
Journal of Instruction-Level Parallelism 9 (2007) 1-18 Submitted 4/07; published 5/07

PMPM: Prediction by Combining Multiple Partial Matches

Hongliang Gao HGAO@CS.UCF.EDU
Huiyang Zhou ZHOU@CS.UCF.EDU
School of Electrical Engineering and Computer Science
University of Central Florida
Orlando, Florida 32816-2362
Voice (407) 823-5210

Abstract
 The prediction by partial matching (PPM) algorithm has been well known for its high
prediction accuracy. Recent proposals of PPM-like predictors confirm its effectiveness on branch
prediction. In this paper, we introduce a new branch prediction algorithm, named Prediction by
combining Multiple Partial Matches (PMPM). The PMPM algorithm selectively combines
multiple matches instead of using the longest match as in PPM. We analyze the PPM and PMPM
algorithms and show why PMPM is capable of making more accurate predictions than PPM.
 Based on PMPM, we propose both an idealistic predictor to push the limit of branch
prediction accuracy and a realistic predictor for practical implementation. The simulation results
show that the proposed PMPM predictors achieve higher prediction accuracy than the existing
PPM-like branch predictors such as the TAGE predictor. In addition, we model the effect of ahead
pipelining on our implementation and the results show that the accuracy loss is relatively small.

1. Introduction

Given its importance on high performance microprocessor design, branch prediction has been
extensively studied. As analyzed in [1], [11], the prediction by partial matching (PPM) algorithm
 [2], originally proposed for text compression, can achieve very high prediction accuracy for
conditional branches. Recent proposals of PPM-like predictors by Michaud and Seznec [18], [10]
confirm the effectiveness of PPM and show that PPM-like predictors outperform many state-of-
art branch predictors.

In this paper, we detail our predictor design, both idealistic and realistic, that participated in
the 2nd JILP Championship Branch Prediction Competition (CBP-2) [5]. The key idea of our
proposed design is to improve PPM-like branch predictors by combining multiple partial matches
rather than using the longest partial match as in the PPM algorithm. We first examine why the
longest partial match may lead to suboptimal prediction accuracy. We then develop a prediction
algorithm to selectively combine multiple partial matches (PMPM) with an adder tree.

Based on the PMPM algorithm, we develop an idealistic predictor to push the limit on branch
prediction accuracy and a realistic predictor for practical implementation. The idealistic design
explores extremely long branch history and shows the potential of the PMPM algorithm. The
realistic design is based on recently developed PPM-like TAGE branch predictors [18] and it has
similar hardware complexity compared to the TAGE predictor. Besides exploiting correlation
from various global branch histories, our design enables efficient integration of local history
information. The experimental results show that the proposed designs can achieve higher
accuracy than TAGE predictors. Finally, we implement ahead pipelining to evaluate the impact of

GAO & ZHOU

 2

the access latency of the proposed PMPM predictor and the results show that with ahead
pipelining, our design can provide a prediction every cycle with relatively small accuracy loss.

The rest of this paper is organized as follows. In Section 2 we study the PPM branch
prediction algorithm and introduce the PMPM algorithm. An idealistic PMPM predictor is
presented in Section 3. Section 4 describes our design of the realistic PMPM predictor. The
design space of the realistic predictor is explored in Section 5. Finally, Section 6 concludes the
paper.

2. Prediction by Combining Multiple Partial Matches

In this section, we study the performance of using the PPM algorithm for branch prediction and
introduce a prediction algorithm to selectively combine multiple partial matches (PMPM) with an
adder tree instead of using the longest match as in PPM.

2.1. PPM with the (Confident) Longest Match

In the PPM algorithm, a Markov model is used to capture the statistical behavior of inputs and to
make a prediction accordingly. When used for branch prediction, the Markov model keeps track
of branch histories and uses the longest partial match to make a prediction. The assumption
behind using the longest match is that longer history provides a more accurate context to
determine the incoming branch behavior.

However, since branches exhibit non-stationary behavior, partial context matches may not be
sufficient to accurately predict branch outcomes. To examine this effect, we implemented a PPM-
based branch predictor as described in [11], in which global branch histories are served as
contexts for branches. We assign a signed saturating prediction counter within the range of [-4, 4]
for each (branch address, history) pair. The range of [-4, 4] is selected because it produces the
highest prediction accuracy in our setup for the PPM algorithm with the maximum history length
as 40. The prediction counter is incremented if the branch outcome is taken and decremented
otherwise. When both of the branch address and history are matched, the corresponding
prediction counter is used to make a prediction. When there are multiple history matches for the
same branch with different history lengths, the prediction counter associated with the longest
history is chosen.

In order to show that the longest match may not be the best choice for branch prediction, we
implemented another scheme, in which the prediction counter with the longest-history match is
not always selected to provide the prediction. Instead, we use the prediction counter as a
confidence measure of the potential prediction. Only when the prediction counter is a non-zero
value, it can be selected to make a prediction. We call such a scheme as PPM with the longest
confident match. We simulate both schemes, i.e., PPM with the longest match and PPM with the
longest confident match, and report the misprediction rate reductions achieved by the longest
confident match over the longest match in Figure 1. The misprediction rates are measured in the
number of mispredictions per 1000 instructions (MPKI). In this experiment, the maximum length
of the global history register (GHR) is set as 40.

From Figure 1, we can see that the confidence-based PPM has lower misprediction rates than
the PPM scheme for all the traces except vortex, which implies that the longest match used in
PPM may lead to suboptimal prediction accuracy.

PMPM: PREDICTION BY COMBINING MULTIPLE PARTIAL MATCHES

 3

-1%
0%
1%
2%
3%
4%

gz
ip

gc
c

cr
af

ty

co
m

pr
es

s

ra
yt

ra
ce

ja
va

c

m
trt

eo
n

ga
p

bz
ip

2

vp
r

m
cf

pa
rs

er

je
ss db

m
pe

ga
ud

io

ja
ck

pe
rlb

m
k

vo
rte

x

tw
ol

f

AV
G

Figure 1: Misprediction rate reductions achieved by using the confident longest match over the
longest match in a PPM-based branch predictor (Max History Length = 40).

2.2. Prediction by Combining Multiple Partial Matches

From the experiments with the PPM-based branch predictors, we observed that when there are
multiple matches, i.e., matches with various history lengths, in the Markov model, the counters
may not agree with each other and different branches may favor different history lengths. Such
adaptivity is also reported in [9] and explored in some recent works, such as [12]. Based on this
observation, we propose to use an adder tree to combine multiple partial matches in a PPM-based
predictor (other combination schemes including linear combination have been explored in [3] and
the adder tree is selected for CBP-2 due to its effectiveness and simplicity in implementation) and
we call this novel prediction algorithm as Prediction by combining Multiple Partial Matches
(PMPM). In a PMPM predictor, we select up to L confident longest matches and sum the counters
to make a prediction. Figure 2 shows the average misprediction rates of the proposed PMPM
predictors with L varying from 1 to 41 and the original PPM predictor with the longest match.
The maximum history length is set as 40 in this experiment.

3.6
3.65

3.7
3.75

3.8
3.85

3.9
3.95

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
L

Av
er

ag
e

M
PK

I PMPM-L
PPM

Figure 2: Misprediction rates of PMPM-L predictors and the original PPM predictor.

From Figure 2, it can be seen that on average, combining multiple partial matches can
provide higher prediction accuracy than utilizing a single partial match. Combining too many
partial matches, on the other hand, can be harmful since many low-order Markov chains are
included, which are susceptible to noises.

3. The Idealistic PMPM Predictor

Similar to PPM predictors, PMPM predictors require extensive history information and the
number of different (branch address, history) pairs increase exponentially with the history length.

GAO & ZHOU

 4

Therefore, modeling an idealistic PMPM predictor to push the limit of branch prediction accuracy
is still a challenge. In CBP2, we developed an idealistic PMPM predictor which explores
extremely long global history (651) information with acceptable requirements on memory storage
and simulation time.

3.1. Predictor Structure

The overall predictor structure is shown in Figure 3. We use a per-branch tracking table (PBTT)
to record some basic information of each static branch. PBTT is a 32k-set 4-way cache structure.
Each PBTT entry includes the branch address, LRU bits for replacement, a branch tag, a 32-bit
local history register (LHR), a meta counter used to select either GHR-based or LHR-based
predictions, a bias counter, and a simple (bias) branch predictor. A unique tag is assigned to each
static branch and it is used to replace the branch address in index and tag hashing functions. Since
there are a large number of highly biased branches, we use a simple bias branch predictor to filter
them out. The simple bias branch predictor detects fully biased (always taken or always not taken)
branches. A branch only accesses the main PMPM predictor when it is not fully biased. For those
branches, PBTT sends the branch tag, LHR, the meta counter, and the bias counter to the PMPM
predictor.

Figure 3: The overall idealistic PMPM branch prediction scheme.

The PMPM predictor is used to implement the PMPM algorithm with extremely long history
information. The structure of it is shown in Figure 4. There are three prediction tables in the
PMPM predictor. A short-GHR table is used to store information corresponding to the most
recent 32-bit global history. A long-GHR table is used to store information corresponding to
longer global histories. We also use a LHR table to make local-history-based predictions and the
LHR table uses 32-bit local histories. Those three prediction tables are 4-way set-associative
structures and each entry has a tag, an LRU field, a prediction counter (ctr), a usefulness counter
(ubit), and a benefit counter (bf). In order to capture very long global histories, we use geometric
history lengths [12] in the long GHR table.

PC LRU br tag LHR meta ctr bias ctr simple br prediction

per-branch tracking tablePC

GHR

PMPM

predictor

br tag
LHR

meta ctr & bias ctr

Path

simple br?

 simple br prediction

prediction

prediction

PMPM: PREDICTION BY COMBINING MULTIPLE PARTIAL MATCHES

 5

Figure 4: An optimized idealistic PMPM predictor.

3.2. Prediction Policy

We hash the branch tag, global history, path history, history length to get the index and tag to
access each table in the PMPM predictor. We use similar hash functions to those in [18] and [8]
with empirically selected prime numbers. The index and tag hash functions use different primary
numbers.

We use the short GHR table to store global histories with lengths from 1 to 32. For longer
histories, we use 21 different lengths in order to reduce the storage requirement. Both short and
long GHR tables use 32-bit path histories. M of the hit counters (i.e., the prediction counters with
a tag match) are summed up with the bias counter to generate the GHR-based prediction. The
LHR prediction table works the same way as the short GHR table with the selection of N hit
counters. The final prediction is selected by the meta counter.

3.3. Update Policy

The prediction counters in the prediction tables are updated if they have a tag match with the
current branch. The tag contains both branch address and context information as described in
Section 3.2.

In the case of a miss, i.e., when the branch history has not been retained in the tables, new
entries are allocated in the following manner:

• For the short-GHR table, we assign new entries when the meta counter indicates that the LHR
prediction table is not sufficient to make correct predictions. When the meta counter is
saturated to the direction of using the LHR-based prediction and the prediction is correct, we
assume that using the LHR-based prediction is sufficient.

• For the long-GHR table, we assign new entries when the overall prediction is wrong.

• For the LHR table, we always assign new entries.

 LHR GHR Path historyInput

meta ctr & bias ctrbr tag

 Short-GHR table
 tag LRU ctr ubit bf

 Long-GHR table
 tag LRU ctr ubit bf

 LHR table
 tag LRU ctr ubit bf

GHR-based
prediction

select M longest
matched counters bias ctr

Final prediction

meta ctr

∑ ∑

select N longest
matched counters

LHR-based
prediction

GAO & ZHOU

 6

3.4. Optimizations

In order to further improve the accuracy of the proposed idealistic PMPM predictor, we track the
usefulness of each prediction counter using the usefulness (ubit) and benefit (bf) fields in the
same entry. The ubit shows whether the prediction counter agrees with the branch outcome and
the benefit counter shows whether the inclusion of the prediction counter is beneficial. The reason
is that for some prediction counters, the inclusion has no or harmful impact on the final prediction
since other prediction counters may be sufficient to make a correct prediction.

With the usefulness and benefit counters, we make two predictions: a prediction (ubit_pred)
obtained by selecting the useful (ubit >= 0) counters and a prediction (final_pred) by selecting
useful and beneficial (ubit >= 0 && bf >= 0) counters. The final_pred is used as the final
prediction. The ubit_pred is used to update the benefit counter as follows:

If the prediction counter was not included, the ubit_pred would change from correct to wrong.
In this case, we increase the corresponding benefit counter.

If the prediction counter was not included, the ubit_pred would change from wrong to correct.
In this case, we decrease the corresponding benefit counter.

Otherwise, the inclusion of the prediction counter has no impact on the prediction. We will
not update the benefit counter in this case.

3.5. Prediction Accuracy

We simulate the proposed idealistic PMPM predictor with the configurations shown in Table 1.
The configurations are based on our empirical tuning under the memory consumption and
simulation time constrains of CBP2.

Short-GHR Prediction Table 1M sets, 4-way
Long-GHR Prediction Table 2M sets, 4-way
LHR Prediction Table 512K sets, 4-way
Max # of selected counters for GHR matches 7
Max # of selected counters for LHR matches 16
Minimum GHR length of the geometric history
lengths used by the Long-GHR Table

38

Maxmum GHR length of the geometric history
lengths used by the Long-GHR Table

651

Range of a prediction counter [-6, +6]
Range of a ubit [-1, +1]
Range of a benefit counter (bf) [-31, +31]

Table 1: Idealistic Predictor Configuration.

With the configuration shown in Table 1, the simulator consumes around 226M bytes of
memory and takes 1.65 hours to finish all CBP2 distributed traces on a Xeron 2.8Ghz computer.
The final misprediction rates (measured in MPKI) of the idealistic PMPM predictor (labeled as
“IPMPM-GL”) are shown in Table 2. In order to show the impact of using local branch histories,
we also provide the performance of using only global histories (labeled as “IPMPM-G”). For
comparison, Table 2 also includes the misprediction rates of the PPM predictor (labeled as
“PPM”). The PPM predictor is implemented using the idealistic predictor presented in Figure 4
except that the longest match is used instead of combining multiple matches. From Table 2, we

PMPM: PREDICTION BY COMBINING MULTIPLE PARTIAL MATCHES

 7

can see that with the same predictor structure, the PMPM algorithm achieves significantly higher
prediction accuracy than PPM for all traces except perlbmk. The misprediction rates reduction is
up to 20.9% (gzip) and 15.2% on average. Although the idealistic PMPM predictor can explore
very long global histories, we notice that local histories are still helpful for all traces. Without
local histories, the average misprediction rate is increased from 2.824 MPKI to 2.969 MPKI.

Trace PPM IPMPM-GL IPMPM-G Trace PPM IPMPM-GL IPMPM-G
gzip 11.977 9.470 10.334 vpr 10.096 8.273 8.318
gcc 2.748 2.594 2.615 mcf 9.258 7.688 7.714
crafty 2.083 1.794 1.848 parser 4.404 3.928 4.201
compress 6.526 5.167 5.522 jess 0.302 0.290 0.337
raytrace 0.274 0.272 0.368 db 2.721 2.199 2.263
javac 1.054 0.930 1.040 mpegaudio 1.051 0.922 1.041
mtrt 0.326 0.318 0.396 jack 0.484 0.472 0.524
eon 0.246 0.239 0.292 perlbmk 0.177 0.192 0.335
gap 1.164 1.081 1.446 vortex 0.090 0.087 0.152
bzip2 0.036 0.032 0.040 twolf 11.591 10.529 10.590

Average PPM: 3.330 IPMPM-GL: 2.824 IPMPM-G: 2.969

Table 2: Misprediction rates of the idealistic predictors using the PPM and PMPM algorithms.

3.6. Impact of Loop Branches in the Idealistic PMPM Predictor

It has been shown that a loop predictor is helpful for perceptron predictors [3] and the TAGE
predictor [12], [13]. In this experiment, we study the impact of augmenting a loop predictor [19]
to the idealistic PMPM predictor. In order to predict regular loop branches, we add a loop
predictor in the PBTT table to track the branch outcome pattern for each static branch. If the
pattern shows the behavior of a loop branch (e.g., taken, taken, …, not-taken) and has the same
number of iterations successively for at least 8 time, we will assume it is a loop branch. The
average misprediction rates of the idealistic PMPM predictors with the loop predictor are shown
in Table 3. For the IPMPM-G predictor that does not use local histories, the loop predictor helps
to reduce the misprediction rate by 0.068 MPKI (from 2.969 to 2.901 MPKI). However, for the
IPMPM-GL predictor with 32-bit local histories the benefit of loop predictor is very marginal
(0.006 MPKI). Since the IPMPM-GL predictor is able to capture small loops (number of
iterations is less than or equal to 31) with local histories, the benefit of extra loop prediction
support is only useful for loops with a higher number of iterations. As shown in Table 3, if the
loop predictor is only used to capture small loops by limiting number of iterations less than 32,
there is no improvement over the IPMPM-GL predictor. When a loop predictor is included to
only target at the loops with numbers of iterations larger than 32, the average misprediction rate is
reduced from 2.824 to 2.815 MPKI.

GAO & ZHOU

 8

Predictor AVG MPKI
IPMPM-G 2.969
IPMPM-GL 2.824
IPMPM-G + Loop 2.901
IPMPM-GL + Loop 2.818
IPMPM-GL + Loop (# of iterations <= 31) 2.827
IPMPM-GL + Loop (# of iterations > 31) 2.815

Table 3: Misprediction rates of the idealistic PMPM predictors without / with loop branch
prediction.

4. Realistic PMPM Predictor

In this section, we present our PMPM branch predictor design for practical implementation. As
discussed in Section 2, the PMPM algorithm is built upon PPM. Therefore, we choose to develop
our design based on the recently proposed PPM-like branch predictors [10], [18], the TAGE
branch predictor [18] in particular.

4.1. Predictor Structure

The overall structure of the proposed PMPM predictor is shown in Figure 5. The predictor
structure is very similar to a TAGE predictor, except that a local history prediction table is
incorporated. The prediction and update policies, however, are completely redesigned to
implement the PMPM algorithm.

Figure 5: The practical PMPM predictor.

As shown in Figure 5, the PMPM predictor contains a bimodal prediction table [21], seven
global prediction tables (labeled as “gtable0” to “gtable6”) indexed by the branch address, global
history and path history, and a local prediction table (labeled as “ltable”) indexed by the branch
address and local history. Geometrical history lengths [12] are used for the global prediction
tables: gtable6 is associated with the shortest global history and gtable0 is associated with the
longest global history. Each entry of the global and prediction tables has three fields: a tag, a
signed saturated prediction counter (labeled as “ctr”) and an unsigned saturated counter (labeled

…
BIM
table

 ltable

 tag ctr ubit

gtable6 gtable5 gtable0

pc pc, lhr pc, ghr,
path

tag: pc tag:
pc, ghr

gtable counter selection logic

∑

prediction

local
history
table

pc

lhr

ltable counter selection logic

PMPM: PREDICTION BY COMBINING MULTIPLE PARTIAL MATCHES

 9

as “ubit”) to track the usefulness of the prediction counter. Index and tag hashing functions for
the global prediction tables are the same as those used in TAGE predictors. The local prediction
table uses hashed branch address and local history as the index and the XOR-folded (i.e., PC ^
(PC >> M)) branch address as the tag.

4.2. Prediction Policy

The first phase of prediction is to calculate indexes and tags for each table. Among the entries that
have tag matches (i.e, the hit entries), we select out up to 4 prediction counters from global
prediction tables and sum those counters together with the prediction counter from the local
prediction table, if there is a hit, and the counter from the bimodal table. If the sum is zero, we use
the prediction from the bimodal table. Otherwise we use the sign of the sum as the prediction. In
order to reduce the latency of counter selection, we devise a simple policy to select up to 4
counters from the global prediction tables rather than selecting several prediction counters with
longest matches as used in the idealistic PMPM predictor. We divide the global prediction tables
into 4 groups, (gtable6, gtable5), (gtable4, gtable3), (gtable2, gtable1) and (gtable0), and select
out the longer match from each group.

The prediction counter from the local prediction table (ltable) is used only if its usefulness
(ubit) is larger than 1.

The (tag-less) bimodal counter is always used in the summation process.

4.3. Update Policy

The prediction counter in the bimodal table is always updated. The update policies of the global
prediction tables and the local prediction table are described as follows.

Similar to the perceptron predictor [5], [7], and the O-GEHL predictor [12], the prediction
counters of the global prediction tables are updated only when the overall prediction is wrong or
the absolute value of the summation is less than a threshold. We also adopt the threshold
adaptation scheme proposed in the O-GEHL predictor to dynamically fit different applications.
We only update those counters that have been included in the summation. At the same time, for
each of these prediction counters, the associated ubit counter is incremented when the prediction
counter makes a correct prediction. In the case of a misprediction, we try to allocate a new entry.
The new entry will be selected from tables where the branch misses. We select one entry that has
a zero ubit from those tables as a new entry allocated for the current branch. If there are multiple
entries with zero ubits, we select the one with the shortest history length. If there is no entry with
a zero ubit, we don’t allocate a new entry. At last, for each entry corresponding to a longer history
than the longest match, its ubit counter is decremented.

If current branch hits in the local prediction table, we always update the prediction counter.
The ubit counter is decremented if the corresponding prediction counter makes a wrong
prediction. If the prediction counter makes a correct prediction, we increment ubit only when the
overall prediction is wrong. If the current branch does not hit in the local prediction table and the
overall prediction is wrong, we will try to allocate a new entry in the local prediction table. If the
indexed entry has a zero ubit, a new entry is allocated. Otherwise, its ubit counter is decremented.

The base update policy described above is also improved by two optimizations. First, we
modify the update policy so that in each group of two global prediction tables, a new entry will
not be allocated in the table with shorter history length if the branch hits in the table with longer
history length. Second, for applications with a large number of hard-to-predict branches, some

GAO & ZHOU

 10

otherwise useful entries could be evicted due to frequent mispredictions using the base update
policy. To address this issue, we use a misprediction counter to periodically detect those
applications/program phases with a large number of hard-to-predict branches. For those
application/phases, we slightly vary the update policy: on a misprediction, we don’t decrement
the ubit counters in those prediction tables that have tag misses if we already allocate a new entry;
and we will decrement ubit of the longest match only if its prediction counter is wrong. In this
way, we limit the chance of useful entries to be victimized by those hard-to-predict branches.

4.4. Hardware Complexity and Response Time

Similar to TAGE and O-GEHL predictors, the response time of the proposed PMPM predictor
has three components: index generation, prediction table access, and prediction computation logic.
In the proposed PMPM predictor, we use similar index functions to those in TAGE. The index
and tag generation for the local prediction table has two sequential parts, the local branch history
(LHR) table access and simple bitwise XOR of the LHR and the branch address for index. Since
we use a small 1K-entry tagless LHR table with short LHRs, we assume the overall latency for
generating index for the local prediction table is comparable to the complex index functions for
global prediction tables, i.e., one full cycle. The prediction table access is also similar to the
TAGE predictor. Rather than selecting the longest two matches (for the optimization related to
the newly allocated entries) as in the TAGE predictor, we use an adder tree with up to 6 5-bit
values to calculate the prediction, which should have similar latency to the prediction
computation of the O-GEHL predictor. Therefore, we expect the response time of the proposed
PMPM predictor should be very close to the TAGE or O-GEHL predictors.

4.5. Ahead Pipelining

As the prediction latency is more than one cycle, we use ahead pipelining [16] to generate one
prediction per cycle. Assuming 3-cycle prediction latency, our 3-block ahead pipelining scheme
for the PMPM predictor is shown in Figure 6. The impact of ahead pipelining on the prediction
accuracy of the proposed PMPM predictors will be examined in Section 5.5.

Cycle4 Cycle3Cycle2Cycle1

A

1. Use PC(B), GHR(A)
and PATH(A) to
calculate the indexes
for the bimodal table
and gtables.
2. Use PC(B) to read
the local history and
calculate the index of
ltable.

1. Use PC(C), GHR(B)
to calculate tags.
2. Read 4 adjacent
entries from each
prediction table. Tag
comparisons may also
be finished in this
cycle.

1. Calculate 4 potential
predictions.

2. Use the outcomes of
B and C to select out
one prediction.

B C D

Prediction of D
is available

Initiate a 3-block ahead
prediction

Figure 6: A 3-block ahead scheme for PMPM branch predictors. Four basic blocks ending with

branches A, B, C and D are fetched in cycle1 to cycle4. Associated operations in each
cycle are listed in the figure.

It has been shown in [20] that speculative updates of branch history are important for
prediction accuracy and an outstanding branch queue (OBQ) is proposed to manage speculative

PMPM: PREDICTION BY COMBINING MULTIPLE PARTIAL MATCHES

 11

updates of both global and local branch histories. With ahead pipelining, the global history can be
managed in the same way as proposed in [20]. However, for updating local histories, the indexes
of the local history table and the OBQ need to use the n-block ahead branch address instead of the
current branch address. In this paper, we assume that an OBQ is available to manage speculative
updates for local branch history. Considering the extra hardware complexity of the OBQ, we also
report the results of PMPM predictors without local histories in Sections 5.

5. Performance Evaluation of the Realistic PMPM predictor

In this section, we study the performance and explore design trade-offs of realistic PMPM
predictors.

5.1. Prediction Accuracy

As the PMPM predictor is built upon the TAGE predictor, we compare their prediction accuracies.
In this experiment, we simulated two 32kB PMPM predictors, a PMPM predictor with both
global histories and local histories (labeled as “PMPM-GL”) and a PMPM predictor with only
global histories (labeled as “PMPM-G”), and one 32kB TAGE predictor.

The detailed configurations of the predictors are shown in Table 4. The configuration for the
TAGE predictor is scaled from what presented in [18]. In stead of tuning the PMPM predictors,
we use the same global history input and similar table structures as the TAGE predictor for a fair
comparison. Compared to the TAGE predictor, the PMPM predictors have larger prediction
counters but smaller tags. A larger prediction counter is necessary for the PMPM predictors to
suppress noises in the summation process. In order to save some space for local history related
tables, the PMPM-GL predictor has a smaller bimodal table and smaller tags for three gtables
compared to the PMPM-G predictor. All bimodal tables in Table 4 have the same number of
prediction bits and hysteresis bits.

History 10 bits local history; Geometrical global histories from 5 to 131;
16 bits path history.

Table sizes bimodal table: 8k entries; gtables: 2k entries; ltable: 1k entries;
LHR table: 1k entries.

Counter widths Prediction ctr: 5 bits; ubit counter: 2 bits. PM
PM

-G
L

Tag widths gtable4 to gtable6: 8 bits; gtable0 to gtable3: 9 bits; ltable: 5 bits.

History Geometrical global histories from 5 to 131; 16 bits path history.
Table sizes bimodal table: 16k entries; gtables: 2k entries.

Counter widths Prediction ctr: 5 bits; ubit counter: 2 bits. PM
PM

-G

Tag widths 9 bits.

History Geometrical global histories from 5 to 131; 16 bits path history.
Table sizes bimodal table: 16k entries; gtables: 2k entries.

Counter widths Prediction ctr: 3 bits; ubit counter: 2 bits. TA
G

E

Tag widths 11 bits

Table 4: Configurations of the PMPM-GL, PMPM-G and TAGE predictors with a 32kB
storage budget.

GAO & ZHOU

 12

 Table 5 shows the misprediction rates of those three predictors. Compared to the TAGE
predictor, the average misprediction reductions of 6% and 2% are achieved by the PMPM-GL
and the PMPM-G predictors, respectively. The PMPM-GL predictor achieves higher prediction
accuracy than the TAGE predictor for all traces except gcc. Since the PMPM predictor has
smaller tag widths, it is more sensitive to aliasing than the TAGE predictor. The gcc trace has a
large number of static branches, which result in many aliases and degrade the performance of the
PMPM predictor.

Trace PMPM-
GL

PMPM-G TAGE Trace PMPM-
GL

PMPM-G TAGE

gzip 9.685 10.300 10.899 vpr 8.926 9.003 9.361
gcc 3.826 3.794 3.536 mcf 10.182 10.128 10.254
crafty 2.555 2.558 2.682 parser 5.332 5.437 5.422
compress 5.571 5.827 5.934 jess 0.413 0.464 0.456
raytrace 0.652 1.112 1.099 db 2.343 2.408 2.527
Javac 1.105 1.144 1.160 mpegaudio 1.093 1.137 1.163
mtrt 0.734 1.188 1.139 jack 0.724 0.845 0.831
eon 0.305 0.470 0.487 perlbmk 0.319 0.497 0.480
gap 1.436 1.776 1.783 vortex 0.141 0.336 0.312
bzip2 0.037 0.043 0.041 twolf 13.447 13.466 13.758

Average PMPM-GL: 3.441 PMPM-G: 3.597 TAGE: 3.666

Table 5: Misprediction rates (MPKI) of the PMPM-GL, PMPM-G and TAGE predictors with a
32kB storage budget.

5.2. Design Space Exploration

Similar to recently proposed multi-table branch predictors [10], [12], [18], the PMPM predictor
has a large design space. In this section, we examine the impacts of different design parameters of
PMPM predictors, including the maximum global history length, the prediction counter size, and
the number of global prediction tables. For each of those parameters, we also vary the table sizes
to show the trend under different storage constraints. Due to their limited impact on prediction
accuracy, we keep intact the local history length and the path history length. For those parameters,
the same configurations as presented in Table 4 for the PMPM-GL predictor are used. In addition,
we only use one local prediction table and fix the ubit counter width as 2. The minimum global
history length (i.e., the number of global history bits used in the gtable corresponding to the
shortest global history) is set to 4, which is optimal in our experiments.

For the ease of the discussion, we parameterize the configurations of PMPM-GL predictors in
the following manner. We assume that the local prediction table has 2N entries. The sizes of other
tables are then scaled based on that of the local prediction table, as shown in Table 6. The total
number of bits of the prediction counter and the tag in each entry of a prediction table is also
specified in Table 6 based on our empirical tuning results. If we use seven gtables, 5-bit
prediction counters, and N set as 10, the resulting configuration would be exactly the same as the
PMPM-GL predictor in Table 4. When we change the number of gtables to K, up to 2/K
prediction counters will be summed since the prediction policy is designed to select one counter
out of each group of two gtables.

PMPM: PREDICTION BY COMBINING MULTIPLE PARTIAL MATCHES

 13

Table Ltable gtable (0 to 3) Other gtables Bimodal table LHR table

Entries 2N 2N+1 2N+1 2N 2N
pred ctr + tag 10 bits 16 bits 15 bits

Table 6: Parameterized configuration of PMPM predictors.

We first study the impact of the maximum global history length on PMPM predictors. With
seven gtables and 5-bit prediction counters, we vary the maximum global history lengths from 50
to 400 for PMPM-GL predictors. For each history length, we also change the sizes of prediction
tables by varying N from 9 to 12, corresponding to the storage budget ranging from 128 kbits to
1024 k btis. The average misprediction rates of those predictors are reported in Figure 7. As
shown in the figure, the misprediction rates typically decrease when we increase the maximum
history length. The reduction, however, is very limited when the maximum history length is
beyond 150. For example, among all the different history lengths that we examined from 150 to
400 for the 256 kbits (N = 10) PMPM predictor, the minimum misprediction rate is 3.43 MPKI
and the maximum misprediction rate is 3.45 MPKI. Such robustness makes the predictor
insensitive to the selection of the maximum global history length and this observation is
consistent with the findings from the O-GEHL and TAGE predictors [15], [18]. For remaining
experiments presented in this subsection, we use 160 as the maximum history length.

3

3.2

3.4

3.6

3.8

4

4.2

50 100 150 200 250 300 350 400
Maximum History Length

M
PK

I

128 kbits 256 kbits
512 kbits 1024 kbits

Figure 7: Misprediction rates of the PMPM predictors with different maximum global history

lengths.

Second, we determine the prediction counter size of PMPM-GL predictors. With a limited
storage budget, the prediction counters compete with the tag bits for resource. As a result, if we
use large prediction counters to account for hysteresis, the reduced tag bits may result in
increased many aliases due to partial tag matching. In order to find the optimal tradeoff between
the prediction counter sizes and tag widths, we simulate PMPM-GL predictors by varying the size
of the prediction counters from 2 to 8 bits. The maximum history length is set as 160 as
determined from the previous experiment. The misprediction rates of those PMPM-GL predictors
are shown in Figure 8. It can be seen that small prediction counters are very sensitive to noise
even for large tables, resulting in high misprediction rates. Limited tag widths as a result of large
prediction counters expose the problem of aliasing, especially for small prediction tables. Among
different prediction counter sizes, the best tradeoff is achieved when we use 5-bit prediction
counters. Therefore, in remaining experiments, we keep the prediction counter size as 5 bits.

GAO & ZHOU

 14

3
3.2
3.4
3.6
3.8

4
4.2
4.4
4.6
4.8

5

2 3 4 5 6 7 8
Prediction Counter Size

M
PK

I

128 kbits 256 kbits
512 kbits 1024 kbits

Figure 8: Misprediction rates of the PMPM predictors with different prediction counter sizes.

Next, we study the impact of different number of global prediction tables in PMPM-GL
predictors. With more prediction tables, more partial matches can be available to be combined,
which potentially may improve prediction accuracy. On the other hand, extra prediction tables
will increase the complexity of the predictor since more prediction counters need to be summed
to produce the final prediction. Table 7 presents the misprediction rates of PMPM-GL predictors
with 4 to 9 gtables under different storage budgets. It can be seen from the table that more gtables
show higher prediction accuracy by integrating more prediction counters. For example, the 256
kbits (N = 10) PMPM predictor with 7 gtables has higher accuracy than the 664 kbits (N = 12)
PMPM predictor with 4 gtables (3.427 MPKI vs. 3.451 MPKI). Among different number of
gtables, seven gtables provides a good tradeoff between cost and complexity since further
increasing the number of gtables only results in marginal returns.

N Number of gtables 4 5 6 7 8 9

Predictor size (kbits) 83 98 113 128 143 158
9

AVG MPKI 4.201 3.970 3.869 3.789 3.760 3.714

Predictor size (kbits) 166 196 226 256 286 316
10

AVG MPKI 3.741 3.562 3.497 3.427 3.413 3.379

Predictor size (kbits) 332 392 452 512 572 632
11

AVG MPKI 3.590 3.416 3.374 3.311 3.321 3.289

Predictor size (kbits) 664 784 904 1024 1144 1264
12

AVG MPKI 3.451 3.311 3.282 3.238 3.239 3.213

Table 7: Misprediction rates of the PMPM predictors with different numbers of gtables and
predictor sizes.

5.3. Impact of Fully Biased Branches in the Realistic PMPM Predictor

In many applications, a large number of branches have highly biased outcomes (i.e., always taken
or always not-taken). A simple bias predictor was proposed in [3] to filter out those branches in
order to reduce the aliasing impact on main prediction tables. To study the impact of highly
biased branches on PMPM-GL predictors, we augment them with a bias predictor as proposed in
 [3]. The experimental results show that a small bias predictor with 1k entries provides no benefit
to the 256 kbits PMPM-GL predictor. A large bias predictor with 64k entries only reduces the
average misprediction rate by 0.006 MPKI. The reason is that the bimodal prediction table in
PMPM-GL predictors already filters out most of those highly biased branches.

PMPM: PREDICTION BY COMBINING MULTIPLE PARTIAL MATCHES

 15

5.4. Impact of Loop Branches in the Realistic PMPM Predictor

We also tried to combine PMPM predictor with a low cost loop predictor [19], [3], [12] to
examine how accurate loop branches are predicted. The loop predictor has 256 entries and
consumes 13 kbits storage budget. The experimental results show that the extra loop predictor
reduces the misprediction rate of the 256 kbits PMPM-G predictor without using local histories
by 0.058 MPKI. The reduction of misprediction rate of the PMPM-GL predictor with both global
and local histories is 0.01 MPKI. Those results are consistent with the discussion of using the
loop predictor for idealistic PMPM predictors in Section 3.6.

5.5. The Realistic PMPM Predictor for CBP2

Based on our design space exploration, we chose to use the following configuration for a 256
kbits PMPM predictor: minimum global history length as 4, seven gtables, and 5-bit prediction
counters. In order to further improve the prediction accuracy of PMPM predictors, we empirically
fine tuned the configurations and used several optimizations for our realistic PMPM predictor for
CBP2. The optimizations are listed as follows:

1) In the bimodal prediction table, four prediction bits will share one hysteresis bit as
proposed in [17].

2) We use the number of branches that miss in all global prediction tables as a metric to
detect traces with large branch footprints. For those traces, we periodically reset the ubits
as used in the TAGE predictor.

3) If the predictions from global prediction tables are same, we will not update the ubits.

Considering the extra hardware to support local history management, we submitted two
versions of the PMPM predictor to CBP2. One predictor (labeled as “PMPM-CBP2-GL”) uses
both global and local histories. The other (labeled as “PMPM-CBP2-L”) only uses global history.
The detailed configurations and hardware costs of those two predictors are shown in Table 8. The
prediction accuracies of these PMPM predictors are shown in Table 9. From the table, we can see
that the local history is still important for some traces (e.g., raytrace, mtrt and vortex) although
we already use a very long global history.

With the ahead pipelining scheme described in Section 4.5, we simulated the proposed
PMPM predictions with ideal 1-block ahead and 2 to 4-block ahead pipelining schemes. The
prediction accuracies of them are shown in Figure 9. From the figure, it can be seen that with 3-
block ahead pipelining, the average accuracy loss is about 0.11 MPKI for the PMPM-CBP2-G
predictor compared to ideal 1-block ahead pipelining. The accuracy loss for the PMPM-CBP2-
GL predictor is about 0.15 MPKI. As discussed in Section 4.5, with ahead pipelining, the local
history table is indexed by the n-block ahead branch address, which will introduce extra aliasing
to the local history table and increase the accuracy loss of the PMPM-CBP2-GL predictor.

GAO & ZHOU

 16

3.2
3.3
3.4
3.5
3.6
3.7
3.8

1-block 2-block 3-block 4-block

Av
er

ag
e

M
PK

I

P M P M -CB P 2-GL
P M P M -CB P 2-G

Figure 9: Misprediction rates of the ahead pipelined PMPM predictors for CBP2.

 PMPM-CBP2-GL PMPM-CBP2-G
Each prediction counter 5 (bits) 5 (bits)
Each ubit 2 (bits) 2 (bits)
History lengths for gtable 6 to
gtable 0

4, 7, 15, 25, 48, 78, 203 4, 7, 15, 25, 48, 78, 203

Number of entries for each gtable 2k 2k
Tag widths for gtable 6 to gtable 0 6, 7, 7, 8, 9, 10, 10 (bits) 7, 8, 8, 10, 11, 12, 12 (bits)
Total cost of gtables 217088 (bits) 239616 (bits)
Local prediction table 1k entries; 5 bits tags
Cost of the ltable 12288 (bits)
Local history table 1k entries; His Len: 11
Cost of the local history table 11264 (bits)
Cost of the bimodal table 20480 (bits) 20480 (bits)
Global history register 203 (bits) 203 (bits)
Path history register 16 (bits) 16 (bits)
Cyclic shift registers for gtable
tags and indexes

184 (bits) 206 (bits)

Cost of adaptation counters and
flags

71 (bits) 71 (bits)

Total Hardware Cost 261594 (bits) 260592 (bits)

Table 8: Predictor Configurations and Hardware Costs.

Trace CBP2-GL CBP2-G Trace CBP2-GL CBP2-G
gzip 9.712 10.346 vpr 8.945 9.063
gcc 3.690 3.637 mcf 10.092 10.033
crafty 2.581 2.565 parser 5.215 5.244
compress 5.537 5.819 jess 0.393 0.433
raytrace 0.542 0.963 db 2.319 2.380
javac 1.107 1.159 mpegaudio 1.102 1.159
mtrt 0.657 1.009 jack 0.688 0.763
eon 0.276 0.359 perlbmk 0.314 0.484
gap 1.431 1.745 vortex 0.137 0.331
bzip2 0.037 0.042 twolf 13.551 13.616

Average PMPM-CBP2-GL: 3.416 PMPM-CBP2-G: 3.557

Table 9: Misprediction rates (MPKI) of the PMPM-CBP2-GL and PMPM-CBP2-G predictors.

PMPM: PREDICTION BY COMBINING MULTIPLE PARTIAL MATCHES

 17

6. Conclusions

In this paper, we show that the PPM algorithm with the longest match may lead to suboptimal
results. By combining multiple partial matches, the proposed PMPM algorithm can better adapt to
various history length requirements. An idealistic implementation of the PMPM predictor is
presented in the paper to evaluate how high the prediction accuracy can be achieved. We also
proposed a realistic design based on the PMPM algorithm. Our results show that the realistic
PMPM predictors can achieve higher accuracy than the TAGE predictors with the same storage
cost.

References

[1] I.-C. Chen, J. Coffey, and T. Mudge, “Analysis of branch prediction via data compression,”
in proceedings of the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-VII) , Oct. 1996.

[2] J. Cleary and I. Witten, “Data compression using adaptive coding and partial string
matching,” IEEE Transactions on Communications (TC), vol. 32, pp. 396-402, Apr. 1984.

[3] H. Gao and H. Zhou, “Adaptive information processing: An effective way to improve
perceptron predictors,” In the 1st JILP Championship Branch Prediction Competition
(CBP-1), 2004.

[4] H. Gao and H. Zhou, “Branch Prediction by Combining Multiple Partial Matches,”
Technical report, School of EECS, Univ. of Central Florida, Oct. 2006.

[5] H. Gao and H. Zhou, “PMPM: Prediction by Combining Multiple Partial Matches,” In the
2nd JILP Championship Branch Prediction Competition (CBP-2), 2006.

[6] D. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,” In proceedings of
the 7th International Symposium on High Performance Computer Architecture (HPCA-7),
2001.

[7] D. Jiménez and C. Lin, “Neural methods for dynamic branch prediction,” ACM Trans. on
Computer Systems, 2002.

[8] D. Jiménez, “Idealized piecewise linear branch prediction,” In the 1st JILP Championship
Branch Prediction Competition (CBP-1), 2004.

[9] T. Juan, S. Sanjeevan, and J. J. Navarro, “A third level of adaptivity for branch prediction,”
In Proceedings of the 25th Annual International Symposium on Computer Architecture
(ISCA-25), June 1998.

[10] P. Michaud, “A ppm-like, tag-based predictor,” In the 1st JILP Championship Branch
Prediction Competition (CBP-1), 2004.

[11] P. Michaud and A. Seznec, “A comprehensive study of dynamic global-history branch
prediction,” Research report PI-1406, IRISA, June 2001.

[12] A. Seznec, “A 256 Kbits L-TAGE Branch Predictor,” In the 2nd JILP Championship
Branch Prediction Competition (CBP-2), 2006.

[13] A. Seznec, “Looking for Limits in Branch Prediction with the GTL Predictor,” In the 2nd
JILP Championship Branch Prediction Competition (CBP-2), 2006.

GAO & ZHOU

 18

[14] A. Seznec, “The O-GEHL branch predictor,” In the 1st JILP Championship Branch
Prediction Competition (CBP-1), 2004.

[15] A. Seznec, “Analysis of the o-gehl branch predictor,” In proceedings of the 32nd Annual
International Symposium on Computer Architecture (ISCA-32), June 2005.

[16] A. Seznec and A. Fraboulet, “Effective ahead pipelining of the instruction address
generator,” In proceedings of the 30th Annual International Symposium on Computer
Architecture (ISCA-30), June 2003.

[17] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeidés, “Design tradeoffs for the ev8 branch
predictor,” In proceedings of the 29th Annual International Symposium on Computer
Architecture (ISCA-29), 2002.

[18] A. Seznec, P. Michaud, “A case for (partially) tagged Geometric History Length Branch
Prediction,” Journal of Instruction Level Parallelism (JILP), vol. 8, February 2006.

[19] J. Shen and M. Lipasti, “Modern Processor Design Fundamentals of Superscalar
Processors,” Mc Graw Hill, 2005.

[20] K. Skadron, M. Martonosi, and D. Clark, “Speculative updates of local and global branch
history: A quantitative analysis,” Journal of Instruction Level Parallelism (JILP), vol. 2,
January 2000.

[21] J. E. Smith, “A study of branch prediction strategies,” In proceedings of the 8th Annual
International Symposium on Computer Architecture (ISCA-8), 1981.

