Journal of Instruction-Level Parallelism 9 (2007) 1-26 Submitted 2/07; published 6/07

Accelerating Meta Data Checks for
Software Correctness and Security

Weihaw Chuang WCHUANG@CS.UCSD.EDU
Satish Narayanasamy SATISHQCS.UCSD.EDU
Brad Calder CALDERQCS.UCSD.EDU

University of California, San Diego

Department of Computer Science and Engineering
9500 Gilman Drive

La Jolla, CA 92093-0404 USA

Abstract

As high GHZ processors become prevalent, adding hardware support to ensure the cor-
rectness and security of programs will be just as important, for the average user, as further
increases in processor performance. The goal of our research is to focus on developing
compiler and hardware support for efficiently performing software checks that can be left
on all of the time, even in production code releases, to provide a significant increase in the
correctness and security of software.

In this paper we focus on the performance of checking the correctness of pointers. We
focus on pointers since a significant amount of bugs and security issues (buffer overflows) in
programs are due to memory bugs resulting from incorrect usage of pointers. To determine
if a pointer reference is correct many techniques require additional information to be kept
track of called meta-data. The meta-data is checked when a pointer is dereferenced to verify
some property about the pointer or the object. The first part of our paper focuses on where
to efficiently keep track of this meta-data information and the overheads for performing
safety checks like bounds checking and dangling pointer checks. We then focus on archi-
tecture extensions to reduce the overhead of these meta-data checks. We examine these
optimizations in the presence of two meta-data checking applications — bounds checking
and dangling pointer checks and show that we can reduce the overhead of these pointer
checks from 148% down to 21% on average.

1. Introduction

Computer system trends have increased the importance of providing efficient solutions to
finding and preventing software bugs. Lower hardware costs and increasing hardware relia-
bility have significantly reduced hardware’s importance in terms of total computer cost [1, 2].
This has increased the software’s component in the total cost of ownership of a system, due
to software’s increasing complexity, and especially bugs. In addition, with the wide spread
use of the Internet and how easy it is to release patches, software is released with more
potential bugs than in the past. Given these trends it is just as important to examine
efficient compiler and hardware support for software correctness, security, and debugging
as it is to increase the performance of the next generation of processors.

In this paper we focus on the performance of dynamically checking the correctness of
pointers. We focus on pointers since a significant amount of bugs in programs are related
to memory corruption bugs dealing with the pointers [3]. To determine if a pointer is

CHUANG, NARAYANASAMY & CALDER

correct, many dynamic software checking techniques require additional information to be
kept track of along with each pointer, which is called meta-data of a pointer. Checks are
performed using the meta-data when a pointer is dereferenced to verify some property about
the pointer or the object. The two example meta-data checking techniques we examine in
this paper for pointer correctness are bounds checking and dangling pointer checks. Bounds
checking checks a pointer dereference to make sure it is within the bounds of the object
being dereferenced, and if not an exception is raised. A dangling pointer check, checks a
pointer dereference to make sure the pointer still points to a valid object and the object
it last thought it was pointing to. Meta-data is used for both of these dynamic checks to
determine if the pointer’s usage is valid.

The first part of our paper focuses on where to efficiently keep track of this meta-data
information. The meta-data for some software checks, such as bounds checking, can be
stored with the pointer or alternatively it can be stored with the object itself. We find that
storing the meta-data with the object, instead of with the pointer, scales better in terms of
performance as the amount of meta-data that needs to be kept track of increases. We then
examine Meta-Data Checking (MDC) architecture extensions to efficiently do the meta-data
checks. The goal of all of these techniques is to reduce the overhead of meta-data checks
enough so that the checks can be left in the release versions of software. The contributions
of this paper are:

e We provide a detailed trade-off (micro-architectural effects) analysis to determine
where to store the meta-data for bounds checking and dangling pointer checks. We
show that storing the meta-data with the object provides better performance and will
scale better if additional meta-data needs to be tracked for doing more checks for a
pointer.

e We propose architecture and ISA extensions to reduce the average overhead of meta-
data checks to 21%, when performing both bounds checking and dangling pointer
checks. In comparison, existing software techniques, result in 148% slowdown for the
same checks.

2. Methodology

In this section we describe our compiler that we used to implement the meta-data checks
we examined in this paper, and the simulation infrastructure to gather our results. All our
simulations are based on x86.

2.1. Compiler

We build our compiler infrastructure out of 2.95 GCC. The meta-data checks we exam-
ine in this paper include bounds checking and dangling pointer checks. We implemented
these two checks starting from a bounds checking patch provided by Greg McGary [4]. Mc-
Gary’s infrastructure performs bounds checking of C references, including automatic bounds
generation for static and dynamically allocated objects using pointer meta-data (which is
conventionally referred to as fat pointers) and static bounds information.

We modified the McGary version of gce in several respects. First, we modified the
compiler to optionally generate the object meta-data that will be described in subsec-

ACCELERATING META DATA CHECKS FOR SOFTWARE CORRECTNESS AND SECURITY

tion 4.1.. Second, we modified it to use the x86 bound instruction, instead of a sequence
of compare-branch-trap x86 instructions to do bounds checking. Third, we eliminated re-
dundant bounds instructions by modifying common-subexpression-elimination to remove
redundant bounds in a trace region. Forth, we add the dangling pointer check for stack and
heap objects. As tag checks for statics objects is not necessary, we skip dangling checks on
them. We also model the meta-check instructions described in Section 5.

We verified that McGary’s bounds check detects all buffer overflow attacks in Wilander’s
test case [5]. Subsequent major functionality changes were reverified with this test case.
We also verified that the software bounds checker was able to detect bounds violation in
the AccMon benchmarks [6].

2.2. Simulation Model

We used SimpleScalar 4.0 x86 Tool Set [7] for simulating our x86 binaries. The configuration
is given in Table 1 and based loosely on an AMD Athlon processor, as this represents a
widely deployed modern desktop system, and a pipeline that is more reasonable to emulate.

Fetch Width | 4 inst

Issue Width | 4 inst

Func Units 4-ialu, 1-imult, 2-mem, 3fpalu, 1-fpmult
Reorder buf | RUU: 32, LSQ: 32

L1D 16KB, 2 way, 64B Block, 3 cycle latency
L11 16KB, 2 way, 64B Block, 3 cycle latency
L2 Unified 2MB, 16 way, 64B Block, 20 cycle latency
DTLB 128 entry, 30 cycle miss penalty

ITLB 64, 30 cycle miss penalty

Memory 275 cycle latency

Branch Pred

16K meta chooser between gshare (8K entry)

and bimodal table (8k entry); 16 Return
Address Stack; 512 BTB; 10 cycle misprediction penalty

Table 1: Simulation model based on the AMD Athlon.

To better understand sources of delays in the processor pipeline, we modified Sim-
pleScalar to classify every cycle in terms of generic delay sources. If a delay prevents useful
instruction execution for that cycle, then that cycle is categorized by that delay type, oth-
erwise that cycle is counted towards execution ex. A cycle is attributed to execution in this
case, even if some other delay event is occurring, because the out-of-order pipeline is still
doing useful work. Data-cache misses often stall data-dependent instructions, completely
starving the pipeline, and are classified as dc. Because we want to know when data-cache
misses occur, even though useful instructions are being executed, we classify cycles when
this combination is the case as dc/ex. Front-end pipeline starving events are classified as
either branch misprediction brm, or other front-end stalls (i.e.instruction cache miss) fe.
Almost all of our results are classified with these five breakdowns as stacked graphs with
the y-axis labeled Normalized Execution.

CHUANG, NARAYANASAMY & CALDER

2.3. Benchmarks and Simulation Points

For our results we use programs from the SPEC INT 2000 benchmarks. These are bzip,
crafty, gzip, mcf, parser, twolf and vpr. We do not provide results for the other SPEC
benchmarks, either because (a) they did not compile with our baseline McGary compiler
described above, or (b) they did not completely run or run correctly under the new x86
SimpleScalar we are developing jointing with Michigan. We simulated each program using
the reference input for 100 million instructions (for baseline) at a representative simulation
point chosen by SimPoint [8].

For our analysis we generate different binaries to look at the different bounds checking
approaches examined in the rest of this paper. For example, the baseline binary has no
bounds checking at all, and we have another binary that includes the bound instruction
to perform bounds checking, and another for checking dangling pointers, etc. Since we
have multiple versions, we need to make sure that we simulate the exact same part of the
program’s execution across these different binaries. To do this we use the single simulation
point for the baseline binary, and we perform binary matching to find the exact same code
sequence (a unique one) in the bounds checked binaries that corresponds to the simulation
point. We then used this to determine when to start simulation for the binary, and did
similar binary matching analysis to figure out when to stop simulation.

Since different number of instructions are simulated between the different binaries to
represent the same part of execution, we report results in terms of number of cycles executed
normalized to the baseline binary without any safety checking.

3. What is Meta-Data?

Sullivan and Chillarege [3] provided a detailed analysis of the failure reports from the IBM
mainframe MVS operating system. They found that memory corrupting bugs are more
likely to cause a high priority bug report by a ratio of three-to-one. Memory corrupting
bugs often allows the program to continue for some time, potentially corrupting data and
obscuring the bug’s identity, instead of stopping at the point of failure. They found the top
five causes of these memory corruption bugs are buffer overflow 20%, deallocated memory
19%, corrupt pointers 13%, type mismatch 12%, and 13% unknown [3]. Over half of the
data-corrupting failures are directly due to memory mismanagement.

Buffer overflow attacks exploit bugs to deny service or even take over the program.
As the name implies the adversary injects arbitrary data through a program’s external
interface e.g. network sockets, file IO, or command line arguments to overwrite program
data. This causes the program to crash or execute a program of the attacker’s choosing [5].
CERT data [9] from 1997 to 2003 shows that 50% or more of CERT security adversaries
are due buffer overflow attacks. A 2004 study found that unpatched and Windows XP SP1
connected to the Internet would be taken over in less than four minutes [10].

Runtime safety checks using meta-data can prevent many of the above software failures.
Software safety checks and maintenance activities often require some persistent knowledge
of the object(s) they are operating on. Meta-data is a catch-all term for this persistent
data, that exists outside the normal application activity. It usually is not visible to the
programmer, having been automatically inserted by the compiler or some other tool. The

ACCELERATING META DATA CHECKS FOR SOFTWARE CORRECTNESS AND SECURITY

following is a set of safety checks and memory management techniques that use meta-data
to find and prevent the above top five memory corruption causes.

e Bounds Checking - Bounds checking verifies that a memory reference of an object, or
array falls within the bounds of that structure. The meta-data used to perform this
check is the object’s low and high bounds [4].

e Dangling Pointer Checking - C and C++ require programmer managed memory. Free-
ing memory still referenced by the program results in a dangling pointer. If referenced,
the stale pointer will incorrectly access the freed memory. We can tag the pointer and
the object with a unique ID upon object allocation. If the object is freed, the object
tag is cleared. Stale pointers are then identified by a tag mismatch with the object.
The stored meta-data to perform this check is a tag stored with the pointer and a tag
stored with the object [11].

e Garbage Collection - Garbage collectors perform automatic management of memory.
Because it periodically scans through pointer references and marks used memory, it
needs to temporarily store meta-data. A mark is stored in the object’s meta-data to
keep track of which objects have been visited [12]. Additional meta-data stored with
an object can include the location of the pointers within the object, which enables
the garbage collector to continue sweeping the heap.

For the rest of the paper, we will use both bounds checking and dangling pointer checking
to examine where the meta-data should be stored, the efficiency of meta-data checks, and
optimizations to reduce the meta-data check overhead.

4. Where to Store the Meta-Data and the Performance Overhead

As described in the prior section, software checks, such as bounds and dangling pointer
checking, require additional persistent memory called meta-data to store the bounds or
tag information. In this section we focus on examining the performance trade-off between
storing this meta-data either along with the pointer or with the object.

4.1. Meta-Data Options

Figure 1(a) shows the two standard options for where to store the meta-data. For some
checks, the meta-data can be, or needs to be, associated with the pointer to the object, which
we call Pointer Meta-Data (PMD). Another option is to store the meta-data with the object
itself, which we call Object Meta-Data (OMD) in Figure 1(a). For some checks, where to
store the meta-data is an implementation option, whereas for other checks the information
needs to be stored as either PMD or OMD. We use bounds checking and dangling pointer
checks to demonstrate this.

For bounds checking, the high and low bounds are typically stored adjacent to the
pointer as PMD shown in Figure 1(b). This is also called a fat-pointer [4, 13, 14]. Because
the bounds information is directly associated with the pointer, obtaining the meta-data is
fast and handles the problem of interior or out-of-bounds pointers due to pointer arithmetic.
Interior or out-of-bounds pointers makes it difficult to associate a pointer to its object as

CHUANG, NARAYANASAMY & CALDER

[POINTER [pointer meta datal [PR [ow | high | PR [ik | | PR | ink [ptrtag|
v v ! v

| OBJECT |0bject meta datal | OBJ | | OBJ I low | high | | OBJ | objtag |
(a) Meta-Data Locations (b) Pointer Meta-Data (PMD) (c) Object Meta-Data (OMD) (d) PMD and OMD for Dangling-
for Bound Checking for Bounds Checking Pointer check

Figure 1: Meta-data Representations. An arrow indicates a pointer to data associated with
the object. Highlighted blocks are meta-data.

the pointer no longer references the base of the object. Alternatively, we propose that the
meta-data for bounds checking could be stored with the referent object as OMD shown in
Figure 1(c). For this option, a link is stored adjacent to the pointer, which will provide the
address to the location where the object meta-data is stored. The link is necessary largely
due to interior and out-of-bounds pointers.

The other example we focus on in this paper is the dangling pointer checks. The meta-
data for this check needs a pointer tag stored as PMD and an object tag stored as OMD.
This is shown in Figure 1(d). Just as with the OMD bounds checking, a link is required as
part of the PMD to find the object tag stored as part of the object meta-data [11, 15].

4.1.1. Meta-Data Overhead

Depending on where the meta-data is stored, as a PMD or OMD, the performance overhead
will vary. This is because, the two representations will have different cache spatial locality.
To examine this tradeoff, we ran experiments allocating different number of PMD and OMD
words for all pointers and allocated objects. At each pointer reference (each time the pointer
register was used in a memory operation) we access the last meta-data word. Therefore
the overhead measured comes from copying and maintaining the meta-data and accessing
the last meta-data word. For these results we broke the execution time into the percent
of execution time (cycles) fetch was stalled (fe), the execution due to branch misprediction
(brm), data cache misses (dc), overlapped data cache miss with execution (dc/ex), and
execution (ex) where there were no stalls.

In Figure 2(a), we compiled the programs so that there was 1 (1pmd), 2 (2pmd), 3
(3pmd) or 5 (5pmd) extra words associated with the pointer representing the effects of
having PMD of that size. The additional overhead occurs from two sources with PMD.
The first overhead comes from copying the meta-data. Every pointer assignment during
execution has to also copy the pointer meta-data to the new pointer. The increase due to
this can be seen in twolf as the number of execution cycles went up. The more dominant
increase in overhead comes from the increase in data cache misses (dc) from the pointers
with PMD. This effect is seen for the data cache sensitive benchmarks like (mcf, parser
and twolf).

In Figure 2(b), we experiment with varying OMD sizes. We store 2 (2omd), 3 (3omd),
6 (6omd), and 9 (9omd) extra words along with each allocated object. In addition, each

ACCELERATING META DATA CHECKS FOR SOFTWARE CORRECTNESS AND SECURITY

- Hfe
' Obrm
< Odc
© L1
= B dc/ex
3
g Le Oex o
w - i A _
§o] [LIH
G_) -
N1
©
£
o 05
=2
0 = 8
Ooooo| (Voo (Voo Qoo VOO0 Vo0 Voo
\EIEIEIEIE| IEIE|IEIEE|l EIEEEE IEEEEE EIEEIEEl EEEEE EEEEE
o olaolo [oaood [oaadod [paoaad [oasas (o [fellelfelle)
NN (N (N (DA NI (AN (N | —NMLO
© © © © © © ©
o] e} o o] e} o
164.gzip | 175.vpr | 181.mcf | 186.crafty |197.parser| 256.bzip2 |300.twolf
2.5 7/ Hfe
Obrm
c Odc
.g 2 1 Edclex
> Oex
o
x 1.5
LL] Eininln I I ——
o HOAE
() = = mimimlm
N1
©
£
S o LR
2 0% L1 N
0 HEEE
relielielie} elelielie] elielelie} eleliolye] elielelye] Ieli®li®li®] relicli®li®}
EIE|E|E| |EIEIEIE|l |EIEIE|E| |EIEIEIE| |E|E|E|E|l |EIEIEIE|l |EIEIEE
O|0|0|0 O 0|00 [elfelfele} O|0|0| 0 O|0|0|0 [elfelfe)e] [elfelfelfe}
ANMIOIo ANIM IO IO ANIMIO IO ANIMIOIO ANIM IO IO ANIMIOIoO ANIMIOIO
164.9zip | 175.vpr | 181.mcf |186.crafty197.parser 256.bzip2300.twoli

Figure 2: Performance overhead for maintaining pointer meta-data (top graph) and object
meta-data (bottom graph). Results are shown for various sizes of meta-data.

CHUANG, NARAYANASAMY & CALDER

pointer has 1 extra word, which provides the link from the pointer to the OMD as shown in
Figure 1(c). Irrespective of the size of OMD, the overhead has a fixed cost of copying just
the link word on every pointer assignment as opposed to copying all the meta-data in the
case of PMD. The size of the pointer is also a constant two words (one word for the pointer
itself and another for the link). The graph shows a nearly flat trend even as larger object
meta-data sizes are allocated.

Storing meta-data with the objects scales better than storing it with the pointer, espe-
cially for programs like mcf and parser because (a) there are many more pointers stored in
memory than objects, and (b) storing the meta-data with objects allows sharing of meta-
data among the multiple pointers that point to the same object.

4.2. Storing Meta-Data for Bounds and Dangling Pointer Checks

We now examine the overheads of implementing bounds checking and dangling pointer
checks and show how these overheads differ based on the layout used for storing meta-data.

4.2.1. Bounds Checking

Bounds checking uses the low and high boundary information associated with each memory
object to determine if an out-of-bounds pointer reference has occurred. This is done for each
source code pointer dereference or array reference. The x86 instruction set has an explicit
instruction bound for performing bounds checking as shown in Figure 3(a) and (b). The
code example assumes that the pointer is stored in register ptr reg and the base address
for the two words storing the high and low bounds is the second parameter. Figure 3(a)
assumes the meta-data is stored as PMD as in Figure 1(b). The other option would be to
store the bounds as OMD as in Figure 1(c), and Figure 3(b) shows the code for this. In
this case, the link pointer is loaded, and then passed to the bound instruction.

The differences between storing the bounds meta-data as OMD vs PMD are:

e Sharing of Meta-Data - Storing the meta-data with the object will allow the meta-data
to be shared across several pointers to the same object.

e Number of Pointers vs Number of Objects - Related to the above point is that some
programs have many more pointers than objects. For example, programs like mcf and
parser where each object has N pointers. For these programs, storing the bounds as
PMD requires significantly more storage (and data cache usage) than storing them
with the object. Storing meta-data with the object enables sharing them between
pointers pointing to the same object.

e Reducing the PMD to 1 Word - Moving the meta-data to the object reduces the PMD
from 2 words down to 1 word, and this is the link word to the object meta-data.

e Overhead of Extra Link Load - The OMD approach has the additional overhead of
loading the link register. Note, that the link register overhead for the OMD case can
actually be fairly small. This is because the link register can be hoisted to occur at
the same time as the pointer load. If these both overlap, then the cost of the link load
can be minimal.

ACCELERATING META DATA CHECKS FOR SOFTWARE CORRECTNESS AND SECURITY

bound ptr_reg, [base_reg+4] mov [base_reg+4], link_reg

bound ptr_reg, [link_reg]

(a) PMD x86 Bound Instruction (b) OMD x86 Bound Instruction

mov [base_reg+4], link_reg
mov [link_reg]l, objtag_reg
mov [base_reg+8], ptrtag_reg
cmp objtag_reg, ptrtag_reg
jeq done

trap

(c) Dangling Pointer Check

Figure 3: x86 implementation of the bounds instruction storing the meta-data with the
pointer (a), and storing the meta-data with the object (b). (c¢) shows the pseudo
code for performing the dangling pointer check where the link register and pointer
tag are stored as pointer meta-data and the object tag is stored as object meta-
data.

load [base_reg+4], low_reg

cmplt_trap ptr_reg, low_reg
load [base_reg+8], high_reg
cmpgt_trap ptr_reg, high_reg

Figure 4: The baseline micro-op expansion of the x86 Bound Instruction.

CHUANG, NARAYANASAMY & CALDER

For C, several researchers use the PMD representation for bounds checking [4, 13, 14].
Others [16, 9] use a table lookup on the pointer address to determine the bounds. The table
lookup scheme has the advantage in that it is not necessary to change the memory layout
of the data objects. The meta data required to do a bounds check is obtained by doing a
table lookup on the bounds meta-data table. Since C allows interior pointers, a fast hash
lookup on the object address cannot be done, and instead we have to use tree search which
would incur significant performance overhead. We therefore, concentrate on the PMD and
OMD representation for our analysis.

4.2.2. Dangling Pointer Checks

Dangling pointer check determines if a referenced object has been freed and potentially
reallocated, but incorrectly accessed afterward with the old pointer. It does this by associ-
ating a tag with the pointer and a second tag with the object, with the property that they
must match. At object creation, a unique tag id is assigned to both the pointer, and object
tags. When the object is freed, the object tag field is cleared. A pointer dereference to the
object performs a tag check. If they mismatch then the pointer must point to an object
that’s been either freed or reallocated. The x86 pseudo code for implementing a dangling
pointer check is shown in Figure 3(c). The meta-data for the dangling pointer needs to be
stored as in Figure 1(d), where there is a link and pointer tag stored as pointer meta-data,
and the object tag is stored as object meta-data.

4.3. Meta-Data Checking Overhead

When using bounds checking or dangling pointer checking, the checks occur at pointer
dereferences, which can create large run-time overhead. Figure 5 shows the overhead for
using the bounds checking instruction in Figure 3(a), where it is translated into the micro-
op sequence in Figure 4(a) when executed in the pipeline. The second bar in Figure 5 shows
the results for storing the bounds as PMD as in Figure 3(a). The first bar shows the results
for storing the bounds as OMD as in Figure 3(b). The overhead of bounds checking is 81%
on average when the bounds are stored in PMD but is 48.4% when the bounds are stored in
OMD. The overhead comes from increased number of instructions from having to copy the
pointer meta-data, the additional micro-ops to perform the check, and the increase number
of cache misses.

As part of this study, we also want to examine the effect of performing multiple safety
meta-checks on a pointer at the same time. In addition, looking farther into the future
having multiple forms of meta-data stored with an object can potentially even aid hardware
optimizations.

To examine the effect of performing multiple safety checks, we also provide results in
Figure 5 for performing both bounds checking and dangling pointer checks for pointers at
the same time. This is equivalent to executing the code in Figure 3(a) and (c) at the pointer
dereference when the bounds are stored as PMD, or executing the code in Figure 3(b) and
(c) at the pointer dereference when the bounds are stored as OMD.

To perform the combined check for PMD, the pointer-meta data is now 4 words wide
since it contains the high and low bounds, a link to the object meta-data, and the dangling
pointer tag. Then the object meta-data contains just the dangling object tag. To perform

10

ACCELERATING META DATA CHECKS FOR SOFTWARE CORRECTNESS AND SECURITY

35 Hfe
Obrm M
c 3 Odc — 1
o M dc/ex M
= Oex —
3 25
0]
> = H M
[u
?
N 1.5 =1 = F——1
K
= 1
=
o
Z 05
0 !
ER|I212 EB[EI22 [BBl22 (BB 22 RBEZ22 [BEZ22 |BR 22
5|5lsi5| |5|55(3| |5|5855| (|5|555| (|5|5s5| |5|5855| 5555
HEEHEREEEHEREEEEREEEEREEEEREEEEREEEE
T T T T T (T T T T T T | T T T
518 515 518 515 §I§ 515 5§18
164.9zip 175.vpr 181.mcf 186.crafty | 197.parser | 256.bzip2 | 300.twolf

Figure 5: Bounds and combined Dangling Pointer and Bounds check overhead.

the combined check for OMD, the pointer-meta data is only 2 words wide since it contains
only a link to the object meta-data, and the dangling pointer tag. Then the object meta-
data contains 3 words, which includes the low and high bounds and the dangling object
tag.

The fourth bar in Figure 5 shows results for bounds plus dangling checks where the
bounds information is associated with PMD. The third bar shows results for doing both
the checks, but for these bounds information is associated with OMD. The performance
overhead increases greatly due to the wider pointer-meta data as we saw in our earlier
results in Figure 2.

5. Meta Data Checker

The performance overhead of meta-data checks needed for bounds checking and dangling
pointer checks shown in the previous section is still too high for these safety checks to
be incorporated into released software. In this section we examine Meta-Data Checking
(MDC) architecture extensions to reduce the overhead of meta-data checks. The architec-
ture extensions include, extending the x86 ISA with a new instruction, called the meta-check
instruction and the necessary hardware support to implement and use it.

5.1. Motivation for Meta Checker Instruction

The special meta-check instruction (explained later) is designed to meet following goals
which strive to reduce the performance overhead and at the same time provide enough
flexibility to support a variety of checks that need meta-data.

e Reduce Additional Instructions in Binary to Perform the Check - As shown in Fig-
ure 3 the dangling pointer check executes about five x86 instructions for each check
(around 7 micro-ops expanding out the address generation). This can result in regis-
ter spill and consume fetch bandwidth, which can adversely affect the performance.
A generic meta-data instruction can be used to concisely represent this check, so that

11

CHUANG, NARAYANASAMY & CALDER

when pointer dereferencing instruction is executed a sequence of micro-ops to perform
additional checks will be automatically generated.

e Flexible Meta Data Representation and Efficient Cache Usage - As we noted in the
prior section, object meta-data layout is efficient in terms of performance but for some
checks like dangling pointer checks we also need pointer meta-data. So having the
flexibility to associate the meta-data as either PMD or OMD (wherever appropriate)
would be important for adding customized instructions for efficiently executing safety
checks.

5.2. Overview of Meta Data Check Architecture Extensions

We propose extending the ISA with a special instruction called the meta-check instruc-
tion to perform the memory safety checks. The meta-checks are bound to a virtual register,
which at compile time is determined to hold a pointer. The virtual register for a meta-check
is explicitly represented in the meta-check instruction. When that register is used (deref-
erenced) by a load or store memory operation, the meta-check micro-op instructions are
inserted into the execution stream to perform the check. These meta-check micro-ops are
inserted before the memory operation. Thus, check operations need not be explicitly spec-
ified for each pointer dereferencing memory operation, reducing register spill and pressure
on fetch bandwidth.

A sequence of meta-check instructions is used perform a bounds check and/or a dangling
pointer check. One can view each meta-check as an assertion or a rule that a pointer value
in the register must obey. The meta-check instruction is coded with few values - here we
will briefly explain the important fields. One field specifies the type of the check operation
(eg: less than, greater than, equal to etc — operations using which the compiler can perform
required safety checks) and another field specifies the virtual register that needs to be
associated with that check. The check operation also needs the meta-data to compare
against the pointer value in the register. Hence, each meta-check instruction also specifies
the sources for meta-data, which can be a PMD or an OMD or another virtual register.

When a meta-check instruction is executed, MDCT Meta-Data Check Table is updated.
MDCT is a finite sized buffer to hold the information needed to later perform the meta-data
checks associated with a given virtual register. Each meta-check instruction is assigned an
entry in the MDCT. For a given virtual register, the compiler can use multiple meta-check
instructions to associate more than one check with the virtual register. While executing a
memory operation, during the register renaming stage, the MDCT is accessed to determine
the checks that need to be performed for the register used by the memory operation. Then
required micro-op instructions are inserted into the pipeline which will automatically load
the required meta-data into the physical registers and execute the check operations.

The micro-op expansion for the meta-check instruction could be supported by techniques
such as DISE [17]. By generating the micro-ops to perform the safety check whe