

Volume 18, 2019

Accepting Editor Keith A. Willoughby │Received: January 27, 2019│ Revised: March 31, 2019 │ Accepted:
April 9, 2019.
Cite as: Abdunabi, R., Hbaci, I, & Ku, H-Y. (2019). Towards enhancing programming self-efficacy perceptions
among undergraduate information systems students. Journal of Information Technology Education: Research, 18, 185-
206. https://doi.org/10.28945/4308

(CC BY-NC 4.0) This article is licensed to you under a Creative Commons Attribution-NonCommercial 4.0 International
License. When you copy and redistribute this paper in full or in part, you need to provide proper attribution to it to ensure
that others can later locate this work (and to ensure that others do not accuse you of plagiarism). You may (and we encour-
age you to) adapt, remix, transform, and build upon the material for any non-commercial purposes. This license does not
permit you to use this material for commercial purposes.

TOWARDS ENHANCING PROGRAMMING SELF-EFFICACY
PERCEPTIONS AMONG UNDERGRADUATE INFORMATION

SYSTEMS STUDENTS
Ramadan Abdunabi* Colorado State University,

Fort Collins, USA
ramadan.abdunabi@colostate.edu

Ilham Hbaci University of Northern Colorado,
Greeley, USA

hbac3324@bears.unco.edu

Heng-Yu Ku University of Northern Colorado,
Greeley, USA

HengYu.Ku@unco.edu

* Corresponding author

ABSTRACT
Aim/Purpose Currently, Information Systems (IS) departments in business schools are mov-

ing towards integrating learning to program or code in their undergraduate
core courses. Many factors affecting IS student success in learning to program
have been identified, but there is still a dearth of knowledge about student per-
ceptions on their own competence. The purpose of this study was to investi-
gate factors that may affect the success of IS students in learning to program.

Background Students’ perceptions about the value and difficulties to learn programming
can affect their skills acquisition. IS educators need to understand the student
perception related to difficulties of learning to program in order to offer more
effective support during their teaching process and interactions with students.
To address this need, this study examines two critical elements to improve
teaching IS programming courses: (a) Programming Self-Efficacy—students’
beliefs on their own programming competence, combined with (b) levels of
programming skills which IS students initially thought to learn for their future
profession.

Methodology This study uses quantitative data drawn from undergraduate students in a
Computer Information Systems classes at Colorado State University in U.S.A.
and supported by qualitative data.

https://doi.org/10.28945/4308
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:ramadan.abdunabi@colostate.edu
mailto:hbac3324@bears.unco.edu
mailto:HengYu.Ku@unco.edu

Enhancing Programming Self-efficacy

186

Contribution Quantitative data measures the correlation between students’ programming
self-efficacy, their perceived value of programming, their own practice time,
and the frequency of teaching assistant (TA) consultations. The qualitative data
was utilized to understand students’ thoughts of the programming skills they
need in their future profession that may influence their programming self-
efficacy during the learning process. The importance of this study lies in the
potential that the findings of this study are critical to investigate the most in-
fluential factors that are likely to be a vehicle through which educators can ei-
ther improve self-efficacy of their students and/or understand it more fully.
Furthermore, these findings may influence pedagogical practices for teaching
programming languages in higher education contexts more successfully. For
instance, applying a contextual learning approach may assist in identifying the
most effective approach to teach programming courses, and in turn, will lead
to increased learning outcomes as encountered and narrated by IS students.

Findings The correlation analysis indicated a significant positive correlation between IS
students’ programming self-efficacy and their perceived value of learning pro-
gramming. However, the practice time and frequency of TA consultations had
no significant relationship with programming self-efficacy. In addition, the
qualitative data revealed a clear placement of IS students’ vision of their future
coding level into five categorical programming skills: novice, communicator,
end-user, and professional, with a new category of “competent” emerging.

Recommendations
for Practitioners

The study suggests that IS Educators need to embed interventions for increas-
ing IS students’ perceived value of learning programming and practice time. It
is also very effective to associate the class activities with real life projects. Fur-
thermore, we suggest to educators to apply the contextual learning approach
that would support higher levels of value for programming and programming
self-efficacy among IS students. Also, coordination between educators and em-
ployers can aid in developing effective programming classes, improving IS stu-
dents’ job marketability.

Recommendations
for Researchers

Investigating other factors that potentially contribute to IS students’ program-
ming self-efficacy, such as previous computer programming and math expo-
sure, motivation, and economic status.

Impact on Society Realizing the importance of the programming self-efficacy could help IS edu-
cators to teach effective and efficient programming courses that ultimately re-
sult in students learning programming with high acquisition and less distress.
Highlighting the importance of linking what the market needs with the course
content would increase students’ programming self-efficacy and their chances
of obtaining jobs.

Future Research An interactive programming tool is a suggested supplement for IS educators to
increase student enthusiasm about practice time that would support students
work on their own and enjoy the class, and educators would be capable to ac-
curately track and assess students’ participations.

Keywords information systems, programming self-efficacy, IS student classification, com-
petent programmers

INTRODUCTION
Recent years have witnessed contemporary business and jobs in demand throughout the United
States, which require Information Systems (IS) majors to possess competent programming skills

Abdunabi, Hbaci, & Ku

187

(Konecki, 2014). Examples of IS jobs that require coding skills include business analyst, data analyst,
data mining, project management, software engineer, software developer, software tester, systems
analyst, systems designer, database administrators, and network administrators. Employment in these
areas is projected to grow 13% from 2016 to 2026, which is higher than the projected growth for all
other occupations. This growth includes a 15% increase for web developers, a 11% increase for soft-
ware developers, a 9% increase for computer system analysts, and an 11% increase for database ad-
ministrators (U.S. Department of Labor, 2018). Because of the importance of programming activi-
ties at workplace for IS majors, IS departments require students to complete programming courses
that are tailored to them in order to perform effectively in their future careers. For IS student success,
and to prepare them for the working world, it is important for IS educators to recognize the needs of
IS students and provide effective support in their programming courses.

Despite the demand for programming skills in today’s workplaces, undergraduate IS students, who
have little or no prior exposure to programming, express difficulties learning computer programming
in core IS courses, and they struggle to complete introductory programming courses with successful
performance (Bashir & Hoque, 2016). IS students encounter difficulties understanding the underly-
ing concepts and struggle writing error-free programs that meet the stated requirements in their in-
troductory programming course (Forte & Guzdial, 2005; Wiedenbeck, 2005). Several empirical stud-
ies have established as many as one-third of students who take introductory programming courses
either fail or withdraw from these courses (X. Zhang, Zhang, Stafford, & Zhang, 2013). Further-
more, several studies have shown that the dropout and failure rates in introductory programming
courses at the university level are evidence to the fact that learning to program is a difficult task
(Dasuki & Quaye, 2016; Vihavainen, Paksula, & Luukkainen, 2011; Wiedenbeck, Labelle, & Kain,
2004). Numerous factors influencing student success regarding programming have been identified
(Dasuki, & Quaye, 2016; Wiedenbeck, 2005), but there is still a dearth of knowledge about how stu-
dent perceptions affect course outcomes. To tackle this challenge, the goal of this study was to ex-
plore some factors related to student perceptions that might contribute to IS student success with
learning programming.

The sources of students’ apprehension about and difficulty with learning computer programming are
varied, and some research indicates that personal characteristics and internal factors such as self-
efficacy—students’ belief in their own programming competence—are likely to play a crucial role in
levels of struggle with programming and a student’s ability to overcome them (Askar & Davenport,
2009; Pajares, 1996). The programming self-efficacy influences students’ choices of activities, the
amount of effort they spend in accomplishing a task, and how long they will persist in a stressful
situation to perform that task (Bandura, 1977).

Although self-efficacy is an internal factor that describes a psychological attribute that can be altered
by students themselves and an educator has no direct way to change it (Rogerson & Scott, 2010),
there are various studies that have attempted to investigate factors that assist educators to influence
students’ programming self-efficacy in an effort to reduce their struggle with learning programming
(Rogerson & Scott, 2010). Substantial research has investigated various factors involved in the poten-
tial relationship between learning computer programming and perceptions of self-efficacy because
programming self-efficacy has been shown to be associated with greater persistence and willingness
to approach new and challenging programming tasks (Cigdem & Yildirim, 2014; Dang, Zhang,
Ravindran, & Osmonbekov, 2016; Korkmaz & Altun, 2014; Rogerson & Scott, 2010; Y. G. Zhang &
Dang, 2015). As observed by Cigdem and Yildirim (2014), Özmen and Altun (2014), Rogerson and
Scott (2010), and Wiggins, Grafsgaard, Boyer, Wiebe, and Lester (2016), the time students spent
practicing, use of assistance, and how they value learning programming influence learning program-
ming skills.

The literature indicates that most studies identifying obstacles to learning computer programming,
sources of struggle, and ways to help only focus on Computer Sciences (CS) students who are re-
quired to design and implement efficient computer programs, software, and applications (Askar &

Enhancing Programming Self-efficacy

188

Davenport, 2009; Bashir & Hoque, 2016; Cigdem & Yildirim, 2014; Konecki, 2014; Özmen & Altun,
2014; Rogerson & Scott, 2010). On the other hand, IS students’ role is to use, modify, and trouble-
shoot those programs, software, and applications. Therefore, CS students may have a motivational
advantage over their non-major peers in learning programming. CS majors have chosen to learn pro-
gramming, whereas non-majors are often required to code regardless of their personal opinions of
its value or utility. Such studies vary in research results which make it difficult to draw any conclu-
sions regarding reliable predictors for students’ programming self-efficacy, particularly among IS ma-
jors in business schools.

In addition to students’ challenge in learning program, it is also crucial for the IS educators to ensure
they teach students the appropriate amount of computer programming skills conforming to their
students’ expectation of what programming level to learn, which may influence student perceptions.
IS students might need programming skills that are beyond those of an end-user programmer (Bark-
er, 2002), but they do not need extensive professional programming skills. Non-professional pro-
grammers, including IS students, need to code, such as creating macros, spreadsheet, formulas, task
automation scripts, and/or dynamic web applications (Boehm et al., 2000). Teaching IS students is a
challenge because their major does not solely focus on learning programming and computing that
allows them to obtain professional foundational skills that can be applied towards any career in cod-
ing. Instead of having students solely focus on coding and programming, IS students are required to
learn basic programming yet give insight into other facets such as project management, managerial
communications, and/or business administration. Therefore, the goal of this study was also an at-
tempt to find out how much focus should be given to teaching IS students about programming and
coding, and what they need to be successful in learning programming in order to be well prepared
for their future professions.

In an effort to help IS educators enhance their students’ programming competency, this study re-
searched into a psychological aspect that potentially reduces the challenges and difficulties of learn-
ing to program, as encountered and narrated by IS students. We used correlational analysis to investi-
gate whether the three variables, 1) participants’ perceived value of programming, 2) how much time
per week participants spent practicing programming assignments, and 3) the number of times partic-
ipants consulted teaching assistants, are related to IS students’ programming self-efficacy scores of
two IS programming courses. Understanding these variables should guide IS educators to develop
class activities that could increase the programming self-efficacy among IS students. In addition, we
used the open-ended question portion of the instrument to investigate what level of programming is
suitable for IS students to satisfy student expectations of their level of coding to learn. This data will
provide IS educators a better understanding of the population they teach and whether the amount of
programming is suitable for them.

The paper continues with Literature Review and Hypotheses Development, which presents a review
and summary of the discussions reported in literature pertained to this study, research hypothesizes,
objectives, and questions. Then, we present processes performed in our research method emphasiz-
ing objective measurements and the statistical analysis of data collected through cross-sectional sur-
veys. The paper ends with a discussion of the research findings and offer suggestions of interven-
tions for IS educators, and then concludes with directions to future work.

LITERATURE REVIEW AND HYPOTHESES DEVELOPMENT
Difficulties faced by students while learning programming contribute directly to different types and
different levels of perceptions of programming (Tan, Ting, & Ling, 2009). For example, students’
perceptions of their own competence in learning (self-efficacy) is one of the reliable indicators that
predicts a person’s performance (Askar & Davenport, 2009). Self-efficacy has been defined as “learn-
ers’ judgements of their capabilities to organize and execute courses of action required to attain des-
ignated types of performances” (Bandura, 1986, p. 391). It is potentially critical in an educational
setting because students with high self-efficacy are more likely to accept challenging tasks and put

Abdunabi, Hbaci, & Ku

189

forth more effort to accomplish them than students who have low self-efficacy. Therefore, students
with high self-efficacy tend to succeed in their future professions when they are compared with stu-
dents with low-self- efficacy, who are less likely to pursue new learning opportunities (Askar & Dav-
enport, 2009).

Furthermore, beliefs held by individuals about their capabilities and about the outcomes of their ef-
forts strongly influence the way they will behave (Pajares, 1996). Consequently, self-efficacy potential-
ly has a strong relationship with students’ choices of what to learn and the effort they think they will
need to exert to meet their learning goals (Rogerson & Scott, 2010). Previous research found that
self-efficacy is not only associated with learning a subject and willingness to learn (Askar & Daven-
port, 2009; Fasogbon, Jegede, Adetan, & Aderbigbe, 2016; Y. G. Zhang & Dang, 2015), but also is
related to students’ orientation toward jobs in computer and information systems related areas, as
students with high self-efficacy are more likely willing to choose Computer Information Systems as
the area of their profession (Rosson, Carroll, & Sinha, 2011).

Towards gaining better background related to our first research question, we found in existing re-
search that 1) value of learning programming, 2) practice programming, and 3) consulting TAs are
the three key factors that could influence student perceptions of self-efficacy. For example, it has
been argued that the value of learning programming is a catalyst to learning and achievement (X.
Zhang et al., 2013), and students who value the subject matter are more likely to apply deep-level of
learning techniques (Blumenfeld, Kempler, & Krajcik, 2006). Wu, Tennyson, and Hsia (2010), articu-
lated that students’ computer self-efficacy is related to how they value the way of learning. Research
that seeks to address the needs of computer programming for students has also highlighted that the
perceived value of programming skills among non-CS students is likely to have important implica-
tions for developing suitable programming courses for students with varying needs (Korkmaz & Al-
tun, 2014; X. Zhang et al., 2013). As stated by Bartimote-Aufflick, Bridgeman, Walker, Sharma, and
Smith (2016), the value of learning among undergraduate students is one of the variables that are
repeatedly highly correlated with self-efficacy, and it is likely to be a vehicle through which educators
can either improve self-efficacy of their students and/or understand it more fully. Based on that, we
stated our first hypothesis as the following:

Hypothesis 1: There is an association between the value of learning programming and student programming
self-efficacy.

Lack of practice in programming is considered as another reason for failure in programming
(Özmen & Altun, 2014) because programming is all about solving problems via various lines of cod-
ing. Students might visualize various ways to solve a problem, but practically, they need to write the
code to obtain tangible output. Niitsoo, Paales, Pedaste, Siiman, and Tõnisson (2014) stated that time
spent practicing programming during the semester was a significant predictor of Information and
Computer Technology students’ academic performance, with students who spent more time pro-
gramming having better performance. In our research, we adopted the factor of time spent to prac-
tice programming that allow students to make mistakes in an ungraded environment, but we decided
to investigate how it is related to student programming self-efficacy, and test the hypothesis:

Hypothesis 2: There is an association between programming practice and student programming self-efficacy.

Wiggins et al. (2016) investigated the relationship between 66 undergraduate students’ programming
self-efficacy and human-to-human computer-mediated tutorial dialogue. Wiggins et al. (2016) found
that the social dialogue between participants who were novices and had no substantial prior pro-
gramming experience and tutoring tends to be associated with increased self-efficacy. Particularly,
tutoring was helpful for students with high self-efficacy. The students with high self-efficacy demon-
strated more advanced self-regulated learning strategies, and they were receptive to feedback. For
students with low self-efficacy, guidance may provide greater learning, but it may also increase frus-
tration. Relatively, Kinnunen and Malmi (2006) found tutoring or TAs’ pedagogical inability to help
students was an issue related to students dropping out of Introductory of Computer Science among

Enhancing Programming Self-efficacy

190

non-CS majors. As discussed, the idea of having a teaching assistant to support students’ learning is
not new, but current research that focuses on how tutoring relates to programming self-efficacy is
limited and has not been investigated with IS students. Hence, we hypothesize:

Hypothesis 3: There is an association between consulting TA(s) and student programming self-efficacy.

Finally, to help answer the second research question of our study, we focused on Chilana et al.’s
(2015) study that completed research with non-CS undergraduate students. Chilana et al. identified
programmer categories for students with various career expectations based on their level of valuing
programming. Chilana et al. identified four programming skill categories: 1) non-programmer (who
does not know how to write a code), 2) conversational programmer (who is more programming lit-
erate than non-programmer but not necessarily enough to be an end-user), 3) end-user programmer
(who is able to use software or applications for data entry purposes and manipulate some lines of
codes of these programs to meet specific needs), and 4) professional programmer (who is able to
solve problems and produce products via programming). Chilana et al. found that some non-CS ma-
jors value learning programming because they want to be programmers or end-user programmers
(e.g., data analysts or project managers). Other students expressed different reasons for valuing learn-
ing programming. Those students who were more programming literate than non-programmers but
were not end-user programmers were classified as conversational programmers. Conversational pro-
grammers are not learning programming to be professional or end-user programmers; rather, they
need to learn programming “for the pragmatic reason of being able to converse in the programmer’s
languages and improving their perceived marketability in the software industry” (Chilana et al., 2015,
p. 252).

Consequently, it is worthwhile to find a category for IS students as programmers because they have
not been classified in the literature as a specific type of programmer relative to Chilana et al.’s (2015)
programming categories. According to Dreyfus and Dreyfus (1986), IS students do not need to be
professional programmers, but they can become experts after many years of experience and practice.
Furthermore, Barker (2002) considered IS students as end-users that were defined by Lieberman,
Paternò, Klann, and Wulf (2006) as users “who are acting as non-professional software developers, at
some point to create, modify or extend a software artifact” (p. 2). Barker articulated that IS students
experience problems with being end-user programmers “due to incomplete information, incorrect
design procedures, and inadequate software knowledge” (p. 62). This problem indicates that IS stu-
dents might stand in between the end-user and professional programmer categories. Therefore, our
research investigations could assist IS educators to have better understandings of the students they
teach.

THEORETICAL FRAMEWORK
This study is guided by the self-efficacy theory of Bandura (1977), which states that the more indi-
viduals believe they can accomplish a task using their skills under certain circumstances, the more
they can complete it and succeed. The basic principle behind self-efficacy theory is that individuals
are more likely to engage in activities for which they have high self-efficacy and less likely to engage
in those they do not (Bandura, 1977). Hence, in educational settings, efforts should focus on increas-
ing students’ self-efficacy to improve their academic performance and achievement. Individuals gain
satisfaction when they achieve goals they value, and when they achieve these valued goals, they are
more likely to continue to extend a high level of effort (Bandura, 1988). In addition, Bandura (1988)
also emphasizes that setting valued goals is a significant resource to build self-efficacy. As a result, the
value of learning a skill (such as programming) and identifying explicit goals for learning this skill are
both important factors that need to be considered to build this skill of self-efficacy.

Furthermore, relying on Bandura’s self-efficacy theory, Gist and Mitchell (1992) articulated that there
are some processes need to be highlighted to assess and interpret individuals’ self-efficacy. The three
assessment processes for self-efficacy are the analysis of task requirements (an individual’s determi-

Abdunabi, Hbaci, & Ku

191

nation of what it takes to perform a task), attributional analysis of experience (an individual’s judg-
ment about why a performance level occurred), and assessment of personal and situational re-
sources/ constraints (an individual’s consideration of personal and situational factors).

Those three assessment processes of self-efficacy play a critical role in academic success (Redmond,
2010). For instance, the analysis of task requirements includes the time dedicated to the course work
(Redmond, 2010), which indicates that the time a student spends to learn programming skill can be
considered one of the factors that relates to a student programming self-efficacy. In addition, the
attributional analysis of experience provides personal perception and understanding that a student
has in regard to why he/she reached a specific performance level (Redmond, 2010). One of those
attributes that influence students’ learning at a specific level is the availability of communication be-
tween students and professor/teaching assistant (TA) (Redmond, 2010). This explicitly indicates that
students’ call for support from their TAs might contribute to their programming self-efficacy. Finally,
personal and situational resources include a confirmation for the students taking courses at an ap-
propriate level in which they can succeed (Redmond, 2010). We believe this attempt can help IS stu-
dents to express their goals of learning to program and to help educators to estimate the amount of
programming provided for them in the material.

Finally, drawing on this framework, we highlighted the factors that are essential to build and assess
programming self-efficacy (see Figure 1) and identify two objectives with two research questions for
this study.

o Objective 1: Assisting IS educators to make a decision about whether they need to consider
the factors (the value of programming, their own practice time, as well as the frequency of
TA consultations) with high or low priority in creating their class activities.

o RQ1: Do IS students’ perceived value of learning programming, their own practice time, and
frequency of TA consultations associate with their programming self-efficacy?

o Objective 2: Increasing IS educators’ understanding of the population they teach by specify-
ing students’ expectations about their belief on programming levels conform to their learn-
ing goals.

o RQ2: What are IS students’ expectations about their belief on programming levels con-
form to their learning goals?

Figure 1. Theoretical framework: External factors essential to build and

assess programming self-efficacy.

Programming
Self-efficacy

 Identifying explicit goals for learning to program.
 Value of learning programming.
 Time dedicated to practice programming.
 Support from authorized resources such as Teach-

ing Assistants.

Enhancing Programming Self-efficacy

192

METHODOLOGY

RESEARCH PROCESS AND MEASUREMENTS
A survey research design was used in this study. The survey link created using Qualtrics was distrib-
uted to the students of the two Java courses at the end of the Spring 2017 and Spring 2018 semes-
ters. An extra credit assignment worth 5 points was provided as an incentive for voluntary student
participation. Each participant completed a set of questions in four sections: student Java program-
ming self-efficacy, perceived value of learning programming, future use of programming, and demo-
graphic characteristics.

To measure students’ Java programming self-efficacy, we used 32 items from Askar and Davenport’s
(2009) Java Programming Self-Efficacy scale, where students rated their perceived self-efficacy with
various Java programming-related tasks on a Likert-type scale. The survey was modified slightly for
use in the current study by reducing the scale from a 7-point Likert-type scale to a 5-point Likert-type
scale, ranging from 1 (not confident at all) to 5 (confident). This modification was made in an effort
to maximize the completion rate obtained by reducing the cognitive load required to complete the
survey (Driscoll, 2005), thus making the scale less time consuming for participants.

The questions created for the scale measuring the perceived value of learning programming section
were largely based on Baser’s (2013) attitude survey. This scale indicates to what degree students
agree with statements related to their perceived value of program learning. This scale consists of five
items on a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The future use
of programming section contains only one open-ended question (e.g., explain how you view pro-
gramming as being a part of your future profession) related to the future use of programming from
the participants’ perspectives.

The last section of the survey contains questions about age and gender of the participants as well as
the name of the course they were taking. In addition, this section includes additional two questions
(a) How many hours do you spend to practice the weekly assigned programs by the instructor? and
(b) How many times in this semester did you consult the teaching assistant for help in your assign-
ments?

The appendix presents the questionnaire of the study.

COURSE INFORMATION AND DESIGN
The first junior-level programming course was titled as “Application Design and Development” and
the second senior-level programming course was titled as “Advanced Application Design and Devel-
opment.” These two courses teach the general-purpose programming language, Java. The Java pro-
gramming language is of specific interest to IS majors because of its prominent, standard industry
programming language, so that students will be well-prepared for their future professions.

The activities that are accompanied with the two courses include weekly self-practice examples up-
loaded along with the weekly material of the courses on Canvas (a Learning Management System).
The practice examples were resource of code reuse that would help students to write their actual
programming assignments. Almost all the code fractions, blocks, and/or statements that students
need for their assignments are in those practice programs. This would help students to self-practice
through a non-graded environment, and they would be able to make changes in the code and observe
the outputs. In addition, students are provided with a graded activity for participation in an in-class-
exercise, where they are observed and helped by the TAs to solve some multi-step problems related
to the programming actual assignments. To obtain additional support from the TAs, students are
provided lab hours to communicate with TAs and can also use Canvas to send their questions to
them as well.

Abdunabi, Hbaci, & Ku

193

Other activities that have been added in these two courses are viewing interviews with influential
people in the sector of computer programming, such as the founders of Microsoft, Facebook, Twit-
ter, and Dropbox, and inviting guest speakers who graduated with an IS degree and shared with stu-
dent their programming experience that helped them to obtain IS jobs. Finally, students are support-
ed with a general help center for all IS courses provided at the College of Business, which provides
another source for them to understand concepts, complete homework assignments, and ask ques-
tions.

PARTICIPANTS
The study was conducted under the approval of the Institutional Review Board at a large state uni-
versity in the Western region of the United States using a nonprobability convenience sampling
method. Convenience sampling allowed data collection within time and place constraints. The criteria
for selection were the following: (a) the target population was undergraduate business students, (b)
the accessible population was undergraduate IS students from the College of Business, (c) partici-
pants were 18 years of age or older, and (d) each participant was taking either a junior-level pro-
gramming course or a senior-level programming course. A total of 140 students completed the sur-
vey, and their demographic information is presented in Table 1.

Table 1. Participants’ Characteristics
PARTICIPANT INFO N (%)

Gender

o Male
o Female

99 (70.7%)

41 (29.3%)

Class

o Application Design and Development course

o Advanced Application Design and Development course

74 (52.9%)

66 (47.1%)

 Note. Ages ranged from 19 to 61 years old. N = 140.

DATA VALIDITY, RELIABILITY, AND ANALYSIS

VALIDITY AND RELIABILITY

Computer programming self-efficacy scale
The construct validity of the Computer Programming Self-Efficacy Scale was examined via Explora-
tory Factor Analysis. The scale’s allocation to the factors was specified through principle component
analysis with oblique rotation (Promax). After an iterative process to examine scree plots and eigen-
values, the scree plot clearly showed inflexions that would justify retaining two factors to extract. Out
of 32 items, 20 items that had load values over .3 were retained and included in the analysis, and 12
items with loads separated into two factors were excluded (Büyüköztürk, 2002). The Kaiser-Meyer-
Olkin (KMO) measure verified the sampling adequacy for the analysis, KMO = .90, and all KMO
values for individual items were greater than .79, which is above the acceptable limit of .5 (Field,
2013). Bartlett’s test of Sphericity, χ2 (190) = 1620.100, p < .001, showed that there were patterned
relationships between the items, so the factor analysis can be used (Field, 2009). The two factors ex-
plained a cumulative variance of 53.07% and are labeled as (1) independence and persistence in pro-
gramming tasks (16 items), and (2) scaffolding for programming (4 items). Table 2 presents the re-
tained 20 items with their factor loadings and Eigen values. The Cronbach’s alpha for the 20 retained

Enhancing Programming Self-efficacy

194

Java programming self-efficacy items was .93. Individually, the reliability of independence and persis-
tence in programming tasks scores was similarly high (α = .93), and the reliability for scaffolding for
programming scores was slightly lower (α = .79), but it is still an acceptable value (Field, 2013).

Table 2. Items Loadings for the Computer Programming Self-Efficacy Scale

 INDEPENDENCE AND PERSIS-
TENCE IN PROGRAMMING TASKS

SCAFFOLDING FOR PROGRAM-
MING

26. I could come up with a suita-
ble strategy for a given program-
ming project in a short time.

.78

3. I could write logically correct
blocks of code using Java.

.77

17. I could debug (correct all the
errors) a long and complex pro-
gram that I had written and make
it work.

.76

18. I could comprehend a long,
complex multi-file program.

.74

6. I could write a Java program
that computes the average of any
given number of numbers.

.74

28. I could mentally trace through
the execution of a long, complex
multi-file program given to me.

.73

8. I could build my own Java
swing GUIs.

.72

13. I could understand the object-
oriented paradigm.

.71

5. I could write a Java program
that computes the average of
three numbers.

.71

11. I could write a long and com-
plex Java program to solve any
given problem as long as the spec-
ifications are clearly defined.

.70

29. I could rewrite lengthy and
confusing portions of code to be
more readable and clearer.

.65

12. I could organize and design
my program in a modular manner.

.63

10. I could write a reasonably
sized Java program that can solve
a problem this is only vaguely
familiar to me.

.62

Abdunabi, Hbaci, & Ku

195

 INDEPENDENCE AND PERSIS-
TENCE IN PROGRAMMING TASKS

SCAFFOLDING FOR PROGRAM-
MING

14. I could identify the objects in
the problem domain and could
declare, define, and use them.

.62

27. I could manage my time effi-
ciently if I had a pressing deadline
on a programming project

.58

9. I could write a small Java pro-
gram given a small problem that is
familiar to me

.51

21. I could complete a program-
ming project if I could call some-
one for help if I got stuck.

 .91

22. I could complete a program-
ming project once someone else
helped me get started.

 .90

19. I could complete a program-
ming project if someone showed
me how to solve the problem
first.

 .74

24. I could complete a program-
ming project if I had just the
built-in help facility for assistance.

 .61

Eigen value 8.75 1.86

% of variance 43.77 9.30

α .93 .79

Note: N = 140

Perceived value of learning programming scale
In addition, convergent validity and discriminant validity were run to establish the construct validity
to the five items measuring perceived value of learning. The output showed that two items needed to
be dropped. These two items had Pearson correlation (r) < .30 with related variables, and Pearson
correlation (r) > .20 with unrelated variables (Robinson, 2018). For the remaining three items meas-
uring perceived value of learning programming, Cronbach’s alpha was high (α = .81), and the cor-
rected item-total correlation are all above .3, which is encouraging (Field, 2016).

DATA ANALYSIS
We used IBM SPSS Statistics 21 to administer the survey and complete the data analyses. The statisti-
cal partial correlation that does not make the distinction between independent and dependent varia-
bles was chosen to analyze the data because we attempted to measure relationships between variables
(independent and dependent variables) whilst controlling the effect of a third variable (course). All
assumptions to test the compatibility between the obtained data and the statistical partial correlation
were tested including test of outliers, normality, and linearity. When deviation from the assumption
of a normal distribution is presented, parametric tests should not be used; equivalent non-parametric

Enhancing Programming Self-efficacy

196

tests should be used instead (Gall, Borg, & Gall, 1996). Non-parametric tests are tests of statistical
significance, distribution free tests, and yield the same level of statistical significance as parametric
tests when the sample size is large, i.e., 30+ (Gall et al., 1996; Pallant, 2007). Although non-
parametric partial correlation test was conducted instead of the parametric partial correlation due to
assumptions violation (e.g. normality), the parametric and non-parametric partial correlation tests
provided the same conclusion.

FINDINGS

The data revealed that the self-efficacy perceptions levels of IS students ranged from 37 to 99, with
an overall mean of 3.55 (SD = .63). In terms of percentage distribution, 22.2% of students have
high level of self-efficacy perceptions (M > 4.00), 76.4% have medium level of self-efficacy percep-
tions (M > 2.00 but < 4.00), and 1.4% of students have low level of self-efficacy perceptions (M <
2.00). Relatively, students’ perceived value of learning to program ranged from 7 to 15, with an over-
all mean of 4.45 (SD = .63) and fell into medium and high level. In regard to percentage distribution,
72.1% of students perceived high value of programming while 27.9% of students perceived medium
value of programming.

Towards meeting our goal, which is measuring the correlation between programming self-efficacy
and three related factors, the output of running the first non-parametric parametric partial correla-
tion test showed that there was a statistically significant, moderate, positive correlation between stu-
dent independence and persistence in programming tasks and perceived value of learning program-
ming whilst controlling for course (r (118) = .306, N = 121, p = .001), supporting Hypothesis 1. In
addition, there was a statistically significant, low, negative correlation between student independence
and persistence in programming tasks and times of consulting TA for help whilst controlling for
course (r (118) = -.199, N = 121, p = .030), supporting Hypothesis 3. However, the analysis showed
that there was no significant correlation between independence and persistence in programming
tasks and number of practicing programming hours whilst controlling for course (r (118) = .004, N
= 121, p = .965). Therefore, Hypothesis 2 was not supported.

The output of running the second non-parametric parametric partial correlation test showed that
there was a statistically significant, moderate positive correlation between student scaffolding for
programming and perceived value of learning programming whilst controlling for course (r (118) =
.397, N = 121, p < .001), supporting Hypothesis 1 as well. On the other hand, there was no significant
correlation between scaffolding for programming and times of consulting TA for help (r (118) = -
.113, N = 121, p = .219), and between scaffolding for programming and number of practicing pro-
gramming hours (r (118) = .031, N = 121, p = .740) whilst controlling for course. Table 3 presents a
summary of how these findings support (or contradict) with the study hypotheses.

Table 3. Summary of How Findings Support (or Contradict) with the Hypotheses.

HYPOTHESES FINDINGS

Hypothesis 1: There is an association between
the value of learning programming and student
programming self-efficacy.

There was a statistically significant correlation
between student overall self-efficacy (independ-
ence and persistence in programming tasks and
student scaffolding for programming) and per-
ceived value of learning programming whilst
controlling for course; hence, Hypothesis 1 is
supported.

Abdunabi, Hbaci, & Ku

197

HYPOTHESES FINDINGS

Hypothesis 2: There is an association between
programming practice and student programming
self-efficacy.

There was no significant correlation between
overall self-efficacy (independence and persis-
tence in programming tasks and student scaffold-
ing for programming) and number of practicing
programming hours whilst controlling for course;
hence, Hypothesis 2 is not supported.

Hypothesis 3: There is an association between
consulting TA(s) and student programming self-
efficacy.

There was a statistically significant correlation
between student independence and persistence in
programming tasks (a factor of Programming
self-efficacy) and times of consulting TA for help
whilst controlling for course, supporting Hy-
pothesis 3. However, there was no significant
correlation between scaffolding for programming
(a factor of Programming self-efficacy) and times
of consulting TA for help whilst controlling for
course which contradicts with Hypothesis 3.

Finally, towards meeting our second goal, which is identifying business students’ future profession as
programmers, we analyzed the open-ended question on the survey using frequency of participants’
responses and completing qualitative coding of participants’ responses. A total of 127 out of 140
participants responded to the prompt of “Explain how you view programming as being a part in
your future profession”. The data revealed that categories representing IS undergraduates are similar
to Chilana et al.’s (2015) four categories for skill classification (novice, communicator, end-user, and
professional), with a new category of “competent” emerging.

The results revealed that only seven students (5%) expected to be novice programmers in their future
professions. This group showed limited willingness to expand their knowledge beyond what they
have acquired from the general technical environment, and they expect to hold jobs with basic tech-
nology use. A total of 20 participants (16%) viewed themselves as future communicators—those
who can read and write basic lines of code and work effectively with expert programmers in their
future workplaces. In addition, 32 students (25%) anticipated being end-user programmers—those
who are able to use software and applications for data entry and analysis purposes and to develop
pieces of code for these applications that are tailored to specific needs (such as data analyst).

Furthermore, 54 participants (43%) viewed themselves as being competent programmers—those
who are able to write a complete code (e.g., complete program or website) but not as advanced as CS
programmers. Some expected positions for this group would be software, applications, and/or web-
site developers. This group of participants is categorized as a new category of programmers that is
not found in Chilana et al.’s (2015) four categories of programmers. Finally, only 14 participants
(11%) viewed themselves as future professional programmers—those who are able to write a com-
plete and advanced code as professionally as CS majors. These individuals will have job positions
higher than the competent group, such as senior level of software specialists, applications program-
mers, and/or website developers. Figure 2 illustrates the distribution of participants’ responses.

Enhancing Programming Self-efficacy

198

0
5

10
15
20

7

20
32 54

14
N

um
be

r o
f s

tu
de

nt
s

Figure 2. Undergraduate Information Systems students’ view of their programming skills
needed for their future profession.

As a result of the distribution of IS students’ vision of their future coding career, we developed Fig-
ure 3, which represents undergraduate IS students’ programming categories. None of the partici-
pants viewed themselves as being experts, as this category is unlikely to be achieved by undergraduate
students.

Figure 3. Categories of programming skills for undergraduate

Information Systems students.

DISCUSSION AND CONCLUSIONS
This research focused on the aspect of students’ programming self-efficacy in order to assist educa-
tors construct class activities that support class materials. The factor analysis results showed that the
latent variables of the construct Java programming self-efficacy were loaded in two factors and la-
beled as (1) independence and persistence in programming tasks, and (2) scaffolding for program-
ming. The first research question addressed whether IS students’ perceived value of learning pro-
gramming, their own practice time, and frequency of TA consultations associate with their pro-
gramming self-efficacy. Both independence and persistence in programming tasks and scaffolding for
programming (overall programming self-efficacy) showed that they are positively correlated with stu-
dent perceived value of learning to program. This indicates that the more students value the learning
to program, the more they become independent and persist in solving challenging programming
problems. Relatively, once students receive appropriate support or scaffolding to learn programming,
the more they value programming. This finding confirms what other studies found regarding how
the value of learning programming is an important factor to learn programming (Blumenfeld et al.,
2006; Wu et al., 2010; X. Zhang, 2013). Although the data as presented in the findings indicated that
the participants of this study do value programming, the sources that assist them to gain this value

--

Novice Communicator End-User Competent Professional Expert

Very basic
programming
knowledge

Read and
write basic
lines of
coding

Use software
for data entry
and analysis,
able to write,
and manipulate
pieces of code

Responsible
to write a
complete
code of a
program, but
not sufficient

Write a
complete
sufficient
code of
program or
website

After many years
of experience
since graduation

Abdunabi, Hbaci, & Ku

199

cannot be confirmed. We anticipate as a part of this study that students’ value of learning program-
ming can be obtained using a combination of various resources, such as meeting with guest speakers
who graduated with IS degrees, watching interviews of successful people in programming from
around the world, and linking course activities with IS projects funded by IT companies. Such activi-
ties will expose students to real world experience and competition to win competent programming
jobs.

The finding of having a significant negative correlation between independence and persistence in
learning programming and the amount of time of consulting TAs for help seemed logical. It indi-
cates that the more students become independent in solving programming tasks, the less they need to
consult TAs for assistance. However, the data also showed that there is no significant correlation be-
tween scaffolding and the amount of time consulting TAs for help. This finding does not indicate
diminishing the importance of support that TAs provide while learning programming, but the IS
students participated in this study might not consider TAs as the only source for help. The partici-
pants might receive help from their peers, from the help center provided by their college, and/or
from any other individuals outside the class; therefore, we are looking forward to considering these
external support factors in our continuous work.

The data results also showed that time spent to practice programming does not correlate with inde-
pendence and persistence in programming tasks and scaffolding for programming (overall program-
ming self-efficacy). The lack of the correlation was unexpected, which contradicts with what Özmen
and Altun (2014) found in their study. Özmen and Altun concluded that there is a relationship be-
tween practice time and student programming self-efficacy, which in turn reduces the difficulty to
learn programming. One possible explanation is that practice assignments were not restricted
throughout this research, and students were not earnest in practice programming since practice ex-
amples were ungraded and un-trackable by the instructor or the TAs. In the current study, students
were given these practice examples to work on outside the class on their own time; henceforth, we
advise IS educators to make the practice time outside the class trackable and gradable task using an
IS technology. Research showed that adopting interactive textbooks into introductory STEM (sci-
ence, technology, engineering, and math) courses improves student coding skills (Edgcomb & Vahid,
2014, 2015; Edgcomb, Vahid, Lysecky, & Lysecky, 2017). With the help of the interactive program-
ming textbook, we believe that IS educators will be able to track students’ programming practice time
and grade students’ activities.

An investigation of the overall programming self-efficacy showed that IS students’ programming
self-efficacy perception levels are generally at medium level as presented in the findings. This finding
is consistent with a similar conclusion drew from Korkmaz and Altun’s study (2014). As program-
ming skill is a critical part of IS careers (Konecki, 2014), we can confirm that the IS students’ per-
ceived level of programming self-efficacy is not appropriate to be competent programmers. This lev-
el is an indicator that students generally are not confident in designing and implementing a complete
software solution. This requires collecting more data to investigate other factors that potentially con-
tribute to IS students’ programming self-efficacy, such as computer programming background and
previous math exposure, motivation, and economic status.

The second research question addressed IS students’ expectations about how their belief on pro-
gramming levels conforms to their learning goals. Based on the qualitative findings of this study, the
results showed that there is a new category that emerged for IS students beside Chilana et al.’s (2015)
non-Computer Science programmers’ four categories. Data distribution of IS students participated in
this research was grouped into five programmer categories: novice, communicator, end-user, compe-
tent, and professional. A high percentage (N = 54 or 43%) of the participants’ responses showed
that IS students think that they need to be competent programmers in order to succeed in their fu-
ture profession. The new category of competent programmers supports what Barker (2002) articu-
lated. Barker called for the necessity to have programming skills higher than skills required for being
end-user programmers; therefore, IS students need to be competent when they will need to write a

Enhancing Programming Self-efficacy

200

complete code (e.g., complete a program or website) but not as advanced as CS programmers. Ac-
cording to Heinlein (1987), a competent IS student programmer should be able to architect, imple-
ment, debug, and customize software applications, manage, market, and document software projects;
and ultimately possess a dual role with technical and business orientation.

Participants’ responses showed that three groups of students (N = 59 or 46%) see themselves in the
future as novice, communicator, or end-user programmers. We suspect that these three categories are
the groups who struggle with learning programming because, as Rogerson and Scott (2010) de-
scribed, the difference between the students’ expectation of what to learn and the class requirements
is most likely the source of struggle in learning programming. Moreover, based on the current pro-
jection by the U.S. Department of Labor (2018), IS students in these three categories do not possess
needed competent programming skills to meet the employment specification in the IS job market.

Interestingly, we did not expect to have some IS students (N = 11%) who desired to be professional
in programming, because to be a professional in programming, CS is the main major that could pro-
vide such skill. The CS degree major is math heavy at the undergraduate level that trains students to
be professional in programming. Therefore, this group of students might have a misunderstanding
of what would take to be professional programmers, which necessitates the need to focus not only
on programming, but also to focus on the underlying algorithms and data structure that make codes
work; nevertheless, this not compatible with what IS students need.

IS students’ programming self-efficacy perception at medium level is inconsistent with students’ pro-
gramming expectations. IS students who possess medium self-efficacy levels are often programming
at the competent level (neither at the end-user or professional levels). We anticipate that this finding
necessitates IS educators to increase students’ programming self-efficacy by providing the class activi-
ties that support the programming skill level consistent with students’ expectations. Thus, we urge IS
educators, as the ones who know their students the most, need to clearly state verbally and in the
class syllabus about the IS course objectives and learning outcomes as well as how much time and
effort are expected from students to spend to learn programming.

It would be much easier for educators if IS students programming skills fall into a specific category,
which in turn would assist in creating uniform programming courses across a variety of IS specialties
but based on our finding of having different programming categories of IS students, the variety of
skills needed among these technology users poses a significant challenge to instructional planning. As
a result of this variation in learning needs, teaching programming in a realistic context might be a
useful catalyst to the needed changes in student attitudes and perceptions of learning to program and
programming instruction, or a contextual teaching approach (Hudson & Whisler, 2007). Contextual
teaching would provide IS students with opportunities to learn and practice the skills they will be
expected to use in their future careers, which supports both academic and career success.

Based on the contextual learning approach, IS educators may create programming courses that differ
across specialties so that programming or coding classes are specific to each specialty based on stu-
dents’ future respective domains. Therefore, coordination between IS educators and career-specific
decision makers that identify necessary programming knowledge and skills for various career do-
mains is critical to producing instructional programs that are tailored to meet actual career demands.
This type of coordination will help educators reduce programming content that students are unlikely
to need in their future careers. Establishing greater career relevance in programming courses is likely
to increase the value that students place on learning programming skills. To the degree that valuing
programming is related to higher programming self-efficacy, contextual learning may encourage stu-
dents to learn programming and indirectly reduce fears about learning to program because contextual
learning offers high levels of relevance and actual skill practice.

Abdunabi, Hbaci, & Ku

201

LIMITATIONS
Relative to generalizing the findings, the sample size could be considered relatively small. This can be
referred to the normal setting in many universities, which is in our case a limited number of under-
graduate IS students who were attending the two programming courses offered by their departments.
However, this sample size was statistically appropriate to run the designated statistical and factor
analysis for this study. Additionally, a self-report survey was used to obtain the data; therefore, the
results could be influenced by the students’ social willingness to provide desirable information rather
than their honest responses. Nevertheless, surveys are one of the most appropriate quantitative re-
search methods, as they tend to identify “trends in attitudes, opinions, behaviors, or characteristics of
a large group of people” (Creswell, 2012, p. 21).

RECOMMENDATIONS
We conclude by offering some recommendations for future research. First, an interactive program-
ming tool is a suggested supplement for IS educators to increase student enthusiasm about practice
time of programming that would influence their programming self-efficacy. Second, this research can
be replicated by using the same methodology with participants from other universities and use vari-
ous high-level programming languages. This would contribute in making the findings more general-
izable. Third, this study mainly focused on self-efficacy and its related variables discussed in the liter-
ature that assist IS educators growing their undergraduate IS students programming competency.
Future research could enrich the use of the survey by incorporating individual interviews, focus
group interviews, and/or classroom observations to provide a more comprehensive understanding
of IS students’ programming acquisition.

REFERENCES
Askar, P., & Davenport, D. (2009). An investigation of factors related to self-efficacy for java programming

among engineering students. TOJET: The Turkish Online Journal of Educational Technology, 8(1), 26-32. Re-
trieved from http://files.eric.ed.gov/fulltext/ED503900.pdf

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-
215. https://doi.org/10.1037//0033-295x.84.2.191

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice
Hall. https://doi.org/10.5465/amr.1987.4306538

Bandura, A. (1988). Organizational applications of social cognitive theory. Australian Journal of Management,
13(2), 275-302.

Barker, S. K. (2002). Training business students to be end-used developers: Are case studies the best option?
Issues & Trends of Information Technology Management in Contemporary Organizations, 1, 62-69.

Bartimote-Aufflick, K., Bridgeman, A., Walker, R., Sharma, M., & Smith, L. (2016). The study, evaluation, and
improvement of university student self-efficacy. Studies in Higher Education, 41(11), 1918-1942.
https://doi.org/10.1080/03075079.2014.999319

Baser, M. (2013). Attitude, gender and achievement in computer programming. Online Submission, 14(2), 248-
255.

Bashir, G. M. M., & Hoque, A. S. M. L. (2016). An effective learning and teaching model for programming
languages. Journal of Computers in Education, 3(4), 413-437. https://doi.org/10.1007/s40692-016-0073-2

Blumenfeld, P., Kempler, T., & Krajcik, J. (2006). Motivation and cognitive engagement in learning environ-
ments. In K. Sawyer (Ed.), Cambridge handbook of the learning science (pp. 475–488). New York: Cambridge
University Press. https://doi.org/10.1017/cbo9780511816833.029

Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark, B. K., Steece, B., Brown, A. W., Chulani, S., & Abts,
C. (2000). Software cost estimation with COCOMO II. Upper Saddle River, NJ: Prentice Hall PRT.

http://files.eric.ed.gov/fulltext/ED503900.pdf
https://doi.org/10.1037/0033-295x.84.2.191
https://doi.org/10.5465/amr.1987.4306538
https://doi.org/10.1080/03075079.2014.999319
https://doi.org/10.1007/s40692-016-0073-2
https://doi.org/10.1017/cbo9780511816833.029

Enhancing Programming Self-efficacy

202

Büyüköztürk, Ş. (2002). Sosyal bilimler için veri analizi el kitabı [Data analysis handbook for social sciences]. Anka-
ra: PegemA Press. https://doi.org/10.14527/9789756802748

Chilana, P. K., Alcock, C., Dembla, S., Ho, A., Hurst, A., Armstrong, B., & Guo, P. J. (2015, October). Percep-
tions of non-CS majors in intro programming: The rise of the conversational programmer. Proceedings of
the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’15), 251 259.
https://doi.org/10.1109/vlhcc.2015.7357224

Cigdem, H., & Yildirim, O. G. (2014). Predictors of C# programming language self-efficacy among vocational
college students. International Journal on New Trends in Education and Their Implications, 5(3), 145-153.

Creswell, J. W. (2012). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (4th
ed.). Upper Saddle River, NJ: Pearson/Prentice Hall.

Dang, Y. M., Zhang, Y. G., Ravindran, S., & Osmonbekov, T. (2016). Examining student satisfaction and gender
differences in technology-supported, blended learning. Journal of Information Systems Education, 27(2), 119-
130.

Dasuki, S., & Quaye, A. (2016). Undergraduate students’ failure in programming courses in institutions of
higher education in developing countries: A Nigerian perspective. The Electronic Journal of Information Systems
in Developing Countries, 76(1), 1-18. https://doi.org/10.1002/j.1681-4835.2016.tb00559.x

Dreyfus, H. L., & Dreyfus, S. E. (1986). Mind over machine: The power of human intuition and expertise in the era of the
computer. New York, NY: Free Press.

Driscoll, M. P. (2005). Psychology of learning for instruction. Boston: Pearson Allyn and Bacon.

Edgcomb, A., & Vahid, F. (2014). Effectiveness of online textbooks vs. interactive web-native content. In 2014
ASEE Annual Conference.

Edgcomb, A., & Vahid, F. (2015). How many points should be awarded for interactive textbook reading as-
signments? In Frontiers in Education Conference (FIE), 2015 IEEE (pp. 1-4). IEEE.
https://doi.org/10.1109/fie.2015.7344350

Edgcomb, A.,Vahid, F., Lysecky, R., & Lysecky, S. (2017, March). Getting students to earnestly do reading,
studying, and homework in an introductory programming class. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education (pp. 171-176). ACM.
https://doi.org/10.1145/3017680.3017732

Fasogbon, S. K., Jegede, P. O., Adetan, D. A., & Aderbigbe, A. A. (2016). Assessment of Java programming
self-efficacy among engineering students in a typical Nigerian university. African Journal of Sustainable Devel-
opment, 6(2), 173-187.

Field, A. (2009). Discovering statistics using SPSS statistics (3rd ed.). Thousand Oaks, CA: Sage publications.

Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). Thousand Oaks, CA: Sage publications.

Forte, A., & Guzdial, M. (2005). Motivation and non-majors in CS1: Identifying discrete audiences for intro-
ductory computer science. IEEE Transactions on Education, 48(2), 248–253.
https://doi.org/10.1109/te.2004.842924

Gall, M. D., Borg, W. R., & Gall, J. P. (1996). Educational research: An introduction (6th ed.). United Kingdom:
Longman Publishing.

Gist, M. E., & Mitchell, T. R. (1992). Self-efficacy: A theoretical analysis of its determinants and malleability.
Academy of Management Review, 17(2), 183-211. https://doi.org/10.5465/amr.1992.4279530

Hudson,C. C. & Whisler, V. R. (2007). Contextual teaching and learning for practitioners. Journal of Systems,
Cybernetics and Informatics, 6(4) 54-58. Retrieved from
http://www.iiisci.org/journal/cv$/sci/pdfs/e668ps.pdf

Heinlein, R. A. (1987). Time enough for love. Penguin.

Kinnunen, P., & Malmi, L. (2006). Why students drop out CS1 course? In Proceedings of the Second International
Workshop on Computing Education Research (pp. 97-108). ACM. https://doi.org/10.1145/1151588.1151604

https://doi.org/10.14527/9789756802748
https://doi.org/10.1109/vlhcc.2015.7357224
https://doi.org/10.1002/j.1681-4835.2016.tb00559.x
https://doi.org/10.1109/fie.2015.7344350
https://doi.org/10.1145/3017680.3017732
https://doi.org/10.1109/te.2004.842924
https://doi.org/10.5465/amr.1992.4279530
http://www.iiisci.org/journal/cv$/sci/pdfs/e668ps.pdf
https://doi.org/10.1145/1151588.1151604

Abdunabi, Hbaci, & Ku

203

Konecki, M. (2014). Problems in programming education and means of their improvement. In B. Katalinic
(Ed.), DAAAM international scientific book 2104 (pp. 459-470).
https://doi.org/10.2507/daaam.scibook.2014.37

Korkmaz, Ö., & Altun, H. (2014). Adapting computer programming self-efficacy scale and engineering stu-
dents’ self-efficacy perceptions. Online Submission, 1(1), 20-31. https://doi.org/10.17275/per.14.02.1.1

Lieberman, H., Paterno, F., Klann, M., & Wulf, V. (2006). End-user development: An emerging paradigm. In H.
Lieberman, F. Paterno, & V. Wulf (Eds.), End-user development (pp. 1-8), Dordrecht: Springer.
https://doi.org/10.1007/1-4020-5386-x_1

Niitsoo, M., Paales, M., Pedaste, M., Siiman, L., & Tõnisson, E. (2014). Predictors of informatics students’ pro-
gress and graduation in university studies. In International Technology, Education and Development Conference. Va-
lencia, Spain.

Özmen, B., & Altun, A. (2014). Undergraduate students’ experiences in programming: Difficulties and obsta-
cles. Turkish Online Journal of Qualitative Inquiry, 5(3), 1-27. https://doi.org/10.17569/tojqi.20328

Pajares, F. (1996). Self-efficacy beliefs in academic settings. Review of Educational Research, 66(4), 543-578.
https://doi.org/10.3102/00346543066004543

Pallant, J. (2007). SPSS survival manual (3rd ed.). New York: Open University Press.

Redmond, B. F. (2010, December 6). Self-efficacy and social cognitive case study [Blog post]. Retrieved from:
https://wikispaces.psu.edu/display/PSYCH484/7.+Self-Efficacy+and+Social+Cognitive+Theories#id-
7.Self-EfficacyandSocialCognitiveTheories-MeasuringSelf-Efficacy

Robinson, M. A. (2018). Using multi‐item psychometric scales for research and practice in human resource
management. Human Resource Management, 57(3), 739-750. https://doi.org/10.1002/hrm.21852

Rogerson, C., & Scott, E. (2010). The fear factor: How it affects students learning to program in a tertiary envi-
ronment. Journal of Information Technology Education, 9(1), 147-171. https://doi.org/10.28945/1183

Rosson, M. B., Carroll, J. M., & Sinha, H. (2011). Orientation of undergraduates toward careers in the comput-
er and information sciences: Gender, self-efficacy and social support. ACM Transactions on Computing Educa-
tion (TOCE), 11(3), 14. https://doi.org/10.1145/2037276.2037278

Tan, P. H., Ting, C. Y., & Ling, S. W. (2009). Learning difficulties in programming courses: undergraduates’
perspective and perception. International Conference on Computer Technology and Development, 42-46.
https://doi.org/10.1109/icctd.2009.188

U.S. Department of Labor Bureau of Labor Statistics. (2018). Occupational outlook handbook, 2017-2018 edition.
U.S. Department of Labor, Washington, D. C. Retrieved from https://www.bls.gov/ooh/computer-and-
information-technology/home.htm

Vihavainen, A., Paksula, M., & Luukkainen, M. (2011, March). Extreme apprenticeship method in teaching
programming for beginners. In Proceedings of the 42nd ACM Technical Symposium on Computer Science Education
(pp. 93-98). ACM. https://doi.org/10.1145/1953163.1953196

Wiedenbeck, S. (2005, October). Factors affecting the success of non-majors in learning to program. In Proceed-
ings of the First International Workshop on Computing Education Research (pp. 13-24). ACM.
https://doi.org/10.1145/1089786.1089788

Wiedenbeck, S., Labelle, D., & Kain, V. N. (2004, April). Factors affecting course outcomes in introductory
programming. In 16th Annual Workshop of the Psychology of Programming Interest Group (pp. 97-109).

Wiggins, J. B., Grafsgaard, J. F., Boyer, K. E., Wiebe, E. N., & Lester, J. C. (2016). Do you think you can? The
influence of student self-efficacy on the effectiveness of tutorial dialogue for computer science. Internation-
al Journal of Artificial Intelligence in Education, 27(1), 130-153. https://doi.org/10.1007/s40593-015-0091-7

Wu, J. H., Tennyson, R. D., & Hsia, T. L. (2010). A study of student satisfaction in a blended e-learning system
environment. Computers & Education, 55(1), 155-164. https://doi.org/10.1016/j.compedu.2009.12.012

https://doi.org/10.2507/daaam.scibook.2014.37
https://doi.org/10.17275/per.14.02.1.1
https://doi.org/10.1007/1-4020-5386-x_1
https://doi.org/10.17569/tojqi.20328
https://doi.org/10.3102/00346543066004543
https://wikispaces.psu.edu/display/PSYCH484/7.+Self-Efficacy+and+Social+Cognitive+Theories#id-7.Self-EfficacyandSocialCognitiveTheories-MeasuringSelf-Efficacy
https://wikispaces.psu.edu/display/PSYCH484/7.+Self-Efficacy+and+Social+Cognitive+Theories#id-7.Self-EfficacyandSocialCognitiveTheories-MeasuringSelf-Efficacy
https://doi.org/10.1002/hrm.21852
https://doi.org/10.28945/1183
https://doi.org/10.1145/2037276.2037278
https://doi.org/10.1109/icctd.2009.188
https://www.bls.gov/ooh/computer-and-information-technology/home.htm
https://www.bls.gov/ooh/computer-and-information-technology/home.htm
https://doi.org/10.1145/1953163.1953196
https://doi.org/10.1145/1089786.1089788
https://doi.org/10.1007/s40593-015-0091-7
https://doi.org/10.1016/j.compedu.2009.12.012

Enhancing Programming Self-efficacy

204

Zhang, X., Zhang, C., Stafford, T. F., & Zhang, P. (2013). Teaching introductory programming to IS students:
The impact of teaching approaches on learning performance. Journal of Information Systems Education, 24(2),
147-155.

Zhang, Y. G., & Dang, Y. M. (2015). Investigating essential factors on students’ perceived accomplishment and
enjoyment and intention to learn in web development. ACM Transactions on Computing Education (TOCE),
15(1), 3:1-3:21. https://doi.org/10.1145/2700515

APPENDIX

PART I: JAVA PROGRAMMING TASKS
Please rate your confidence in doing the following Java programming related tasks using a scale of
(1-not at all confident; 2-mostly not confident; 3- Neither confident nor unconfident; 4-mostly con-
fident;5-absolutely confident)

1. I could write syntactically correct Java statements.
2. I could understand the language structure of Java and the usage of the reserved words.
3. I could write logically correct blocks of code using Java.
4. I could write a Java program that displays a greeting message.
5. I could write a Java program that computes the average of three numbers.
6. I could write a Java program that computes the average of any given number of num-

bers.
7. I could use built-in functions that are available in the various Java swing GUIs.
8. I could build my own Java swing GUIs.
9. I could write a small Java program given a small problem that is familiar to me.
10. I could write a reasonably sized Java program that can solve a problem this is only

vaguely familiar to me.
11. I could write a long and complex Java program to solve any given problem as long as the

specifications are clearly defined.
12. I could organize and design my program in a modular manner.
13. I could understand the object-oriented paradigm.
14. I could identify the objects in the problem domain and could declare, define, and use

them.
15. I could make use of a pre-written function, given a clearly labeled declaration of the

function.
16. I could make use of a class that is already defined, given a clearly labeled declaration of

the class.
17. I could debug (correct all the errors) a long and complex program that I had written and

make it work.
18. I could comprehend a long, complex multi-file program.
19. I could complete a programming project if someone showed me how to solve the prob-

lem first.
20. I could complete a programming project if I had only the language reference manual for

help.
21. I could complete a programming project if I could call someone for help if I got stuck.
22. I could complete a programming project once someone else helped me get started.
23. I could complete a programming project if I had a lot of time to complete the program.
24. I could complete a programming project if I had just the built-in help facility for assis-

tance.
25. While working on a programming project, if I got stuck at a point I could find ways of

overcoming the problem.

https://doi.org/10.1145/2700515

Abdunabi, Hbaci, & Ku

205

26. I could come up with a suitable strategy for a given programming project in a short time.
27. I could manage my time efficiently if I had a pressing deadline on a programming pro-

ject.
28. I could mentally trace through the execution of a long, complex multi-file program giv-

en to me.
29. I could rewrite lengthy and confusing portions of code to be more readable and clearer.
30. I could find a way to concentrate on my program, even when there were many distrac-

tors around me.
31. I could find ways of motivating myself to program, even if the problem area was of no

interest to me.
32. I could write a program that someone else could comprehend and add features to at a

later date.

PART II: PERCEIVED VALUE OF LEARNING PROGRAMMING
Please indicate to what degree you agree with each of the following statements using a scale of (1 -
strongly disagree; 2 – somewhat disagree; 3 - Neither agree nor disagree; 4 – somewhat agree; 5 -
strongly agree)

1. Learning programming helps me not only in my academia, but also to solve problems in
my daily life.

2. Learning programming in one class increases my productivity in other programming
classes.

3. Learning programming improves the value of my degree.
4. Learning programming provides me a high chance to get a job quickly.
5. Learning programming increases the chance of getting high payment in my future ca-

reer.

PART III: FUTURE USE OF PROGRAMMING
1. Explain how you view programming as being a part in your future profession (e.g., end-

user programmer, professional programmer, or anything else)?

PART IV: DEMOGRAPHIC INFORMATION
1. What is your age?
2. What is your gender? (Male/Female)
3. Which class are you in? (Application Design and Development (CIS 240)/
4. Advanced Application Design and Development (CIS 340)
5. How many hours do you spend per week to practice the weekly assigned
6. programs by the instructor?
7. How many times in this semester did you consult the teaching assistant for
8. help in your assignments?

Enhancing Programming Self-efficacy

206

BIOGRAPHIES
Ramadan Abdunabi is a Clinical professor of Computer Information
Systems in the College of Business at Colorado State University. He re-
ceived his MCS and Ph.D. in Computer Science from Colorado State
University, USA. His research interests include software design and de-
velopment, computer networks and security, Information Systems educa-
tion: pedagogy, curriculum design & implementation, distance education
challenges, and technology impact.

Ilham Hbaci has recently earned her Ph.D. in Educational Technology
with a minor in Applied Statistics and Research Methods from University
of Northern Colorado, Greeley, USA. She earned her Master of Busi-
ness Administration (MSBA)-Computer Information System Depart-
ment-Business School at Colorado State University, Fort Collins, USA.
Her research interest is technology integration, teaching and learning
strategies, educational qualitative and quantitative research, in general.

Heng-Yu Ku is a Professor in the College of Education and Behavioral
Sciences at the University of Northern Colorado, Greeley, CO, 80639,
USA. His research interests include technology integration, teaching and
learning strategies, and distance education.

	Towards Enhancing Programming Self-Efficacy Perceptions among Undergraduate Information Systems Students
	Abstract
	Introduction
	Literature Review and Hypotheses Development
	Theoretical Framework

	Methodology
	Research Process and Measurements
	Course Information and Design
	Participants

	Data Validity, Reliability, and Analysis
	Validity and Reliability
	Computer programming self-efficacy scale
	Perceived value of learning programming scale

	Data Analysis

	Findings
	Discussion and Conclusions
	Limitations
	Recommendations

	References
	Appendix
	PART I: JAVA PROGRAMMING TASKS
	PART II: PERCEIVED VALUE OF LEARNING PROGRAMMING
	PART III: FUTURE USE OF PROGRAMMING
	PART IV: DEMOGRAPHIC INFORMATION

	Biographies

