
Journal of Instruction-Level Parallelism 9 (2007) 1-18 Submitted 4/07; published 5/07
 
 
 

PMPM: Prediction by Combining Multiple Partial Matches  

Hongliang Gao HGAO@CS.UCF.EDU
Huiyang Zhou ZHOU@CS.UCF.EDU
School of Electrical Engineering and Computer Science 
University of Central Florida 
Orlando, Florida  32816-2362 
Voice (407) 823-5210 
 

Abstract 
       The prediction by partial matching (PPM) algorithm has been well known for its high 
prediction accuracy. Recent proposals of PPM-like predictors confirm its effectiveness on branch 
prediction. In this paper, we introduce a new branch prediction algorithm, named Prediction by 
combining Multiple Partial Matches (PMPM). The PMPM algorithm selectively combines 
multiple matches instead of using the longest match as in PPM. We analyze the PPM and PMPM 
algorithms and show why PMPM is capable of making more accurate predictions than PPM.  
       Based on PMPM, we propose both an idealistic predictor to push the limit of branch 
prediction accuracy and a realistic predictor for practical implementation. The simulation results 
show that the proposed PMPM predictors achieve higher prediction accuracy than the existing 
PPM-like branch predictors such as the TAGE predictor. In addition, we model the effect of ahead 
pipelining on our implementation and the results show that the accuracy loss is relatively small. 

1. Introduction 

Given its importance on high performance microprocessor design, branch prediction has been 
extensively studied. As analyzed in  [1], [11], the prediction by partial matching (PPM) algorithm 
 [2], originally proposed for text compression, can achieve very high prediction accuracy for 
conditional branches. Recent proposals of PPM-like predictors by Michaud and Seznec  [18],  [10] 
confirm the effectiveness of PPM and show that PPM-like predictors outperform many state-of-
art branch predictors.  

In this paper, we detail our predictor design, both idealistic and realistic, that participated in 
the 2nd JILP Championship Branch Prediction Competition (CBP-2)  [5]. The key idea of our 
proposed design is to improve PPM-like branch predictors by combining multiple partial matches 
rather than using the longest partial match as in the PPM algorithm. We first examine why the 
longest partial match may lead to suboptimal prediction accuracy. We then develop a prediction 
algorithm to selectively combine multiple partial matches (PMPM) with an adder tree.  

Based on the PMPM algorithm, we develop an idealistic predictor to push the limit on branch 
prediction accuracy and a realistic predictor for practical implementation. The idealistic design 
explores extremely long branch history and shows the potential of the PMPM algorithm. The 
realistic design is based on recently developed PPM-like TAGE branch predictors  [18] and it has 
similar hardware complexity compared to the TAGE predictor. Besides exploiting correlation 
from various global branch histories, our design enables efficient integration of local history 
information. The experimental results show that the proposed designs can achieve higher 
accuracy than TAGE predictors. Finally, we implement ahead pipelining to evaluate the impact of 
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the access latency of the proposed PMPM predictor and the results show that with ahead 
pipelining, our design can provide a prediction every cycle with relatively small accuracy loss. 

The rest of this paper is organized as follows. In Section 2 we study the PPM branch 
prediction algorithm and introduce the PMPM algorithm. An idealistic PMPM predictor is 
presented in Section 3. Section 4 describes our design of the realistic PMPM predictor. The 
design space of the realistic predictor is explored in Section 5. Finally, Section 6 concludes the 
paper. 

2. Prediction by Combining Multiple Partial Matches  

In this section, we study the performance of using the PPM algorithm for branch prediction and 
introduce a prediction algorithm to selectively combine multiple partial matches (PMPM) with an 
adder tree instead of using the longest match as in PPM. 

2.1. PPM with the (Confident) Longest Match 

In the PPM algorithm, a Markov model is used to capture the statistical behavior of inputs and to 
make a prediction accordingly. When used for branch prediction, the Markov model keeps track 
of branch histories and uses the longest partial match to make a prediction. The assumption 
behind using the longest match is that longer history provides a more accurate context to 
determine the incoming branch behavior. 

However, since branches exhibit non-stationary behavior, partial context matches may not be 
sufficient to accurately predict branch outcomes. To examine this effect, we implemented a PPM-
based branch predictor as described in  [11], in which global branch histories are served as 
contexts for branches. We assign a signed saturating prediction counter within the range of [-4, 4] 
for each (branch address, history) pair. The range of [-4, 4] is selected because it produces the 
highest prediction accuracy in our setup for the PPM algorithm with the maximum history length 
as 40. The prediction counter is incremented if the branch outcome is taken and decremented 
otherwise. When both of the branch address and history are matched, the corresponding 
prediction counter is used to make a prediction. When there are multiple history matches for the 
same branch with different history lengths, the prediction counter associated with the longest 
history is chosen.  

In order to show that the longest match may not be the best choice for branch prediction, we 
implemented another scheme, in which the prediction counter with the longest-history match is 
not always selected to provide the prediction. Instead, we use the prediction counter as a 
confidence measure of the potential prediction. Only when the prediction counter is a non-zero 
value, it can be selected to make a prediction. We call such a scheme as PPM with the longest 
confident match. We simulate both schemes, i.e., PPM with the longest match and PPM with the 
longest confident match, and report the misprediction rate reductions achieved by the longest 
confident match over the longest match in Figure 1. The misprediction rates are measured in the 
number of mispredictions per 1000 instructions (MPKI). In this experiment, the maximum length 
of the global history register (GHR) is set as 40.  

From Figure 1, we can see that the confidence-based PPM has lower misprediction rates than 
the PPM scheme for all the traces except vortex, which implies that the longest match used in 
PPM may lead to suboptimal prediction accuracy.  
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Figure 1:  Misprediction rate reductions achieved by using the confident longest match over the 
longest match in a PPM-based branch predictor (Max History Length = 40). 

2.2. Prediction by Combining Multiple Partial Matches 

From the experiments with the PPM-based branch predictors, we observed that when there are 
multiple matches, i.e., matches with various history lengths, in the Markov model, the counters 
may not agree with each other and different branches may favor different history lengths. Such 
adaptivity is also reported in  [9] and explored in some recent works, such as  [12]. Based on this 
observation, we propose to use an adder tree to combine multiple partial matches in a PPM-based 
predictor (other combination schemes including linear combination have been explored in  [3] and 
the adder tree is selected for CBP-2 due to its effectiveness and simplicity in implementation) and 
we call this novel prediction algorithm as Prediction by combining Multiple Partial Matches 
(PMPM). In a PMPM predictor, we select up to L confident longest matches and sum the counters 
to make a prediction. Figure 2 shows the average misprediction rates of the proposed PMPM 
predictors with L varying from 1 to 41 and the original PPM predictor with the longest match. 
The maximum history length is set as 40 in this experiment.  
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Figure 2:  Misprediction rates of PMPM-L predictors and the original PPM predictor. 

From Figure 2, it can be seen that on average, combining multiple partial matches can 
provide higher prediction accuracy than utilizing a single partial match. Combining too many 
partial matches, on the other hand, can be harmful since many low-order Markov chains are 
included, which are susceptible to noises. 

3. The Idealistic PMPM Predictor 

Similar to PPM predictors, PMPM predictors require extensive history information and the 
number of different (branch address, history) pairs increase exponentially with the history length. 
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Therefore, modeling an idealistic PMPM predictor to push the limit of branch prediction accuracy 
is still a challenge. In CBP2, we developed an idealistic PMPM predictor which explores 
extremely long global history (651) information with acceptable requirements on memory storage 
and simulation time. 

3.1. Predictor Structure 

The overall predictor structure is shown in Figure 3. We use a per-branch tracking table (PBTT) 
to record some basic information of each static branch. PBTT is a 32k-set 4-way cache structure. 
Each PBTT entry includes the branch address, LRU bits for replacement, a branch tag, a 32-bit 
local history register (LHR), a meta counter used to select either GHR-based or LHR-based 
predictions, a bias counter, and a simple (bias) branch predictor. A unique tag is assigned to each 
static branch and it is used to replace the branch address in index and tag hashing functions. Since 
there are a large number of highly biased branches, we use a simple bias branch predictor to filter 
them out. The simple bias branch predictor detects fully biased (always taken or always not taken) 
branches. A branch only accesses the main PMPM predictor when it is not fully biased. For those 
branches, PBTT sends the branch tag, LHR, the meta counter, and the bias counter to the PMPM 
predictor. 

 

Figure 3:  The overall idealistic PMPM branch prediction scheme. 

The PMPM predictor is used to implement the PMPM algorithm with extremely long history 
information. The structure of it is shown in Figure 4. There are three prediction tables in the 
PMPM predictor. A short-GHR table is used to store information corresponding to the most 
recent 32-bit global history. A long-GHR table is used to store information corresponding to 
longer global histories. We also use a LHR table to make local-history-based predictions and the 
LHR table uses 32-bit local histories. Those three prediction tables are 4-way set-associative 
structures and each entry has a tag, an LRU field, a prediction counter (ctr), a usefulness counter 
(ubit), and a benefit counter (bf). In order to capture very long global histories, we use geometric 
history lengths  [12] in the long GHR table. 

PC  LRU  br tag  LHR  meta ctr  bias ctr  simple br prediction 

per-branch tracking tablePC 

GHR 

 
PMPM 

predictor 

br tag 
LHR 

meta ctr & bias ctr

Path 

simple br?

 simple br prediction

prediction 

prediction 
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Figure 4:  An optimized idealistic PMPM predictor. 

3.2. Prediction Policy  

We hash the branch tag, global history, path history, history length to get the index and tag to 
access each table in the PMPM predictor. We use similar hash functions to those in  [18] and  [8] 
with empirically selected prime numbers. The index and tag hash functions use different primary 
numbers. 

We use the short GHR table to store global histories with lengths from 1 to 32. For longer 
histories, we use 21 different lengths in order to reduce the storage requirement. Both short and 
long GHR tables use 32-bit path histories. M of the hit counters (i.e., the prediction counters with 
a tag match) are summed up with the bias counter to generate the GHR-based prediction. The 
LHR prediction table works the same way as the short GHR table with the selection of N hit 
counters. The final prediction is selected by the meta counter. 

3.3. Update Policy 

The prediction counters in the prediction tables are updated if they have a tag match with the 
current branch. The tag contains both branch address and context information as described in 
Section 3.2. 

In the case of a miss, i.e., when the branch history has not been retained in the tables, new 
entries are allocated in the following manner: 

• For the short-GHR table, we assign new entries when the meta counter indicates that the LHR 
prediction table is not sufficient to make correct predictions. When the meta counter is 
saturated to the direction of using the LHR-based prediction and the prediction is correct, we 
assume that using the LHR-based prediction is sufficient. 

• For the long-GHR table, we assign new entries when the overall prediction is wrong. 

• For the LHR table, we always assign new entries. 

 LHR  GHR Path historyInput 

meta ctr & bias ctrbr tag

  Short-GHR table 
 tag  LRU  ctr  ubit  bf

 Long-GHR table
 tag  LRU  ctr  ubit  bf

        LHR table 
 tag  LRU  ctr  ubit  bf 

GHR-based 
prediction 

select M longest 
matched counters bias ctr
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∑ ∑ 
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3.4. Optimizations 

In order to further improve the accuracy of the proposed idealistic PMPM predictor, we track the 
usefulness of each prediction counter using the usefulness (ubit) and benefit (bf) fields in the 
same entry. The ubit shows whether the prediction counter agrees with the branch outcome and 
the benefit counter shows whether the inclusion of the prediction counter is beneficial. The reason 
is that for some prediction counters, the inclusion has no or harmful impact on the final prediction 
since other prediction counters may be sufficient to make a correct prediction. 

With the usefulness and benefit counters, we make two predictions: a prediction (ubit_pred) 
obtained by selecting the useful (ubit >= 0) counters and a prediction (final_pred) by selecting 
useful and beneficial (ubit >= 0 && bf >= 0) counters. The final_pred is used as the final 
prediction. The ubit_pred is used to update the benefit counter as follows: 

If the prediction counter was not included, the ubit_pred would change from correct to wrong. 
In this case, we increase the corresponding benefit counter. 

If the prediction counter was not included, the ubit_pred would change from wrong to correct. 
In this case, we decrease the corresponding benefit counter. 

Otherwise, the inclusion of the prediction counter has no impact on the prediction. We will 
not update the benefit counter in this case. 

3.5. Prediction Accuracy 

We simulate the proposed idealistic PMPM predictor with the configurations shown in Table 1. 
The configurations are based on our empirical tuning under the memory consumption and 
simulation time constrains of CBP2.   

Short-GHR Prediction Table 1M sets, 4-way 
Long-GHR Prediction Table 2M sets, 4-way 
LHR Prediction Table 512K sets, 4-way 
Max # of selected counters for GHR matches 7 
Max # of selected counters for LHR matches 16 
Minimum GHR length of the geometric history 
lengths used by the Long-GHR Table 

38 

Maxmum GHR length of the geometric history 
lengths used by the Long-GHR Table 

651 

Range of a prediction counter [-6, +6] 
Range of a ubit [-1, +1] 
Range of a benefit counter (bf) [-31, +31] 

Table 1:  Idealistic Predictor Configuration. 

With the configuration shown in Table 1, the simulator consumes around 226M bytes of 
memory and takes 1.65 hours to finish all CBP2 distributed traces on a Xeron 2.8Ghz computer. 
The final misprediction rates (measured in MPKI) of the idealistic PMPM predictor (labeled as 
“IPMPM-GL”) are shown in Table 2. In order to show the impact of using local branch histories, 
we also provide the performance of using only global histories (labeled as “IPMPM-G”). For 
comparison, Table 2 also includes the misprediction rates of the PPM predictor (labeled as 
“PPM”). The PPM predictor is implemented using the idealistic predictor presented in Figure 4 
except that the longest match is used instead of combining multiple matches. From Table 2, we 
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can see that with the same predictor structure, the PMPM algorithm achieves significantly higher 
prediction accuracy than PPM for all traces except perlbmk. The misprediction rates reduction is 
up to 20.9% (gzip) and 15.2% on average. Although the idealistic PMPM predictor can explore 
very long global histories, we notice that local histories are still helpful for all traces. Without 
local histories, the average misprediction rate is increased from 2.824 MPKI to 2.969 MPKI. 

Trace PPM IPMPM-GL IPMPM-G Trace PPM IPMPM-GL IPMPM-G
gzip 11.977 9.470 10.334 vpr 10.096 8.273 8.318 
gcc 2.748 2.594 2.615 mcf 9.258 7.688 7.714 
crafty 2.083 1.794 1.848 parser 4.404 3.928 4.201 
compress 6.526 5.167 5.522 jess 0.302 0.290 0.337 
raytrace 0.274 0.272 0.368 db 2.721 2.199 2.263 
javac 1.054 0.930 1.040 mpegaudio 1.051 0.922 1.041 
mtrt 0.326 0.318 0.396 jack 0.484 0.472 0.524 
eon 0.246 0.239 0.292 perlbmk 0.177 0.192 0.335 
gap 1.164 1.081 1.446 vortex 0.090 0.087 0.152 
bzip2 0.036 0.032 0.040 twolf 11.591 10.529 10.590 
 

Average  PPM: 3.330 IPMPM-GL: 2.824 IPMPM-G: 2.969 

Table 2:  Misprediction rates of the idealistic predictors using the PPM and PMPM algorithms. 

3.6. Impact of Loop Branches in the Idealistic PMPM Predictor 

It has been shown that a loop predictor is helpful for perceptron predictors  [3] and the TAGE 
predictor  [12],  [13]. In this experiment, we study the impact of augmenting a loop predictor  [19] 
to the idealistic PMPM predictor. In order to predict regular loop branches, we add a loop 
predictor in the PBTT table to track the branch outcome pattern for each static branch. If the 
pattern shows the behavior of a loop branch (e.g., taken, taken, …, not-taken) and has the same 
number of iterations successively for at least 8 time, we will assume it is a loop branch. The 
average misprediction rates of the idealistic PMPM predictors with the loop predictor are shown 
in Table 3. For the IPMPM-G predictor that does not use local histories, the loop predictor helps 
to reduce the misprediction rate by 0.068 MPKI (from 2.969 to 2.901 MPKI). However, for the 
IPMPM-GL predictor with 32-bit local histories the benefit of loop predictor is very marginal 
(0.006 MPKI). Since the IPMPM-GL predictor is able to capture small loops (number of 
iterations is less than or equal to 31) with local histories, the benefit of extra loop prediction 
support is only useful for loops with a higher number of iterations. As shown in Table 3, if the 
loop predictor is only used to capture small loops by limiting number of iterations less than 32, 
there is no improvement over the IPMPM-GL predictor. When a loop predictor is included to 
only target at the loops with numbers of iterations larger than 32, the average misprediction rate is 
reduced from 2.824 to 2.815 MPKI.  
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Predictor AVG MPKI 
IPMPM-G 2.969 
IPMPM-GL 2.824 
IPMPM-G + Loop 2.901 
IPMPM-GL + Loop 2.818 
IPMPM-GL + Loop (# of iterations <= 31) 2.827 
IPMPM-GL + Loop (# of iterations > 31) 2.815 

Table 3:  Misprediction rates of the idealistic PMPM predictors without / with loop branch 
prediction. 

4. Realistic PMPM Predictor 

In this section, we present our PMPM branch predictor design for practical implementation. As 
discussed in Section 2, the PMPM algorithm is built upon PPM. Therefore, we choose to develop 
our design based on the recently proposed PPM-like branch predictors  [10],  [18], the TAGE 
branch predictor  [18] in particular.  

4.1. Predictor Structure 

The overall structure of the proposed PMPM predictor is shown in Figure 5. The predictor 
structure is very similar to a TAGE predictor, except that a local history prediction table is 
incorporated. The prediction and update policies, however, are completely redesigned to 
implement the PMPM algorithm. 

 

Figure 5: The practical PMPM predictor. 

As shown in Figure 5, the PMPM predictor contains a bimodal prediction table  [21], seven 
global prediction tables (labeled as “gtable0” to “gtable6”) indexed by the branch address, global 
history and path history, and a local prediction table (labeled as “ltable”) indexed by the branch 
address and local history. Geometrical history lengths  [12] are used for the global prediction 
tables: gtable6 is associated with the shortest global history and gtable0 is associated with the 
longest global history. Each entry of the global and prediction tables has three fields: a tag, a 
signed saturated prediction counter (labeled as “ctr”) and an unsigned saturated counter (labeled 

…
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as “ubit”) to track the usefulness of the prediction counter. Index and tag hashing functions for 
the global prediction tables are the same as those used in TAGE predictors. The local prediction 
table uses hashed branch address and local history as the index and the XOR-folded (i.e., PC ^ 
(PC >> M)) branch address as the tag. 

4.2. Prediction Policy 

The first phase of prediction is to calculate indexes and tags for each table. Among the entries that 
have tag matches (i.e, the hit entries), we select out up to 4 prediction counters from global 
prediction tables and sum those counters together with the prediction counter from the local 
prediction table, if there is a hit, and the counter from the bimodal table. If the sum is zero, we use 
the prediction from the bimodal table. Otherwise we use the sign of the sum as the prediction. In 
order to reduce the latency of counter selection, we devise a simple policy to select up to 4 
counters from the global prediction tables rather than selecting several prediction counters with 
longest matches as used in the idealistic PMPM predictor. We divide the global prediction tables 
into 4 groups, (gtable6, gtable5), (gtable4, gtable3), (gtable2, gtable1) and (gtable0), and select 
out the longer match from each group.  

The prediction counter from the local prediction table (ltable) is used only if its usefulness 
(ubit) is larger than 1. 

The (tag-less) bimodal counter is always used in the summation process. 

4.3. Update Policy 

The prediction counter in the bimodal table is always updated. The update policies of the global 
prediction tables and the local prediction table are described as follows. 

Similar to the perceptron predictor  [5],  [7], and the O-GEHL predictor  [12], the prediction 
counters of the global prediction tables are updated only when the overall prediction is wrong or 
the absolute value of the summation is less than a threshold. We also adopt the threshold 
adaptation scheme proposed in the O-GEHL predictor to dynamically fit different applications. 
We only update those counters that have been included in the summation. At the same time, for 
each of these prediction counters, the associated ubit counter is incremented when the prediction 
counter makes a correct prediction. In the case of a misprediction, we try to allocate a new entry. 
The new entry will be selected from tables where the branch misses. We select one entry that has 
a zero ubit from those tables as a new entry allocated for the current branch. If there are multiple 
entries with zero ubits, we select the one with the shortest history length. If there is no entry with 
a zero ubit, we don’t allocate a new entry. At last, for each entry corresponding to a longer history 
than the longest match, its ubit counter is decremented.  

If current branch hits in the local prediction table, we always update the prediction counter. 
The ubit counter is decremented if the corresponding prediction counter makes a wrong 
prediction. If the prediction counter makes a correct prediction, we increment ubit only when the 
overall prediction is wrong. If the current branch does not hit in the local prediction table and the 
overall prediction is wrong, we will try to allocate a new entry in the local prediction table. If the 
indexed entry has a zero ubit, a new entry is allocated. Otherwise, its ubit counter is decremented. 

The base update policy described above is also improved by two optimizations. First, we 
modify the update policy so that in each group of two global prediction tables, a new entry will 
not be allocated in the table with shorter history length if the branch hits in the table with longer 
history length. Second, for applications with a large number of hard-to-predict branches, some 
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otherwise useful entries could be evicted due to frequent mispredictions using the base update 
policy. To address this issue, we use a misprediction counter to periodically detect those 
applications/program phases with a large number of hard-to-predict branches. For those 
application/phases, we slightly vary the update policy: on a misprediction, we don’t decrement 
the ubit counters in those prediction tables that have tag misses if we already allocate a new entry; 
and we will decrement ubit of the longest match only if its prediction counter is wrong. In this 
way, we limit the chance of useful entries to be victimized by those hard-to-predict branches.  

4.4. Hardware Complexity and Response Time 

Similar to TAGE and O-GEHL predictors, the response time of the proposed PMPM predictor 
has three components: index generation, prediction table access, and prediction computation logic. 
In the proposed PMPM predictor, we use similar index functions to those in TAGE. The index 
and tag generation for the local prediction table has two sequential parts, the local branch history 
(LHR) table access and simple bitwise XOR of the LHR and the branch address for index. Since 
we use a small 1K-entry tagless LHR table with short LHRs, we assume the overall latency for 
generating index for the local prediction table is comparable to the complex index functions for 
global prediction tables, i.e., one full cycle. The prediction table access is also similar to the 
TAGE predictor. Rather than selecting the longest two matches (for the optimization related to 
the newly allocated entries) as in the TAGE predictor, we use an adder tree with up to 6 5-bit 
values to calculate the prediction, which should have similar latency to the prediction 
computation of the O-GEHL predictor. Therefore, we expect the response time of the proposed 
PMPM predictor should be very close to the TAGE or O-GEHL predictors. 

4.5. Ahead Pipelining 

As the prediction latency is more than one cycle, we use ahead pipelining  [16] to generate one 
prediction per cycle. Assuming 3-cycle prediction latency, our 3-block ahead pipelining scheme 
for the PMPM predictor is shown in Figure 6. The impact of ahead pipelining on the prediction 
accuracy of the proposed PMPM predictors will be examined in Section 5.5.  

 

Cycle4 Cycle3Cycle2Cycle1

A 

1. Use PC(B), GHR(A) 
and PATH(A) to 
calculate the indexes 
for the bimodal table 
and gtables. 
2. Use PC(B) to read 
the local history and 
calculate the index of 
ltable. 

1. Use PC(C), GHR(B) 
to calculate tags. 
2. Read 4 adjacent 
entries from each 
prediction table. Tag 
comparisons may also 
be finished in this 
cycle. 
 

1. Calculate 4 potential 
predictions. 
 
2. Use the outcomes of 
B and C to select out 
one prediction. 

B C D 

Prediction of D 
is available 

Initiate a 3-block ahead 
prediction 

 
Figure 6:  A 3-block ahead scheme for PMPM branch predictors. Four basic blocks ending with 

branches A, B, C and D are fetched in cycle1 to cycle4. Associated operations in each 
cycle are listed in the figure. 

It has been shown in  [20] that speculative updates of branch history are important for 
prediction accuracy and an outstanding branch queue (OBQ) is proposed to manage speculative 
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updates of both global and local branch histories. With ahead pipelining, the global history can be 
managed in the same way as proposed in  [20]. However, for updating local histories, the indexes 
of the local history table and the OBQ need to use the n-block ahead branch address instead of the 
current branch address. In this paper, we assume that an OBQ is available to manage speculative 
updates for local branch history. Considering the extra hardware complexity of the OBQ, we also 
report the results of PMPM predictors without local histories in Sections 5. 

5. Performance Evaluation of the Realistic PMPM predictor 

In this section, we study the performance and explore design trade-offs of realistic PMPM 
predictors. 

5.1. Prediction Accuracy 

As the PMPM predictor is built upon the TAGE predictor, we compare their prediction accuracies. 
In this experiment, we simulated two 32kB PMPM predictors, a PMPM predictor with both 
global histories and local histories (labeled as “PMPM-GL”) and a PMPM predictor with only 
global histories (labeled as “PMPM-G”), and one 32kB TAGE predictor.  

The detailed configurations of the predictors are shown in Table 4. The configuration for the 
TAGE predictor is scaled from what presented in  [18]. In stead of tuning the PMPM predictors, 
we use the same global history input and similar table structures as the TAGE predictor for a fair 
comparison. Compared to the TAGE predictor, the PMPM predictors have larger prediction 
counters but smaller tags. A larger prediction counter is necessary for the PMPM predictors to 
suppress noises in the summation process. In order to save some space for local history related 
tables, the PMPM-GL predictor has a smaller bimodal table and smaller tags for three gtables 
compared to the PMPM-G predictor. All bimodal tables in Table 4 have the same number of 
prediction bits and hysteresis bits.  

History  10 bits local history; Geometrical global histories from 5 to 131; 
16 bits path history. 

Table sizes bimodal table: 8k entries; gtables: 2k entries; ltable: 1k entries; 
LHR table: 1k entries. 

Counter widths Prediction ctr: 5 bits; ubit counter: 2 bits. PM
PM

-G
L 

Tag widths gtable4 to gtable6: 8 bits; gtable0 to gtable3: 9 bits; ltable: 5 bits. 
  

History  Geometrical global histories from 5 to 131; 16 bits path history. 
Table sizes bimodal table: 16k entries; gtables: 2k entries. 

Counter widths Prediction ctr: 5 bits; ubit counter: 2 bits. PM
PM

-G
 

Tag widths 9 bits. 
 

History  Geometrical global histories from 5 to 131; 16 bits path history. 
Table sizes bimodal table: 16k entries; gtables: 2k entries. 

Counter widths Prediction ctr: 3 bits; ubit counter: 2 bits. TA
G

E 

Tag widths 11 bits 

Table 4: Configurations of the PMPM-GL, PMPM-G and TAGE predictors with a 32kB 
storage budget. 
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    Table 5 shows the misprediction rates of those three predictors. Compared to the TAGE 
predictor, the average misprediction reductions of 6% and 2% are achieved by the PMPM-GL 
and the PMPM-G predictors, respectively. The PMPM-GL predictor achieves higher prediction 
accuracy than the TAGE predictor for all traces except gcc. Since the PMPM predictor has 
smaller tag widths, it is more sensitive to aliasing than the TAGE predictor. The gcc trace has a 
large number of static branches, which result in many aliases and degrade the performance of the 
PMPM predictor. 

Trace PMPM-
GL 

PMPM-G TAGE Trace PMPM-
GL 

PMPM-G TAGE 

gzip 9.685 10.300 10.899 vpr 8.926 9.003 9.361 
gcc 3.826 3.794 3.536 mcf 10.182 10.128 10.254 
crafty 2.555 2.558 2.682 parser 5.332 5.437 5.422 
compress 5.571 5.827 5.934 jess 0.413 0.464 0.456 
raytrace 0.652 1.112 1.099 db 2.343 2.408 2.527 
Javac 1.105 1.144 1.160 mpegaudio 1.093 1.137 1.163 
mtrt 0.734 1.188 1.139 jack 0.724 0.845 0.831 
eon 0.305 0.470 0.487 perlbmk 0.319 0.497 0.480 
gap 1.436 1.776 1.783 vortex 0.141 0.336 0.312 
bzip2 0.037 0.043 0.041 twolf 13.447 13.466 13.758 
 

Average PMPM-GL: 3.441 PMPM-G: 3.597 TAGE: 3.666 

Table 5:  Misprediction rates (MPKI) of the PMPM-GL, PMPM-G and TAGE predictors with a 
32kB storage budget. 

5.2. Design Space Exploration 

Similar to recently proposed multi-table branch predictors  [10],  [12],  [18], the PMPM predictor 
has a large design space. In this section, we examine the impacts of different design parameters of 
PMPM predictors, including the maximum global history length, the prediction counter size, and 
the number of global prediction tables. For each of those parameters, we also vary the table sizes 
to show the trend under different storage constraints. Due to their limited impact on prediction 
accuracy, we keep intact the local history length and the path history length. For those parameters, 
the same configurations as presented in Table 4 for the PMPM-GL predictor are used. In addition, 
we only use one local prediction table and fix the ubit counter width as 2. The minimum global 
history length (i.e., the number of global history bits used in the gtable corresponding to the 
shortest global history) is set to 4, which is optimal in our experiments.  

For the ease of the discussion, we parameterize the configurations of PMPM-GL predictors in 
the following manner. We assume that the local prediction table has 2N entries. The sizes of other 
tables are then scaled based on that of the local prediction table, as shown in Table 6. The total 
number of bits of the prediction counter and the tag in each entry of a prediction table is also 
specified in Table 6 based on our empirical tuning results. If we use seven gtables, 5-bit 
prediction counters, and N set as 10, the resulting configuration would be exactly the same as the 
PMPM-GL predictor in Table 4. When we change the number of gtables to K, up to  2/K  
prediction counters will be summed since the prediction policy is designed to select one counter 
out of each group of two gtables. 
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Table Ltable gtable (0 to 3) Other gtables Bimodal table LHR table 
 

Entries 2N 2N+1 2N+1 2N 2N 
pred ctr + tag 10 bits 16 bits 15 bits   

Table 6: Parameterized configuration of PMPM predictors. 

We first study the impact of the maximum global history length on PMPM predictors. With 
seven gtables and 5-bit prediction counters, we vary the maximum global history lengths from 50 
to 400 for PMPM-GL predictors. For each history length, we also change the sizes of prediction 
tables by varying N from 9 to 12, corresponding to the storage budget ranging from 128 kbits to 
1024 k btis. The average misprediction rates of those predictors are reported in Figure 7. As 
shown in the figure, the misprediction rates typically decrease when we increase the maximum 
history length. The reduction, however, is very limited when the maximum history length is 
beyond 150. For example, among all the different history lengths that we examined from 150 to 
400 for the 256 kbits (N = 10) PMPM predictor, the minimum misprediction rate is 3.43 MPKI 
and the maximum misprediction rate is 3.45 MPKI. Such robustness makes the predictor 
insensitive to the selection of the maximum global history length and this observation is 
consistent with the findings from the O-GEHL and TAGE predictors  [15],  [18]. For remaining 
experiments presented in this subsection, we use 160 as the maximum history length. 

3

3.2

3.4

3.6

3.8

4

4.2

50 100 150 200 250 300 350 400
Maximum History Length

M
PK

I

128 kbits 256 kbits
512 kbits 1024 kbits

 
Figure 7:  Misprediction rates of the PMPM predictors with different maximum global history 

lengths. 

Second, we determine the prediction counter size of PMPM-GL predictors. With a limited 
storage budget, the prediction counters compete with the tag bits for resource. As a result, if we 
use large prediction counters to account for hysteresis, the reduced tag bits may result in 
increased many aliases due to partial tag matching. In order to find the optimal tradeoff between 
the prediction counter sizes and tag widths, we simulate PMPM-GL predictors by varying the size 
of the prediction counters from 2 to 8 bits. The maximum history length is set as 160 as 
determined from the previous experiment. The misprediction rates of those PMPM-GL predictors 
are shown in Figure 8. It can be seen that small prediction counters are very sensitive to noise 
even for large tables, resulting in high misprediction rates. Limited tag widths as a result of large 
prediction counters expose the problem of aliasing, especially for small prediction tables. Among 
different prediction counter sizes, the best tradeoff is achieved when we use 5-bit prediction 
counters. Therefore, in remaining experiments, we keep the prediction counter size as 5 bits.  
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Figure 8:  Misprediction rates of the PMPM predictors with different prediction counter sizes. 

Next, we study the impact of different number of global prediction tables in PMPM-GL 
predictors. With more prediction tables, more partial matches can be available to be combined, 
which potentially may improve prediction accuracy. On the other hand, extra prediction tables 
will increase the complexity of the predictor since more prediction counters need to be summed 
to produce the final prediction. Table 7 presents the misprediction rates of PMPM-GL predictors 
with 4 to 9 gtables under different storage budgets. It can be seen from the table that more gtables 
show higher prediction accuracy by integrating more prediction counters. For example, the 256 
kbits (N = 10) PMPM predictor with 7 gtables has higher accuracy than the 664 kbits (N = 12) 
PMPM predictor with 4 gtables (3.427 MPKI vs. 3.451 MPKI). Among different number of 
gtables, seven gtables provides a good tradeoff between cost and complexity since further 
increasing the number of gtables only results in marginal returns.   

N Number of gtables 4 5 6 7 8 9 
 

Predictor size (kbits) 83 98 113 128 143 158 
9 

AVG MPKI 4.201 3.970 3.869 3.789 3.760 3.714 
 

Predictor size (kbits) 166 196 226 256 286 316 
10 

AVG MPKI 3.741 3.562 3.497 3.427 3.413 3.379 
 

Predictor size (kbits) 332 392 452 512 572 632 
11 

AVG MPKI 3.590 3.416 3.374 3.311 3.321 3.289 
 

Predictor size (kbits) 664 784 904 1024 1144 1264 
12 

AVG MPKI 3.451 3.311 3.282 3.238 3.239 3.213 

Table 7: Misprediction rates of the PMPM predictors with different numbers of gtables and 
predictor sizes. 

5.3. Impact of Fully Biased Branches in the Realistic PMPM Predictor 

In many applications, a large number of branches have highly biased outcomes (i.e., always taken 
or always not-taken). A simple bias predictor was proposed in  [3] to filter out those branches in 
order to reduce the aliasing impact on main prediction tables. To study the impact of highly 
biased branches on PMPM-GL predictors, we augment them with a bias predictor as proposed in 
 [3]. The experimental results show that a small bias predictor with 1k entries provides no benefit 
to the 256 kbits PMPM-GL predictor. A large bias predictor with 64k entries only reduces the 
average misprediction rate by 0.006 MPKI. The reason is that the bimodal prediction table in 
PMPM-GL predictors already filters out most of those highly biased branches. 
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5.4. Impact of Loop Branches in the Realistic PMPM Predictor 

We also tried to combine PMPM predictor with a low cost loop predictor  [19],  [3],  [12] to 
examine how accurate loop branches are predicted. The loop predictor has 256 entries and 
consumes 13 kbits storage budget. The experimental results show that the extra loop predictor 
reduces the misprediction rate of the 256 kbits PMPM-G predictor without using local histories 
by 0.058 MPKI. The reduction of misprediction rate of the PMPM-GL predictor with both global 
and local histories is 0.01 MPKI. Those results are consistent with the discussion of using the 
loop predictor for idealistic PMPM predictors in Section 3.6.  

5.5. The Realistic PMPM Predictor for CBP2 

Based on our design space exploration, we chose to use the following configuration for a 256 
kbits PMPM predictor: minimum global history length as 4, seven gtables, and 5-bit prediction 
counters. In order to further improve the prediction accuracy of PMPM predictors, we empirically 
fine tuned the configurations and used several optimizations for our realistic PMPM predictor for 
CBP2. The optimizations are listed as follows: 

1) In the bimodal prediction table, four prediction bits will share one hysteresis bit as 
proposed in  [17].  

2) We use the number of branches that miss in all global prediction tables as a metric to 
detect traces with large branch footprints. For those traces, we periodically reset the ubits 
as used in the TAGE predictor. 

3) If the predictions from global prediction tables are same, we will not update the ubits.  

Considering the extra hardware to support local history management, we submitted two 
versions of the PMPM predictor to CBP2. One predictor (labeled as “PMPM-CBP2-GL”) uses 
both global and local histories. The other (labeled as “PMPM-CBP2-L”) only uses global history. 
The detailed configurations and hardware costs of those two predictors are shown in Table 8. The 
prediction accuracies of these PMPM predictors are shown in Table 9. From the table, we can see 
that the local history is still important for some traces (e.g., raytrace, mtrt and vortex) although 
we already use a very long global history.  

With the ahead pipelining scheme described in Section 4.5, we simulated the proposed 
PMPM predictions with ideal 1-block ahead and 2 to 4-block ahead pipelining schemes. The 
prediction accuracies of them are shown in Figure 9. From the figure, it can be seen that with 3-
block ahead pipelining, the average accuracy loss is about 0.11 MPKI for the PMPM-CBP2-G 
predictor compared to ideal 1-block ahead pipelining. The accuracy loss for the PMPM-CBP2-
GL predictor is about 0.15 MPKI. As discussed in Section 4.5, with ahead pipelining, the local 
history table is indexed by the n-block ahead branch address, which will introduce extra aliasing 
to the local history table and increase the accuracy loss of the PMPM-CBP2-GL predictor. 
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Figure 9:  Misprediction rates of the ahead pipelined PMPM predictors for CBP2. 

 PMPM-CBP2-GL PMPM-CBP2-G 
Each prediction counter 5 (bits) 5 (bits) 
Each ubit 2 (bits) 2 (bits) 
History lengths for gtable 6 to 
gtable 0 

4, 7, 15, 25, 48, 78, 203 4, 7, 15, 25, 48, 78, 203 

Number of entries for each gtable 2k 2k 
Tag widths for gtable 6 to gtable 0 6, 7, 7, 8, 9, 10, 10 (bits) 7, 8, 8, 10, 11, 12, 12 (bits) 
Total cost of gtables 217088 (bits) 239616 (bits) 
Local prediction table 1k entries; 5 bits tags  
Cost of the ltable 12288 (bits)  
Local history table 1k entries; His Len: 11  
Cost of the local history table 11264 (bits)  
Cost of the bimodal table 20480 (bits) 20480 (bits) 
Global history register 203 (bits) 203 (bits) 
Path history register 16 (bits) 16 (bits) 
Cyclic shift registers for gtable 
tags and indexes 

184 (bits) 206 (bits) 

Cost of adaptation counters and 
flags 

71 (bits) 71 (bits) 
 

Total Hardware Cost 261594 (bits) 260592 (bits) 

Table 8:  Predictor Configurations and Hardware Costs. 

Trace CBP2-GL CBP2-G Trace CBP2-GL CBP2-G 
gzip 9.712 10.346 vpr 8.945 9.063 
gcc 3.690 3.637 mcf 10.092 10.033 
crafty 2.581 2.565 parser 5.215 5.244 
compress 5.537 5.819 jess 0.393 0.433 
raytrace 0.542 0.963 db 2.319 2.380 
javac 1.107 1.159 mpegaudio 1.102 1.159 
mtrt 0.657 1.009 jack 0.688 0.763 
eon 0.276 0.359 perlbmk 0.314 0.484 
gap 1.431 1.745 vortex 0.137 0.331 
bzip2 0.037 0.042 twolf 13.551 13.616 
 

Average  PMPM-CBP2-GL: 3.416 PMPM-CBP2-G: 3.557 

Table 9:  Misprediction rates (MPKI) of the PMPM-CBP2-GL and PMPM-CBP2-G predictors. 
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6. Conclusions 

In this paper, we show that the PPM algorithm with the longest match may lead to suboptimal 
results. By combining multiple partial matches, the proposed PMPM algorithm can better adapt to 
various history length requirements. An idealistic implementation of the PMPM predictor is 
presented in the paper to evaluate how high the prediction accuracy can be achieved. We also 
proposed a realistic design based on the PMPM algorithm. Our results show that the realistic 
PMPM predictors can achieve higher accuracy than the TAGE predictors with the same storage 
cost. 
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