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Abstract
In  this  paper,  we propose  a  Fused Two-Level  (FTL)  branch predictor  combined  with  an 

Ahead Calculation  method.  The FTL predictor  is  derived from the fusion hybrid  predictor.  It 
achieves high accuracy by adopting PAp-base Geometrical History Length (p-GEHL) prediction, 
which is  an effective  prediction scheme exploiting local  histories.  The p-GEHL predictor has 
several  prediction tables indexed from independent functions of the local branch histories and 
branch addresses.  The prediction is  computed through the summation of values read from the 
prediction tables. This approach effectively uses limited budget and allows accurate predictions. 
The Ahead Calculation is an effective implementation scheme for neural  predictors exploiting 
local histories such as the p-GEHL predictor. This scheme is the so-called pre-calculation method. 
The prediction result is computed when a previous branch with the same address was predicted, 
and the result is stored in a RAM, which is called Local Prediction Cache (LPC). The LPC reduces 
prediction latency since the predictor only has to read the RAM by branch address instead of 
computing the prediction through adder trees. We optimized our FTL branch predictor for the 
CBP-2 realistic track infrastructure. This optimized-FTL branch predictor with Ahead Calculation 
achieved 3.466 MPKI with a 262,400-bit budget.

1. Introduction

This study focuses on branch predictors that exploit local histories. The local history correlates 
with  accurate  branch  prediction  as  demonstrated  by  the  fact  that  three  finalists  of  the  First 
Championship Branch Prediction Competition (CBP-1) exploited local histories [7], [10], [14]. 
However, prediction with local histories has difficulties. One of the most significant problems is 
the long latency of the prediction phase. Long prediction latency prevents the processor from 
improving its performance. We describe an effective prediction method using local history and a 
feasible prediction structure that has sufficiently short latency to exploit local history.

Section 2 introduces the principles and features  of the FTL predictor,  a  derivative of the 
fusion hybrid branch predictor. In section 3, we propose an Ahead Calculation method to reduce 
the latency of complex local predictors. In section 4, we describe the Enhanced Folded Indexing 
method,  which  is  a  complexity-effective  indexing  function  for  the  global  predictors.  Other 
optimization tricks for the CBP-2 are described in section 5. In section 6, we describe a FTL 
branch predictor optimized for the CBP-2 contest rule, evaluate it in several configurations, and 
present the simulation results. Other analyses are shown in section 7. Finally, we conclude in 
section 8.
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2. Fused Two-Level (FTL) Branch Prediction

FTL Branch Prediction is derived from the fusion hybrid branch predictor, which has been used 
for  accurate  predictions  in  previous  studies  [9],  [14].  These  prediction  algorithms  combine 
several independent prediction results by skewing methods. This eliminates the weak points of 
each prediction algorithm. In order to achieve a more accurate prediction we analyze traditional 
branch predictors by dividing them into four groups. We then propose a more effective branch 
prediction algorithm based on the analysis, called the FTL branch prediction.

FTL  predictor  can  achieve  more  accurate  predictions  than  other  fusion  hybrid  branch 
predictors; however it has some implementation difficulties. One problem is the long prediction 
latency since it is detrimental to processor performance. However, here we focus on prediction 
algorithm, and later implementation difficulties such as the prediction latency will be discussed 
later in the following sections.

2.1. Four Groups of Two-Level Branch Predictors

Overview of the FTL algorithm is shown in Figure 1. The structure of this predictor is similar to 
the known fusion hybrid base predictors. This predictor has many prediction tables, each indexed 
with independent functions. These generate prediction through summations of values from each 
prediction table. In this scheme, the indexing function for each sub-predictor is one of the critical 
elements  in  prediction  accuracy,  since  the  prediction  result  is  determined  by these  indexing 
functions  and  tables.  To explore  the  best  indexing  function,  we divide  the  known two-level 
branch prediction algorithms into four groups. These groups are shown in Table 1.

In this table, the lines Global and Local indicate whether the predictor exploits global or local 
history. The two columns, Total and Partial indicate whether the indexing function involves all 
recent histories when it exploits an old history, and that indexing function does not involve recent 
histories (Figure 2). For example, the gshare predictor belongs to Global/Total category because 
it exploits (1) global history, and (2) H[1:N] when its global history length is N. On the other 
hand,  the Nth neuron of a simple perceptron predictor  is  computed by a single bit  of  global 
history H[N], which is not the recent history. This makes perceptron predictor a Global/Partial 
predictor. 

Each group has advantages and disadvantages. To cover each disadvantage, FTL employs 
three  groups  of  predictors  from  Global/Total,  Global/Partial,  and  Local/Total.  We  describe 
indexing policy of these three groups in the rest of this section.

Figure 1:  Fused Two-Level Branch Prediction.
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2.1.1. Global/Total predictor
Indexing functions of the Global/Total group are derived from GEHL predictor [2] since it is one 
of  the  most  accurate  Global/Total  predictors.  History  length  for  each  prediction  table  is 
determined by a geometrical series such as L(j) = aj-1・L(1). The indexing functions also involve 
path information since it has good correlation with branch accuracy. In this study, we exploit the 
least significant bit (LSB) of an instruction address as the path information.

Most state-of-the-art predictors such as gshare, bi-mode, 2BC-gskew, and GEHL belong to 
this group, thus we exploit this group as the main part of our FTL predictor. The other predictors 
support the Global/Total predictor.

2.1.2. Global/Partial predictor
Indexing functions of the Global/Partial group are derived from the MAC-RHSP predictor [4], 
which  exploits  partial  histories  effectively.  An  indexing  function  generates  the  address  of  a 
prediction table by a bit vector, which is a small part of global histories. The length of the bit 
vector  is  one  of  the  parameters.  This  group  also  exploits  the  path  information  for  accurate 
prediction. We also exploit the LSB of an instruction address as the path information. This MAC-

0. Boolean Total_Predict (Addr : integer)
1.   sum := 0
2.     for each i
3.       sum := sum + Wi(indexi(Addr, Hist[1:Li]))
4.       /* Each neuron exploits all histories which are newer than H[Li] */
5.     end for

6.   return (sum ≧ 0)
7. End Total_Predict

0. Boolean Partial_Predict (Addr : integer)
1.   sum := 0
2.     for each i
3.       sum := sum + Wi(indexi(Addr, Hist[Li:Li+1]))
4.       /* Each neuron does not exploit any histories which are newer than H[Li] */
5.     end for

6.   return (sum ≧ 0)
7. End Partial_Predict

Figure 2:  Total Prediction & Partial Prediction.

Table 1:  Group of Known Predictors.

Total Partial
Global Path-Base [6], Piecewise [7], [8]
Local

GAp[13], Gshare[12], GEHL[2]
PAp / Pag[13] Local Perceptron [5]
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RHSP approach also  reduces  the  predictor  complexity by reducing the  number  of  prediction 
tables and skewing adders from the classical perceptron predictor [5].

This  part  affords  less  destructive collisions of  the pattern history tables,  since each table 
involves smaller bit vector than the Global/Total predictors.

2.1.3. Local/Total predictor
The CBP-1 finalists did not exploit this group. However, this group has the potential for effective 
prediction. The indexing functions of Local/Total groups are the same as for the GEHL predictor, 
except  that  these  indexing  functions  exploit  local  histories.  We call  this  approach  PAp-base 
Geometrical History Length (p-GEHL) prediction. This approach uses a smaller adder tree than 
the Local/Partial approach since it does not need to employ many tables like a local perceptron.

This group has a serious problem in terms of prediction latency because the local predictor 
must read two tables―the local history table and pattern history table. This latency decreases the 
processor performance. The solution to this issue will be discussed in the following section.

2.2. Prediction and Updating Algorithm

The prediction algorithm was already introduced in section 2.1 and the updating algorithms are 
shown in Figure 3. This prediction algorithm is almost the same as the previous fusion hybrid 
predictors. An adder tree implements the fusing function. A prediction result is decided from the 
sign bit of the summation of values read from prediction tables. This scheme is derived from 
fusion hybrid predictor. The FTL updating policy is also derived from the fusion hybrid updating 

0. Boolean Predict (A : integer)
1.   sum := 0
2.     for each i
3.       sum := sum + Wi(indexi(Addr, Hist))
4.     end for

5.   return (sum ≧ 0)
6. End Predict

0. Void Update (A : integer, Outcome : boolean)
1.   if ((p!=Outcome) or (|Sum| < θ))
2.     for each i in parallel
3.       if Outcome = Taken then
4.         Wi(index(Addr, Hist)) :=Wi(indexi(Addr, Hist)) + 1
5.       else
6.         Wi(index(Addr, Hist)) :=Wi(indexi(Addr, Hist)) - 1
7.       end if
8.     end for
9.   end if
10.End Update

Figure 3:  Predicting and Updating Algorithm.
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policy. The FTL predictor is updated in case of missing prediction or when the absolute value of 
summation is smaller than the threshold θ.

3. Ahead Calculation Method

Local  predictors  suffer  from the  need to  read  two tables,  producing  latency far  too long for 
modern  processors.  To  resolve  this  issue,  we  propose  an  Ahead  Calculation,  which  is  an 
implementation technique that reduces the prediction latency.

3.1. Implementation Issues of Local Predictor

Modern predictors based on skewing fusion method suffer from long prediction latency, since it 
is difficult to finish their calculation quickly. In particular, it is difficult for a Local predictor, 
since the Local predictor must access two different tables―one for the local history table and 
another for the pattern history table. The long latency affects the processor performance. To avoid 
this latency, the modern predictors employ implementation techniques such as Ahead Pipelining. 
However, this method cannot be applied for Local predictors because they cannot read the local 
history table  until  the  target  branch  instruction  is  determined  [15].  Thus,  we propose  a  new 
implementation method called the Ahead Calculation method.

3.2. Ahead Calculation Algorithm

In this part,  we explain the Ahead Calculation method.  This technique reduces the prediction 
latency of Local predictors.  When the predictor makes a prediction, it  pre-calculates the next 
prediction result. This calculated result is stored for the next prediction in an area of RAM, called 
Local Prediction Cache (LPC). The predictor exploits the stored values when it predicts a branch 
with the same instruction address. The predictor with Ahead Calculation only need to read the 
LPC when it predicts a target branch. The prediction latency is then limited to the read latency of 

Figure 4:  Ahead Calculation Method on the p-GEHL Predictor.
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the LPC, whose latency is the same as that of the simple bimodal predictor, since the LPC is a 
simple RAM. This reduced latency is acceptable for modern processors. Figure 4 provides an 
overview of the Ahead Calculation.

3.3. Cost Estimation

External cost for Ahead Calculation is only that of the LPC. We exploit a 2048-entry LPC for 
squeezing for the CBP-2 contest rule and each entry is 7 or 8 bits. This implementation does not 
require any other costs such as the duplication of computing logic. Because LPC is a simple 
RAM,  it  also  requires  a  relatively  smaller  space  and  has  lower  power  consumption  than 
computational logics such as duplicated adder trees. Therefore, addition of LPC is not expensive 
for modern processors.

3.4. Read After Write Hazard Issue

The read after write (RAW) hazard, which can cause inaccurate prediction, can occur with the 
Ahead Calculation, since the speculative update of the LPC will require several cycles. However, 
the effect of the performance will be small. The RAW hazard occurs only when the prediction 
interval for one branch instruction is within a few cycles.  Such tight loops will be unrolled in 
optimized code or filtered by loop counter. This issue was intentionally ignored in the evaluation 
for  the CBP-2 competition,  and the performance  impact of  this  RAW hazard is  evaluated  in 
Section 7.1.

4. Enhanced Folded Indexing

The FTL predictor exploits long global history lengths, as does the GEHL predictor. To achieve 
complexity-effective  indexing  circuit  for  Global  predictors,  we  propose  an  enhanced  folded 
indexing function.

Figure  5  shows  first  complexity-effective  folded  indexing  method  for  branch  predictors, 
which was proposed in the previous CBP competition [11]. This folded indexing function can 
fold only one bit-vector series such as the global history. When a predictor exploits other bit-
vector information, such as path information,  the predictor  must  use another  folded indexing 
circuit or other complex indexing function.

To combine other information in a single folded indexing function, we extend the original 
folded indexing function. Figure 6 shows an example of combining a couple of bit vectors in one 
folding function. The enhanced folded indexing circuit is extended by including another couples 
of  2-bit  exclusive-or  circuits  to  fold  other  bit-vector  information.  This  same  approach  can 
combine three or more bit-vectors by employing exclusive-or pairs. In this indexing function, the 
implementation cost of the indexing function is still  circular shift  register and about ten 2-bit 
exclusive-ors. There is one 2-bit exclusive-or gate in the critical path of the indexing generation. 
This indexing function provides sufficient complexity-effectiveness for real processor and can be 
applied to other state-of-the-art predictors, such as GEHL or TAGE predictors.

Pipelined processors must employ some rollback method for missed predictions. We assumed 
that the rollback should occur only during the commit phase, since the folded indexing function 
requires in-order update. The predictor employs a pair of these enhanced indexing functions. One 
is used speculatively and updated during the prediction phase; the other is updated during the 
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commit  phase  and  used  for  checkpointing.  Once  the  rollback  occur,  the  checkpoint  register 
overwrite the speculative updated register. The external cost of this rollback mechanism is the 
copy registers, which requires only 10-bit circular shift register and a few pairs of exclusive-or 
circuits.  When the processor employs  tandem prediction scheme,  it  should employ one more 
checkpointing register for overwriting the speculative predictor.

5. Other Tricks

In  this  section,  we  describe  other  borrowed  implementation  techniques  and  simple  filtering 
methods  for  the  FTL  predictors.  These  techniques  are  not  essential  for  the  FTL  predictor; 
however, they can improve branch prediction accuracy. 

5.1. Simple Bias Filtering

Simple bias filtering filters strongly biased branches. It is implemented in a 1-bit array.  This 
table is indexed by the branch address and each entry is initialized by 0. When a prediction is 
required, the predictor reads this array with the branch address. When the value is 0, the predictor 
generates its prediction based only on the bias table of the FTL predictor. When the prediction 
result is wrong, the bias table must be updated and the used entry of the filtering array is set to 1 
except when the read bias value is zero. The predictor exploits other prediction methods when the 
value read from the bias filtering array is 1.

Figure 5:  Enhanced Folded Indexing Function.
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In a real processor, each entry of this array should be reset to 0 at the appropriate timing. 
Without  any reset  mechanisms,  almost  all  entries  of  this  array will  be  1  after  some  context 
switches,  and  then  simple  filtering  mechanism  does  not  work  well.  We  assumed  that  set-
associative structured branch target buffer Hit/Miss information is suitable for the reset timing. 
However, this resetting method cannot be implemented in the CBP-2 infrastructure because it has 
no  branch  target  buffer  instance.  Since  almost  all  modern  microprocessors  employ  the  BTB 
instance, this filtering method is feasible on real processors even if the filter does not have any 
reset mechanisms in the CBP-2 infrastructure. A case of the BTB-collaborated bias filtering is 
evaluated in Section 7.2.

Even if the processor cannot provide sufficient branch target buffer entries, there are several 
information sources such as an instruction cache replacement, which can be used as the reset 
timing of this simple bias filtering.

5.2. Bias Filtering by Branch Target Buffer

Thus,  simple  bias filtering should be implemented  with reset  mechanisms.  The most  feasible 
implementation is branch target buffer support, since almost all modern microprocessors employ 
a branch target buffer. Generally, the miss rate of a set-associative structured branch target buffer 
is less than that of a branch predictor since an accurate branch prediction becomes meaningless 
while the next address is not clear. Thus, it serves for the filtering mechanism. The prediction 
structure is very simple, and is shown in Figure 7. In this branch target buffer, the AlwaysTaken 
bit is added to each entry as an external branch information. An overview of this enhanced branch 
target buffer is shown in Figure 7.

The bias filter works when the AlwaysTaken bit is 1 or when the branch target buffer misses 
the target branch address. In this filter mechanism, the AlwaysTaken bit indicates that the branch 
result should be Taken; the branch target buffer miss means that the branch prediction should be 
NotTaken. The state diagram of this filtering algorithm is shown in Figure 8. In this algorithm, no 
entries  of  the  branch  target  buffer  are  replaced  while  the  branch  outcome  is  NotTaken.  It 
contributes to the effective use of limited storage, since any AlwaysNotTaken branches are not 
put in the branch target buffer, and it is good for filtering AlwaysNotTaken branches.

This feature is not evaluated in the CBP-2 competition since the CBP-2 infrastructure does 
not employ any branch target buffer instances. However, we evaluate this feature in Section 7.2 
since this filtering mechanism is suitable for modern microprocessors.

5.3. Loop Counter

We employ a loop counter to filter the simple loop branch instruction. Our loop counter technique 
is based on Gao's loop counting method [10]. It is a set-associative cache-structured loop counter. 
Each entry of this loop counter contains loop count information with a confidence value. This 
loop counter is feasible since it is not as complex as a set-associative structured branch target 
buffer. The optimized FTL predictor employs an 8-way set-associative loop counter. Gao's loop 
counter detects loops from backward branch instructions only, but our evaluation indicate that 
prediction accuracy is better when the counter detects forward branches as well. Moreover, our 
loop counter detects loop patterns from all conditional branches.
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5.4. Dynamic Threshold Fitting

The value of the updating threshold θ significantly affects the accuracy of a predictor whose 
updating policy is derived from the perceptron predictor,  and the best  threshold value differs 
among benchmarks.  To optimize the  threshold value,  we employ the  dynamic  history length 
fitting. The fitting algorithm is already proposed [2], and this threshold fitting is sufficiently cost 
effective. We designed it as a 14-bit counter, 7 bits for threshold value and 7 bits for threshold 
history counter. This threshold counter is updated only when the FTL predictor is updated. When 

Figure 7:  Simple Bias Filtering Implementation with Branch Target Buffer.
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the FTL generates a correct prediction, the threshold counter is incremented otherwise the counter 
is  decremented.  When the  threshold  counter  overflows  or  underflows,  the  threshold  value  is 
incremented or decremented.

5.5. Dynamic Adaptation

The three finalists of the CBP-1 competition employed dynamic history length adapting. This 
study employs  a  similar  dynamic  adaptation  through  exploiting  some execution  information, 
including the hit rate of the bias filter and the loop counter, and the number of static conditional 
branches.

This trick may not be appropriate for realistic track, and therefore, the predictor was also 
evaluated in a configuration with disabled dynamic adaptation.

5.6. Ahead Pipelining for Global Predictor

The FTL predictor  exploits  an adder  tree  so complex that  its  latency is  not  tolerated in real 
processors.  To achieve  a  reasonable  latency,  the  Local  predictor  exploits  Ahead  Calculation 
(explained in the previous section), and the Global predictor employs Ahead Pipelining [1].

There are two major strategies for implementing Ahead Pipelining. One is a systolic-array 
approach,  which  is  used  in  a  piecewise  linear  branch  predictor  [8],  and  the  other  is  a 
simultaneously reading approach, which is used in the GEHL predictor [3]. We adopt a hybrid of 
these  two  approaches.  The  predictor  reads  four  values  from  several  tables  in  each  step 
simultaneously, and computes the intermediate prediction value with a systolic-array approach. 
The  predictor  selects  an  appropriate  intermediate  prediction  result  at  the  last  step  of  Ahead 
Pipelining.  This  Ahead Pipelining policy requires  computational  circuit  duplication.  The FTL 
predictor employs four duplications of computational circuits, but is still less complex than the O-
GEHL, predictor which employs 16 duplications. Our predictor requires only 56 adders while the 
Piecewise Linear Branch Predictor requires more than 100 adders for its skewing function. Figure 
9 shows the simultaneous reading ahead pipelining, and Figure 10 shows the systolic-array like 
ahead pipelining.

Figure 9:  Simultaneous Ahead Pipelining.
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6. Performance Evaluation in CBP-2 Contest Rule

Here we evaluate some features of the FTL predictor. All of the evaluations are based on the 
CBP-2 infrastructure and distributed traces, thus these results are shown in terms of the number 
of missed predictions per 1000 instructions (MPKI).

In this section, we evaluate the FTL predictor optimized under the CBP-2 contest rules. This 
means the predictor is restricted by the rule of the CBP-2 realistic track, such as the predictor’s 
budget size.

6.1. Optimized-FTL branch predictor

In  this  part,  we  described  an  optimized-FTL (o-FTL).  The  o-FTL predictor  is  an  optimized 
configuration  for  the  CBP-2  realistic  track  rules.  The  predictor  exploits  several  techniques 
explained in previous sections. For example, the o-FTL employs the simple bias filter and the 
loop counter for anti-aliasing. Figure 11 provides an overview of the o-FTL branch predictor.

The FTL configuration is divided into Global and Local parts for effective implementation. 
The  Global  part  is  implemented  by  Ahead  Pipelining  structure  (explained  in  the  previous 
section). The Local part is implemented by Ahead Calculation with an LPC. The prediction result 
of the FTL is computed through the addition of the results of these parts. The FTL prediction is 
filtered by the bias filter and the loop counter. A prediction of the FTL is used only when both 
filters miss. The FTL predictor is never updated unless all filters miss the prediction.

6.1.1. Predictor Configurations
The predictors were evaluated in three configurations,  Systolic,  Simultaneous,  and No Ahead 
Pipe. These configurations vary in complexity. The features of each predictor are shown in Table 
2. The Systolic indicates systolic-array like hybrid Ahead Pipelining. It is the most reasonable 
configuration for modern processor, since it produce its prediction with 9 pipeline stage. Each 
pipeline  stage  is  sufficiently  simplified  for  modern  pipelined  processor.  The  Simultaneous 
configuration  adopts  simultaneous  reading  hybrid  Ahead  Pipelining  which  is  similar  to 
simultaneous pipelining. It read 4 values simultaneously and calculate prediction through adder 
tree. Its adder tree has 3 pipeline stages. The simultaneous configuration adopts some complex 
structures such as dynamic adapting; however it is still implementable. The No Ahead Pipe shows 
the best theoretical case without considering prediction latency.

Figure 10:  Systolic-Array like Ahead Pipelining.
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6.1.2. Budget Counting
Budget counting is shown in Table 3. No Ahead configuration employs 18 tables, and the others 
employ  17  tables  and  an  LPC for  Ahead  Calculation.  The  LPC  entry  of  the  Simultaneous 
configuration requires only 7 bits, as the LSB is rounded. This rounding method enables us to 
squeeze in the constraint of the hardware budget size. Fewer than 262,400 bits, are used for each 
of the three predictors.

6.1.3. Simulation Results
The detailed results for each benchmark are shown in Table 4 and Figure 12. We also evaluated 
two branch predictors, a GEHL predictor and a Ghybrid predictor. GEHL was proposed in the 

Figure 11:  Overview of the Optimized FTL Branch Predictor.
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previous competition, and this predictor is one of the state-of-the-art predictor. Ghybrid predictor 
is one of the configurations of the FTL predictor, but it does not exploit Local/Total prediction. It 
combines two groups of the two-level branch predictor―Global/Total and Global/Partial. These 
two configurations also employ an 8-way 8-entires loop counter, 4K-entry simple bias filtering 
array for anti-aliasing, but it does not employs any implementation techniques such as an ahead 
pipelining as  this  does  not  improve  the  prediction  accuracy.  Other  configurations,  which are 
Systolic, Simultaneous, and Ideal, are already described in previous part of this section.

A comparison of GEHL and Ghybrid  shows the performance  impact of  Global/Total  and 
Global/Partial hybrid approaches. Ghybrid configuration improves the missed prediction rate by 
2.2%  from  simple  Global/Total  predictor.  The  comparison  of  Ghybrid  and  the  other  FTL 
predictors shows the performance impact of the Local predictor. Systolic configuration, which is 
the most realistic FTL predictor, improves the prediction accuracy by 3.8% even though Systolic 
configuration waste its budget in LPC, which is not essential for accurate prediction.

Furthermore, the overall missed prediction rate is reduced compared with existing predictors 
including previous  CBP's  finalists1.  The Ahead Pipelined FTL predictor  increases  the  missed 
prediction rate from 0.045 MPKI to 0.091 MPKI. However, this prediction accuracy is still better 
than that of first CBP's finalists.

As the o-FTL predictor exploits some unrealistic features, such as Dynamic Adaptation and 
Simple Bias Filtering requiring reset mechanism, which the o-FTL predictor does not employ, we 
evaluated the effect of these features. The results are shown in Table 5. This table shows that the 
optimized-FTL predictor  still  improves  the  prediction  accuracy,  even  if  the  predictor  cannot 
employ some tricks.

1The finalists of CBP-1 have been optimized by the author with the new CBP-2 infrastructure. In this 
optimization, some important tricks such as Gao's dynamic adaptation [10] were disabled to meet the CBP-
2 requirement.

Table 3:  Budget Count for Each Configuration.

Systolic Simultaneous No Ahead Pipe
Bias Filter 4096 entry * 1 bit 4096 entry * 1 bit 4096 entry * 1 bit
Bias Table 2048 entry * 6 bit 2048 entry * 6 bit 2048 entry * 6 bit
Prediction Table 17 table 2048 entry * 6 bit 17 table 2048 entry * 6 bit 18 table 2048 entry * 6 bit
LPC 2048 entry * 8 bit 2048 entry * 7 bit 0 bit
Indexing Function 398 bit 760 bit 380 bit

14 bit 14 bit 14 bit
Ahead Pipeline Reg 0 bit
Ahead Pipeline Address 9 depth * 11 bit 3 depth * 11 bit 0 bit
Global History 121 bit + 3 * 65 bit 201 bit + 3 * 81bit 201 bit + 3 * 81bit
Local History 1024 entry * 16 bit 1024 entry * 16 bit 1024 entry * 16 bit
Loop Counter 6 entry * 8-way * 58 bit 8 entry * 8-way * 58 bit 16 entry * 8-way * 58 bit
Adaptive Info 0 bit 2 bit 2 bit
Performance Counter 0 bit 160 bit 160 bit
Total Budget Size 262055 bit 261257 bit 262376 bit

Dyn Threshold Fitting
4 dup * 9 depth * 11 bit 4 dup * 3 depth * 11 bit
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Figure 12:  Prediction Accuracy for Distributed Traces.
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0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0

GEHL
Ghybrid
Systolic
Simult
Ideal

M
PK

I

Table 4:  Simulation Result for Distributed Traces.

GEHL Systolic Ideal
164.gzip 10.310 9.614 9.554 9.530 9.519
175.vpr 9.048 8.916 8.676 8.644 8.616
176.gcc 4.476 4.616 4.802 4.513 4.529
181.mcf 10.503 10.840 10.985 11.026 10.903
186.crafty 2.590 2.547 2.553 2.582 2.454
197.parser 6.035 5.907 5.793 5.790 5.784
201.compress 6.078 5.653 5.497 5.450 5.416
202.jess 0.519 0.553 0.484 0.493 0.465
205.raytrace 1.071 1.263 0.606 0.571 0.441
209.db 2.457 2.461 2.395 2.378 2.333
213.javac 1.209 1.146 1.094 1.101 1.081
222.mpegaudio 1.201 1.150 1.069 1.086 1.054
227.mtrt 1.112 1.294 0.747 0.681 0.524
228.jack 0.876 0.952 0.749 0.768 0.718
252.eon 0.426 0.486 0.276 0.283 0.297
253.perlbmk 0.570 0.579 0.333 0.319 0.307
254.gap 1.960 1.913 1.638 1.553 1.506
255.vortex 0.390 0.369 0.153 0.160 0.145
256.bzip2 0.044 0.048 0.046 0.045 0.046
300.twolf 13.819 12.720 12.798 12.349 12.292
Average 3.735 3.651 3.512 3.466 3.422

Ghybrid Simult

Table 5:  Evaluation Result when Disabling Several Tricks.

Systolic Simultaneous No Ahead Pipe
Disable Bias Filtering N/A N/A 3.474 MPKI

3.512 MPKI 3.514 MPKI 3.473 MPKI
Disable Both Feature 3.542 MPKI 3.542 MPKI 3.490 MPKI
Disable Dyn Adaptation
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7. Performance Analysis of the FTL predictor

We have introduced features of the FTL predictor. However, FTL predictor has some unclear 
points in its implementation, such as the effect of the RAW hazard of an LPC, the effect of the 
number of components, and the simple bias filtering. In order to clarify these points, we analyzed 
the  performance  of  the  FTL predictor  in  several  ways.  The evaluations  were  made  with  the 
systolic-array  like  ahead-pipelined  FTL,  since  its  configuration  is  the  simplest  in  three 
configurations.

7.1. Performance Impact of Read After Write Hazard of LPC Update

In this section, we evaluate the effect of the RAW hazard, which occurs during the speculative 
update of the LPC. When the FTL predictor generates its prediction, the local history table and 
local  prediction  cache  are  updated  speculatively.  However,  this  speculative  update  leads  the 
RAW hazard. During the LPC's speculative update phase, the FTL predictor must calculate the 
next prediction result. This calculation requires several processor cycles since it comprises two 
RAM accesses and an adder tree of p-GEHL predictor.

To evaluate the negative effects of RAW hazard on the performance, we add some latency for 
the  LPC update  in  the  CBP-2  infrastructure.  In  this  environment,  the  LPC is  updated  after 
parameterized latency. This parameter  is defined as the number of processor cycles,  and it  is 
assumed that the processor fetched one branch instruction during each cycle.  When a missed 
prediction occurs, the speculative update, which is not yet  written back to the LPC, is written 
back immediately. Rollbacks require pipeline squash and this provides adequate time for an LPC 
update.

We evaluate the RAW impact in 0 to 16 cycle update latency of the LPC since an earlier 
study [6] shows that the latency of a large adder tree is about 2 to 8 cycles. If the latency is less 
than 8 cycles, the FTL predictor with Ahead Calculation still has sufficient advantages over the 
GEHL and Ghybrid predictors which exploit only global information.

Figure 13:  Performance Impact of the RAW Hazard.
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7.2. Performance Impact of BTB-base Bias Filtering

In the CBP-2 competition, we exploited simple bias filtering, but we also mentioned that this 
simple bias filtering requires a reset mechanism in the case of the predictor is implemented in a 
real  microprocessor.  For  this  reset  mechanism,  we already mention  that  the  predictor  should 
exploit  hit,  miss,  and  replace  information  of  the  branch  target  buffer  (BTB).  This  filtering 
mechanism will be feasible in modern processors since most modern processors employ a branch 
target buffer for the effective next address generation.

We evaluate the performance impact of BTB-base bias filtering in the CBP-2 infrastructure. 
The number of BTB entries is used as the parameter. The results of this evaluation are shown in 
Figure 14.  In this result, the performance improves in a BTB with 4096 or more entries, and 
decreases for the BTB with 2048 entries. One cause of this performance degradation is that a FTL 

Figure 14:  Performance Impact of the Number of BTB entries.
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Figure 15:  Performance Evaluation of the BTB-base Bias Filtering (4K entry BTB).
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prediction with a 32 KB budget is too accurate for the BTB with 2048 entries. The BTB-base 
filtering with 2048 entries should be used with simpler predictor such, as a GEHL predictor with 
8KB budget, since it cannot achieve such accurate predictions. 

7.3. Performance Impact of the Number of Components

The optimized FTL predictor for the CBP-2 competition consists of 23 components. A number of 
components make the computational logic complex; thus we evaluate the performance impact of 
the number of components.

The effect of the number of components is evaluated for three configurations of the systolic-
array  like  FTL  configuration.  These  three  configurations  have  23,  12,  and  6  components 
configuration respectively. The detailed parameters for the configurations are shown in Table 6, 
and  each  configuration  is  evaluated  by  distributed  traces  in  the  CBP-2  infrastructure.  The 
evaluation  results  are  shown  in  figure  16.  The  prediction  accuracy  compared  with  the  23-
component configuration is degraded to 1.3% for 12 components, and 9.5% for 6 components. In 
the case of the 12-component configuration, the FTL predictor still has several advantages, since 
the no ahead pipelined GEHL predictor achieves only 3.735 MPKI.

8. Conclusion

In this paper, we proposed a combination of the FTL branch predictor and the Ahead Calculation 
method, which is an effective implementation scheme for Local predictors, such as the PAp-base 
GEHL predictor.  The  FTL predictor  combines  results  generated  by several  two-level  branch 
predictors.  These  predictors  are  derived  from earlier  works.  Ahead  Calculation  reduces  the 

Table 6:  The configuration of the number of components.

Global/Total Global/Partial Local/Total Bias
6 Components 4 0 1 1

12 Components 6 4 1 1
23 Components 9 10 3 1

Figure 16:  Performance Impact of the Number of Components.
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latency of the Local branch predictor by pre-calculating the next prediction result. The Ahead 
Calculation incurs the external cost of a Local Prediction Cache (LPC). However, we show that 
this storage is not expensive for a branch predictor with 32KB budget size. We also proposed a 
complexity-effective indexing function,  enhanced folded indexing. This indexing function can 
applied for other branch predictors, such as the GEHL predictor.

The optimized FTL branch predictor achieves accurate predictions with practical prediction 
latency for real microprocessor. The evaluation results in the CBP-2 infrastructure shows that the 
optimized FTL predictor reduces the missed prediction rate by 8.4% from GEHL predictor. It 
also improves the prediction result in an implementable configuration.
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