes with a 2-way set associative,

2-MByte L2 cache and a DRAM system with such chips.

When m > M , we are specially interested in the cases that m is a small multiple of

M , for example, 2M , 4M , or 8M , for practical reason. As m increases, eventually the

row buffer miss rate will be close to zero even under the conventional DRAM mapping.

However, this requires a very large memory size. The advantage of the permutation-based

scheme is still obvious when m/M is small. Under the conventional DRAM mapping, any

two cache-conflicting addresses can now be distributed to m/M row buffers instead of one

row buffer (assume m/M is less than the number of row buffers). Thus, the increase of

m/M will reduce the row buffer miss rate. However, the permutation-based scheme can

distribute those addresses onto all row buffers, whose number can be much larger than m/M

in practice.

When m > M , the tag bits and the k bits of bank index are partially overlapped. We

slightly change the permutation-based scheme as follows: instead of using the least significant

k bits in the tag for XORing, we use the least significant k bits in the tag portion that are

not overlapped with the bank index. This is necessary to guarantee the correctness of the

scheme because XORing overlapping bits will make the scheme lose the one-to-one property.

Figure 11 shows the row buffer miss rates for all the thirteen programs for different

numbers of banks and a fixed row buffer size, each with the conventional page interleaving

and with the permutation-based page interleaving. The number of banks is 32, 64, or 128,

and the row buffer size is 64KB. The W here is 1MB, and the cumulative row buffer size is

2, 4, and 8 times of W , respectively. With r = 8192, the memory size threshold M is 16

GBytes, 32 GBytes, and 64 GBytes respectively. With the conventional page interleaving,

the average row-buffer miss rates are 30.0%, 14.1%, and 17.1%, respectively. With the

permutation-based page interleaving, the average row-buffer miss rates are 14.5%, 8.1%,

and 5.1%, respectively. In summary, using the permutation-based page interleaving is still
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effective to improve the application performance even when the memory size is beyond the

threshold.

Using memory access scheduling techniques to exploit row-buffer locality and concurrency

is another attractive approach (e.g. [20]). We believe the combination of access scheduling

and the permutation-based interleaving scheme can further improve memory performance.

0%

10%

20%

30%

40%

50%

60%

70%

m
cf

pa
rs

er

w
up

w
is

e

sw
im

m
gr

id

ap
pl

u

ga
lg

el ar
t

eq
ua

ke

fa
ce

re
c

am
m

p

lu
ca

s

ap
si

A
ve

ra
ge

R
ow

 B
uf

fe
r 

M
is

s 
R

at
e

32x64KB 32x64KB-xor 64x64KB 64x64KB-xor 128x64KB 128x64KB-xor

Figure 11: The row buffer miss rates of conventional and permutation-based page interleaving schemes

when the cumulative row buffer size is larger than cache size divided by cache associativity. In the legend,

32, 64, or 128 before the “x” represents the number of bank, 64KB represents the size of the row buffer, and

the “xor” indicates using the permutation-based page interleaving.

9 Other Related Work

Hsu and Smith propose and evaluate several memory interleaving schemes that can both

increase data locality and avoid generating hot banks in vector supercomputers with cached
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DRAM [21], where processors do not have data caches. Our study targets on superscalar

processors with DRAM memory systems. The large caches in our targeted systems make

the memory access patterns significantly different from that in the vector system without

caches.

There are several other research papers dealing with the bank conflict problem of vector

accesses in vector supercomputers. Authors in [22] and [1] attempt to use the prime mem-

ory systems to address the conflict issues. Other papers focus on the memory interleaving

schemes on vector systems [23, 16, 24, 25, 26, 27]. Authors in [28], [23], and [24] study the

skew schemes. Rau, Schlansker, and Yen propose a pseudo-random interleaving technique

using the XOR function to randomize the mapping of references to memory modules in [16].

Their scheme can eliminate the occurrence of long clusters due to structured data access.

Sohi studies permutation-based interleaving schemes which can improve memory bandwidth

for a wide range of access patterns for vector computers [26]. Valero, Lang, and Ayguadé [27]

divide the memory address into several portions according to the width of bank index, then

XOR all the address portions to generate the bank index. Their method can avoid bank

conflict due to power-of-two strides in vector machines. Seznec and Lenfant [25] propose

the Interleaved Parallel Scheme, which uses the XOR operation and parameters related to

the numbers of processors, logical memory banks, and physical memory banks to induce

more equitable distribution over memory banks for a wider set of vectors than the normal

mappings.

The above cited studies are based on vector supercomputers with SRAM memory systems.

Besides different memory access patterns on those machines, the sources of access conflicts

in our targeted systems are also different from those in the vector machines without DRAM

memory systems. For example, elimination of DRAM row buffer conflicts without reducing

the available locality is a major issue in our study. Therefore, our study has a different

objective with a different focus.

Besides memory bank interleaving techniques, there are other approaches to address the

memory latency problem, such as blocking-free cache, prefetching, thread changing, and data

prediction and speculation.
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10 Conclusion

We have shown that the address mapping symmetry is the inherent source of row buffer

conflicts under conventional cache and DARM address mapping. Breaking the mapping

symmetry, the proposed permutation-based page interleaving scheme can eliminate or sig-

nificantly reduce the severe row buffer conflicts and retain the spatial locality. Conventional

schemes, such as cache-line and page interleaving, could not effectively exploit both the

DRAM concurrency and spatial locality in the row-buffer. Our execution-driven simulations

show that the permutation-based scheme can significantly reduce the row buffer miss rates

and improve the overall performance.

We have also shown that the mapping symmetry can be broken at the cache-level to re-

move this source of row buffer conflicts. We have evaluated two representative cache mapping

schemes, bitwise-XOR and polynomial mapping, which are proposed originally for avoiding

cache conflict misses. The polynomial mapping can reduce the row buffer miss rate close to

that of the permutation-based page interleaving, but the bitwise-XOR must be modified to

avoid conflicts. Our results indicate that, conflict-avoiding cache mapping schemes should

also consider the conflicts at the row buffer. We show that almost all performance gains

come from the reductions of row buffer miss rates, and the permutation-based page inter-

leaving scheme has the best overall performance. Considering the scheme does not increase

the complexity of processor core, it is also the most cost-effective approach.

In Table 5, we give a summary of the three cache mapping and memory interleaving

schemes, namely, the bitwise-XOR cache mapping, the polynomial cache mapping, and our

permutation-based page interleaving scheme. We present their impacts on three aspects

of performance, namely, cache conflict reduction, row-buffer conflict reduction, and overall

performance improvement, and their impacts on increasing implementation complexity. Our

study shows that the permutation-based page interleaving scheme outperforms all other

schemes based on its performance improvement and on its implementation simplicity.
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Mapping Scheme Cache conflict

reduction

Row-buffer con-

flict reduction

Overall perfor-

mance improve-

ment

implementation

complexity

Bitwise-XOR

cache mapping

moderate low low moderate

Polynomial

cache mapping

moderate high high high

Permutation-

based DRAM

page interleaving

N/A highest highest low

Table 5: Summary of the three cache mapping and memory interleaving schemes, and their

impact on three aspects of performance, and on implementation complexity.
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