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ABSTRACT 
Aim/Purpose Currently, Information Systems (IS) departments in business schools are mov-

ing towards integrating learning to program or code in their undergraduate 
core courses. Many factors affecting IS student success in learning to program 
have been identified, but there is still a dearth of  knowledge about student per-
ceptions on their own competence. The purpose of  this study was to investi-
gate factors that may affect the success of  IS students in learning to program. 

Background Students’ perceptions about the value and difficulties to learn programming 
can affect their skills acquisition. IS educators need to understand the student 
perception related to difficulties of  learning to program in order to offer more 
effective support during their teaching process and interactions with students. 
To address this need, this study examines two critical elements to improve 
teaching IS programming courses: (a) Programming Self-Efficacy—students’ 
beliefs on their own programming competence, combined with (b) levels of  
programming skills which IS students initially thought to learn for their future 
profession.  

Methodology This study uses quantitative data drawn from undergraduate students in a 
Computer Information Systems classes at Colorado State University in U.S.A. 
and supported by qualitative data. 
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Contribution Quantitative data measures the correlation between students’ programming 
self-efficacy, their perceived value of  programming, their own practice time, 
and the frequency of  teaching assistant (TA) consultations. The qualitative data 
was utilized to understand students’ thoughts of  the programming skills they 
need in their future profession that may influence their programming self-
efficacy during the learning process. The importance of  this study lies in the 
potential that the findings of  this study are critical to investigate the most in-
fluential factors that are likely to be a vehicle through which educators can ei-
ther improve self-efficacy of  their students and/or understand it more fully. 
Furthermore, these findings may influence pedagogical practices for teaching 
programming languages in higher education contexts more successfully. For 
instance, applying a contextual learning approach may assist in identifying the 
most effective approach to teach programming courses, and in turn, will lead 
to increased learning outcomes as encountered and narrated by IS students.   

Findings The correlation analysis indicated a significant positive correlation between IS 
students’ programming self-efficacy and their perceived value of  learning pro-
gramming. However, the practice time and frequency of  TA consultations had 
no significant relationship with programming self-efficacy. In addition, the 
qualitative data revealed a clear placement of  IS students’ vision of  their future 
coding level into five categorical programming skills: novice, communicator, 
end-user, and professional, with a new category of  “competent” emerging. 

Recommendations  
for Practitioners 

The study suggests that IS Educators need to embed interventions for increas-
ing IS students’ perceived value of  learning programming and practice time. It 
is also very effective to associate the class activities with real life projects. Fur-
thermore, we suggest to educators to apply the contextual learning approach 
that would support higher levels of  value for programming and programming 
self-efficacy among IS students. Also, coordination between educators and em-
ployers can aid in developing effective programming classes, improving IS stu-
dents’ job marketability. 

Recommendations  
for Researchers  

Investigating other factors that potentially contribute to IS students’ program-
ming self-efficacy, such as previous computer programming and math expo-
sure, motivation, and economic status. 

Impact on Society Realizing the importance of  the programming self-efficacy could help IS edu-
cators to teach effective and efficient programming courses that ultimately re-
sult in students learning programming with high acquisition and less distress. 
Highlighting the importance of  linking what the market needs with the course 
content would increase students’ programming self-efficacy and their chances 
of  obtaining jobs. 

Future Research An interactive programming tool is a suggested supplement for IS educators to 
increase student enthusiasm about practice time that would support students 
work on their own and enjoy the class, and educators would be capable to ac-
curately track and assess students’ participations.  

Keywords information systems, programming self-efficacy, IS student classification, com-
petent programmers 

INTRODUCTION  
Recent years have witnessed contemporary business and jobs in demand throughout the United 
States, which require Information Systems (IS) majors to possess competent programming skills 
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(Konecki, 2014). Examples of  IS jobs that require coding skills include business analyst, data analyst, 
data mining, project management, software engineer, software developer, software tester, systems 
analyst, systems designer, database administrators, and network administrators. Employment in these 
areas is projected to grow 13% from 2016 to 2026, which is higher than the projected growth for all 
other occupations. This growth includes a 15% increase for web developers, a 11% increase for soft-
ware developers, a 9% increase for computer system analysts, and an 11% increase for database ad-
ministrators (U.S. Department of  Labor, 2018). Because of  the importance of  programming activi-
ties at workplace for IS majors, IS departments require students to complete programming courses 
that are tailored to them in order to perform effectively in their future careers. For IS student success, 
and to prepare them for the working world, it is important for IS educators to recognize the needs of  
IS students and provide effective support in their programming courses.  

Despite the demand for programming skills in today’s workplaces, undergraduate IS students, who 
have little or no prior exposure to programming, express difficulties learning computer programming 
in core IS courses, and they struggle to complete introductory programming courses with successful 
performance (Bashir & Hoque, 2016). IS students encounter difficulties understanding the underly-
ing concepts and struggle writing error-free programs that meet the stated requirements in their in-
troductory programming course (Forte & Guzdial, 2005; Wiedenbeck, 2005). Several empirical stud-
ies have established as many as one-third of  students who take introductory programming courses 
either fail or withdraw from these courses (X. Zhang, Zhang, Stafford, & Zhang, 2013). Further-
more, several studies have shown that the dropout and failure rates in introductory programming 
courses at the university level are evidence to the fact that learning to program is a difficult task 
(Dasuki & Quaye, 2016; Vihavainen, Paksula, & Luukkainen, 2011; Wiedenbeck, Labelle, & Kain, 
2004). Numerous factors influencing student success regarding programming have been identified 
(Dasuki, & Quaye, 2016; Wiedenbeck, 2005), but there is still a dearth of  knowledge about how stu-
dent perceptions affect course outcomes. To tackle this challenge, the goal of  this study was to ex-
plore some factors related to student perceptions that might contribute to IS student success with 
learning programming. 

The sources of  students’ apprehension about and difficulty with learning computer programming are 
varied, and some research indicates that personal characteristics and internal factors such as self-
efficacy—students’ belief  in their own programming competence—are likely to play a crucial role in 
levels of  struggle with programming and a student’s ability to overcome them (Askar & Davenport, 
2009; Pajares, 1996). The programming self-efficacy influences students’ choices of  activities, the 
amount of  effort they spend in accomplishing a task, and how long they will persist in a stressful 
situation to perform that task (Bandura, 1977).  

Although self-efficacy is an internal factor that describes a psychological attribute that can be altered 
by students themselves and an educator has no direct way to change it (Rogerson & Scott, 2010), 
there are various studies that have attempted to investigate factors that assist educators to influence 
students’ programming self-efficacy in an effort to reduce their struggle with learning programming 
(Rogerson & Scott, 2010). Substantial research has investigated various factors involved in the poten-
tial relationship between learning computer programming and perceptions of  self-efficacy because 
programming self-efficacy has been shown to be associated with greater persistence and willingness 
to approach new and challenging programming tasks (Cigdem & Yildirim, 2014; Dang, Zhang, 
Ravindran, & Osmonbekov, 2016; Korkmaz & Altun, 2014; Rogerson & Scott, 2010; Y. G. Zhang & 
Dang, 2015). As observed by Cigdem and Yildirim (2014), Özmen and Altun (2014), Rogerson and 
Scott (2010), and Wiggins, Grafsgaard, Boyer, Wiebe, and Lester (2016), the time students spent 
practicing, use of  assistance, and how they value learning programming influence learning program-
ming skills.  

The literature indicates that most studies identifying obstacles to learning computer programming, 
sources of  struggle, and ways to help only focus on Computer Sciences (CS) students who are re-
quired to design and implement efficient computer programs, software, and applications (Askar & 
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Davenport, 2009; Bashir & Hoque, 2016; Cigdem & Yildirim, 2014; Konecki, 2014; Özmen & Altun, 
2014; Rogerson & Scott, 2010). On the other hand, IS students’ role is to use, modify, and trouble-
shoot those programs, software, and applications. Therefore, CS students may have a motivational 
advantage over their non-major peers in learning programming. CS majors have chosen to learn pro-
gramming, whereas non-majors are often required to code regardless of  their personal opinions of  
its value or utility. Such studies vary in research results which make it difficult to draw any conclu-
sions regarding reliable predictors for students’ programming self-efficacy, particularly among IS ma-
jors in business schools.  

In addition to students’ challenge in learning program, it is also crucial for the IS educators to ensure 
they teach students the appropriate amount of  computer programming skills conforming to their 
students’ expectation of  what programming level to learn, which may influence student perceptions. 
IS students might need programming skills that are beyond those of  an end-user programmer (Bark-
er, 2002), but they do not need extensive professional programming skills. Non-professional pro-
grammers, including IS students, need to code, such as creating macros, spreadsheet, formulas, task 
automation scripts, and/or dynamic web applications (Boehm et al., 2000). Teaching IS students is a 
challenge because their major does not solely focus on learning programming and computing that 
allows them to obtain professional foundational skills that can be applied towards any career in cod-
ing. Instead of  having students solely focus on coding and programming, IS students are required to 
learn basic programming yet give insight into other facets such as project management, managerial 
communications, and/or business administration. Therefore, the goal of  this study was also an at-
tempt to find out how much focus should be given to teaching IS students about programming and 
coding, and what they need to be successful in learning programming in order to be well prepared 
for their future professions. 

In an effort to help IS educators enhance their students’ programming competency, this study re-
searched into a psychological aspect that potentially reduces the challenges and difficulties of  learn-
ing to program, as encountered and narrated by IS students. We used correlational analysis to investi-
gate whether the three variables, 1) participants’ perceived value of  programming, 2) how much time 
per week participants spent practicing programming assignments, and 3) the number of  times partic-
ipants consulted teaching assistants, are related to IS students’ programming self-efficacy scores of  
two IS programming courses. Understanding these variables should guide IS educators to develop 
class activities that could increase the programming self-efficacy among IS students. In addition, we 
used the open-ended question portion of  the instrument to investigate what level of  programming is 
suitable for IS students to satisfy student expectations of  their level of  coding to learn. This data will 
provide IS educators a better understanding of  the population they teach and whether the amount of  
programming is suitable for them.  

The paper continues with Literature Review and Hypotheses Development, which presents a review 
and summary of  the discussions reported in literature pertained to this study, research hypothesizes, 
objectives, and questions. Then, we present processes performed in our research method emphasiz-
ing objective measurements and the statistical analysis of  data collected through cross-sectional sur-
veys. The paper ends with a discussion of  the research findings and offer suggestions of  interven-
tions for IS educators, and then concludes with directions to future work.  

LITERATURE REVIEW AND HYPOTHESES DEVELOPMENT 
Difficulties faced by students while learning programming contribute directly to different types and 
different levels of  perceptions of  programming (Tan, Ting, & Ling, 2009). For example, students’ 
perceptions of  their own competence in learning (self-efficacy) is one of  the reliable indicators that 
predicts a person’s performance (Askar & Davenport, 2009). Self-efficacy has been defined as “learn-
ers’ judgements of  their capabilities to organize and execute courses of  action required to attain des-
ignated types of  performances” (Bandura, 1986, p. 391). It is potentially critical in an educational 
setting because students with high self-efficacy are more likely to accept challenging tasks and put 
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forth more effort to accomplish them than students who have low self-efficacy. Therefore, students 
with high self-efficacy tend to succeed in their future professions when they are compared with stu-
dents with low-self- efficacy, who are less likely to pursue new learning opportunities (Askar & Dav-
enport, 2009).  

Furthermore, beliefs held by individuals about their capabilities and about the outcomes of  their ef-
forts strongly influence the way they will behave (Pajares, 1996). Consequently, self-efficacy potential-
ly has a strong relationship with students’ choices of  what to learn and the effort they think they will 
need to exert to meet their learning goals (Rogerson & Scott, 2010). Previous research found that 
self-efficacy is not only associated with learning a subject and willingness to learn (Askar & Daven-
port, 2009; Fasogbon, Jegede, Adetan, & Aderbigbe, 2016; Y. G. Zhang & Dang, 2015), but also is 
related to students’ orientation toward jobs in computer and information systems related areas, as 
students with high self-efficacy are more likely willing to choose Computer Information Systems as 
the area of  their profession (Rosson, Carroll, & Sinha, 2011).  

Towards gaining better background related to our first research question, we found in existing re-
search that 1) value of  learning programming, 2) practice programming, and 3) consulting TAs are 
the three key factors that could influence student perceptions of  self-efficacy. For example, it has 
been argued that the value of  learning programming is a catalyst to learning and achievement (X. 
Zhang et al., 2013), and students who value the subject matter are more likely to apply deep-level of  
learning techniques (Blumenfeld, Kempler, & Krajcik, 2006). Wu, Tennyson, and Hsia (2010), articu-
lated that students’ computer self-efficacy is related to how they value the way of  learning. Research 
that seeks to address the needs of  computer programming for students has also highlighted that the 
perceived value of  programming skills among non-CS students is likely to have important implica-
tions for developing suitable programming courses for students with varying needs (Korkmaz & Al-
tun, 2014; X. Zhang et al., 2013). As stated by Bartimote-Aufflick, Bridgeman, Walker, Sharma, and 
Smith (2016), the value of  learning among undergraduate students is one of  the variables that are 
repeatedly highly correlated with self-efficacy, and it is likely to be a vehicle through which educators 
can either improve self-efficacy of  their students and/or understand it more fully. Based on that, we 
stated our first hypothesis as the following:  

Hypothesis 1: There is an association between the value of  learning programming and student programming 
self-efficacy. 

Lack of  practice in programming is considered as another reason for failure in programming 
(Özmen & Altun, 2014) because programming is all about solving problems via various lines of  cod-
ing. Students might visualize various ways to solve a problem, but practically, they need to write the 
code to obtain tangible output. Niitsoo, Paales, Pedaste, Siiman, and Tõnisson (2014) stated that time 
spent practicing programming during the semester was a significant predictor of  Information and 
Computer Technology students’ academic performance, with students who spent more time pro-
gramming having better performance. In our research, we adopted the factor of  time spent to prac-
tice programming that allow students to make mistakes in an ungraded environment, but we decided 
to investigate how it is related to student programming self-efficacy, and test the hypothesis: 

Hypothesis 2: There is an association between programming practice and student programming self-efficacy. 

Wiggins et al. (2016) investigated the relationship between 66 undergraduate students’ programming 
self-efficacy and human-to-human computer-mediated tutorial dialogue. Wiggins et al. (2016) found 
that the social dialogue between participants who were novices and had no substantial prior pro-
gramming experience and tutoring tends to be associated with increased self-efficacy. Particularly, 
tutoring was helpful for students with high self-efficacy. The students with high self-efficacy demon-
strated more advanced self-regulated learning strategies, and they were receptive to feedback. For 
students with low self-efficacy, guidance may provide greater learning, but it may also increase frus-
tration. Relatively, Kinnunen and Malmi (2006) found tutoring or TAs’ pedagogical inability to help 
students was an issue related to students dropping out of  Introductory of  Computer Science among 
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non-CS majors. As discussed, the idea of  having a teaching assistant to support students’ learning is 
not new, but current research that focuses on how tutoring relates to programming self-efficacy is 
limited and has not been investigated with IS students. Hence, we hypothesize: 

Hypothesis 3: There is an association between consulting TA(s) and student programming self-efficacy. 

Finally, to help answer the second research question of  our study, we focused on Chilana et al.’s 
(2015) study that completed research with non-CS undergraduate students. Chilana et al. identified 
programmer categories for students with various career expectations based on their level of  valuing 
programming. Chilana et al. identified four programming skill categories: 1) non-programmer (who 
does not know how to write a code), 2) conversational programmer (who is more programming lit-
erate than non-programmer but not necessarily enough to be an end-user), 3) end-user programmer 
(who is able to use software or applications for data entry purposes and manipulate some lines of  
codes of  these programs to meet specific needs), and 4) professional programmer (who is able to 
solve problems and produce products via programming). Chilana et al. found that some non-CS ma-
jors value learning programming because they want to be programmers or end-user programmers 
(e.g., data analysts or project managers). Other students expressed different reasons for valuing learn-
ing programming. Those students who were more programming literate than non-programmers but 
were not end-user programmers were classified as conversational programmers. Conversational pro-
grammers are not learning programming to be professional or end-user programmers; rather, they 
need to learn programming “for the pragmatic reason of  being able to converse in the programmer’s 
languages and improving their perceived marketability in the software industry” (Chilana et al., 2015, 
p. 252).  

Consequently, it is worthwhile to find a category for IS students as programmers because they have 
not been classified in the literature as a specific type of  programmer relative to Chilana et al.’s (2015) 
programming categories. According to Dreyfus and Dreyfus (1986), IS students do not need to be 
professional programmers, but they can become experts after many years of  experience and practice. 
Furthermore, Barker (2002) considered IS students as end-users that were defined by Lieberman, 
Paternò, Klann, and Wulf  (2006) as users “who are acting as non-professional software developers, at 
some point to create, modify or extend a software artifact” (p. 2). Barker articulated that IS students 
experience problems with being end-user programmers “due to incomplete information, incorrect 
design procedures, and inadequate software knowledge” (p. 62). This problem indicates that IS stu-
dents might stand in between the end-user and professional programmer categories. Therefore, our 
research investigations could assist IS educators to have better understandings of  the students they 
teach.  

THEORETICAL FRAMEWORK 
This study is guided by the self-efficacy theory of  Bandura (1977), which states that the more indi-
viduals believe they can accomplish a task using their skills under certain circumstances, the more 
they can complete it and succeed. The basic principle behind self-efficacy theory is that individuals 
are more likely to engage in activities for which they have high self-efficacy and less likely to engage 
in those they do not (Bandura, 1977). Hence, in educational settings, efforts should focus on increas-
ing students’ self-efficacy to improve their academic performance and achievement. Individuals gain 
satisfaction when they achieve goals they value, and when they achieve these valued goals, they are 
more likely to continue to extend a high level of  effort (Bandura, 1988). In addition, Bandura (1988) 
also emphasizes that setting valued goals is a significant resource to build self-efficacy. As a result, the 
value of  learning a skill (such as programming) and identifying explicit goals for learning this skill are 
both important factors that need to be considered to build this skill of  self-efficacy.   

Furthermore, relying on Bandura’s self-efficacy theory, Gist and Mitchell (1992) articulated that there 
are some processes need to be highlighted to assess and interpret individuals’ self-efficacy. The three 
assessment processes for self-efficacy are the analysis of  task requirements (an individual’s determi-
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nation of  what it takes to perform a task), attributional analysis of  experience (an individual’s judg-
ment about why a performance level occurred), and assessment of  personal and situational re-
sources/ constraints (an individual’s consideration of  personal and situational factors).   

Those three assessment processes of  self-efficacy play a critical role in academic success (Redmond, 
2010). For instance, the analysis of  task requirements includes the time dedicated to the course work 
(Redmond, 2010), which indicates that the time a student spends to learn programming skill can be 
considered one of  the factors that relates to a student programming self-efficacy. In addition, the 
attributional analysis of  experience provides personal perception and understanding that a student 
has in regard to why he/she reached a specific performance level (Redmond, 2010). One of  those 
attributes that influence students’ learning at a specific level is the availability of  communication be-
tween students and professor/teaching assistant (TA) (Redmond, 2010). This explicitly indicates that 
students’ call for support from their TAs might contribute to their programming self-efficacy. Finally, 
personal and situational resources include a confirmation for the students taking courses at an ap-
propriate level in which they can succeed (Redmond, 2010). We believe this attempt can help IS stu-
dents to express their goals of  learning to program and to help educators to estimate the amount of  
programming provided for them in the material. 

Finally, drawing on this framework, we highlighted the factors that are essential to build and assess 
programming self-efficacy (see Figure 1) and identify two objectives with two research questions for 
this study. 

o Objective 1: Assisting IS educators to make a decision about whether they need to consider 
the factors (the value of  programming, their own practice time, as well as the frequency of  
TA consultations) with high or low priority in creating their class activities. 

o RQ1: Do IS students’ perceived value of  learning programming, their own practice time, and 
frequency of  TA consultations associate with their programming self-efficacy? 

o Objective 2: Increasing IS educators’ understanding of  the population they teach by specify-
ing students’ expectations about their belief  on programming levels conform to their learn-
ing goals.  

o RQ2: What are IS students’ expectations about their belief  on programming levels   con-
form to their learning goals? 

 
Figure 1. Theoretical framework: External factors essential to build and  

assess programming self-efficacy. 

Programming 
Self-efficacy 

 Identifying explicit goals for learning to program. 
 Value of  learning programming. 
 Time dedicated to practice programming. 
 Support from authorized resources such as Teach-

ing Assistants. 
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METHODOLOGY 

RESEARCH PROCESS AND MEASUREMENTS 
A survey research design was used in this study. The survey link created using Qualtrics was distrib-
uted to the students of  the two Java courses at the end of  the Spring 2017 and Spring 2018 semes-
ters. An extra credit assignment worth 5 points was provided as an incentive for voluntary student 
participation. Each participant completed a set of  questions in four sections: student Java program-
ming self-efficacy, perceived value of  learning programming, future use of  programming, and demo-
graphic characteristics.  

To measure students’ Java programming self-efficacy, we used 32 items from Askar and Davenport’s 
(2009) Java Programming Self-Efficacy scale, where students rated their perceived self-efficacy with 
various Java programming-related tasks on a Likert-type scale. The survey was modified slightly for 
use in the current study by reducing the scale from a 7-point Likert-type scale to a 5-point Likert-type 
scale, ranging from 1 (not confident at all) to 5 (confident). This modification was made in an effort 
to maximize the completion rate obtained by reducing the cognitive load required to complete the 
survey (Driscoll, 2005), thus making the scale less time consuming for participants.  

The questions created for the scale measuring the perceived value of  learning programming section 
were largely based on Baser’s (2013) attitude survey. This scale indicates to what degree students 
agree with statements related to their perceived value of  program learning. This scale consists of  five 
items on a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The future use 
of  programming section contains only one open-ended question (e.g., explain how you view pro-
gramming as being a part of  your future profession) related to the future use of  programming from 
the participants’ perspectives. 

The last section of  the survey contains questions about age and gender of  the participants as well as 
the name of  the course they were taking. In addition, this section includes additional two questions 
(a) How many hours do you spend to practice the weekly assigned programs by the instructor? and 
(b) How many times in this semester did you consult the teaching assistant for help in your assign-
ments?  

The appendix presents the questionnaire of  the study. 

COURSE INFORMATION AND DESIGN 
The first junior-level programming course was titled as “Application Design and Development” and 
the second senior-level programming course was titled as “Advanced Application Design and Devel-
opment.” These two courses teach the general-purpose programming language, Java. The Java pro-
gramming language is of  specific interest to IS majors because of  its prominent, standard industry 
programming language, so that students will be well-prepared for their future professions.  

The activities that are accompanied with the two courses include weekly self-practice examples up-
loaded along with the weekly material of  the courses on Canvas (a Learning Management System). 
The practice examples were resource of  code reuse that would help students to write their actual 
programming assignments. Almost all the code fractions, blocks, and/or statements that students 
need for their assignments are in those practice programs. This would help students to self-practice 
through a non-graded environment, and they would be able to make changes in the code and observe 
the outputs. In addition, students are provided with a graded activity for participation in an in-class-
exercise, where they are observed and helped by the TAs to solve some multi-step problems related 
to the programming actual assignments. To obtain additional support from the TAs, students are 
provided lab hours to communicate with TAs and can also use Canvas to send their questions to 
them as well. 
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Other activities that have been added in these two courses are viewing interviews with influential 
people in the sector of  computer programming, such as the founders of  Microsoft, Facebook, Twit-
ter, and Dropbox, and inviting guest speakers who graduated with an IS degree and shared with stu-
dent their programming experience that helped them to obtain IS jobs. Finally, students are support-
ed with a general help center for all IS courses provided at the College of  Business, which provides 
another source for them to understand concepts, complete homework assignments, and ask ques-
tions.  

PARTICIPANTS 
The study was conducted under the approval of  the Institutional Review Board at a large state uni-
versity in the Western region of  the United States using a nonprobability convenience sampling 
method. Convenience sampling allowed data collection within time and place constraints. The criteria 
for selection were the following: (a) the target population was undergraduate business students, (b) 
the accessible population was undergraduate IS students from the College of  Business, (c) partici-
pants were 18 years of  age or older, and (d) each participant was taking either a junior-level pro-
gramming course or a senior-level programming course. A total of  140 students completed the sur-
vey, and their demographic information is presented in Table 1. 

Table 1. Participants’ Characteristics 
PARTICIPANT INFO N (%) 

Gender  

o Male  
o Female 

 

99 (70.7%) 

41 (29.3%) 

Class     

o Application Design and Development course 

o Advanced Application Design and Development course 

 

74 (52.9%) 

66 (47.1%) 

 Note. Ages ranged from 19 to 61 years old. N = 140. 

 

DATA VALIDITY, RELIABILITY, AND ANALYSIS 

VALIDITY AND RELIABILITY  

Computer programming self-efficacy scale 
The construct validity of  the Computer Programming Self-Efficacy Scale was examined via Explora-
tory Factor Analysis. The scale’s allocation to the factors was specified through principle component 
analysis with oblique rotation (Promax). After an iterative process to examine scree plots and eigen-
values, the scree plot clearly showed inflexions that would justify retaining two factors to extract. Out 
of  32 items, 20 items that had load values over .3 were retained and included in the analysis, and 12 
items with loads separated into two factors were excluded (Büyüköztürk, 2002). The Kaiser-Meyer-
Olkin (KMO) measure verified the sampling adequacy for the analysis, KMO = .90, and all KMO 
values for individual items were greater than .79, which is above the acceptable limit of  .5 (Field, 
2013). Bartlett’s test of  Sphericity, χ2 (190) = 1620.100, p < .001, showed that there were patterned 
relationships between the items, so the factor analysis can be used (Field, 2009). The two factors ex-
plained a cumulative variance of  53.07% and are labeled as (1) independence and persistence in pro-
gramming tasks (16 items), and (2) scaffolding for programming (4 items). Table 2 presents the re-
tained 20 items with their factor loadings and Eigen values. The Cronbach’s alpha for the 20 retained 
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Java programming self-efficacy items was .93. Individually, the reliability of  independence and persis-
tence in programming tasks scores was similarly high (α = .93), and the reliability for scaffolding for 
programming scores was slightly lower (α = .79), but it is still an acceptable value (Field, 2013). 

Table 2. Items Loadings for the Computer Programming Self-Efficacy Scale 

 INDEPENDENCE AND PERSIS-
TENCE IN PROGRAMMING TASKS 

SCAFFOLDING FOR PROGRAM-
MING 

26. I could come up with a suita-
ble strategy for a given program-
ming project in a short time. 

.78  

3. I could write logically correct 
blocks of  code using Java. 

.77  

17. I could debug (correct all the 
errors) a long and complex pro-
gram that I had written and make 
it work. 

.76  

18. I could comprehend a long, 
complex multi-file program. 

.74  

6. I could write a Java program 
that computes the average of  any 
given number of  numbers. 

.74  

28. I could mentally trace through 
the execution of  a long, complex 
multi-file program given to me. 

.73  

8. I could build my own Java 
swing GUIs. 

.72  

13. I could understand the object-
oriented paradigm. 

.71  

5. I could write a Java program 
that computes the average of  
three numbers. 

.71  

11. I could write a long and com-
plex Java program to solve any 
given problem as long as the spec-
ifications are clearly defined. 

.70  

29. I could rewrite lengthy and 
confusing portions of  code to be 
more readable and clearer. 

.65  

12. I could organize and design 
my program in a modular manner. 

.63  

10. I could write a reasonably 
sized Java program that can solve 
a problem this is only vaguely 
familiar to me. 

.62  
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 INDEPENDENCE AND PERSIS-
TENCE IN PROGRAMMING TASKS 

SCAFFOLDING FOR PROGRAM-
MING 

14. I could identify the objects in 
the problem domain and could 
declare, define, and use them. 

.62  

27. I could manage my time effi-
ciently if  I had a pressing deadline 
on a programming project 

.58  

9. I could write a small Java pro-
gram given a small problem that is 
familiar to me 

.51  

21. I could complete a program-
ming project if  I could call some-
one for help if  I got stuck. 

 .91 

22. I could complete a program-
ming project once someone else 
helped me get started. 

 .90 

19. I could complete a program-
ming project if  someone showed 
me how to solve the problem 
first. 

 .74 

24. I could complete a program-
ming project if  I had just the 
built-in help facility for assistance. 

 .61 

Eigen value 8.75 1.86 

% of  variance 43.77 9.30 

α  .93 .79 

Note: N = 140 

Perceived value of  learning programming scale 
In addition, convergent validity and discriminant validity were run to establish the construct validity 
to the five items measuring perceived value of  learning. The output showed that two items needed to 
be dropped. These two items had Pearson correlation (r) < .30 with related variables, and Pearson 
correlation (r) > .20 with unrelated variables (Robinson, 2018). For the remaining three items meas-
uring perceived value of  learning programming, Cronbach’s alpha was high (α = .81), and the cor-
rected item-total correlation are all above .3, which is encouraging (Field, 2016). 

DATA ANALYSIS 
We used IBM SPSS Statistics 21 to administer the survey and complete the data analyses. The statisti-
cal partial correlation that does not make the distinction between independent and dependent varia-
bles was chosen to analyze the data because we attempted to measure relationships between variables 
(independent and dependent variables) whilst controlling the effect of  a third variable (course). All 
assumptions to test the compatibility between the obtained data and the statistical partial correlation 
were tested including test of  outliers, normality, and linearity. When deviation from the assumption 
of  a normal distribution is presented, parametric tests should not be used; equivalent non-parametric 
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tests should be used instead (Gall, Borg, & Gall, 1996). Non-parametric tests are tests of  statistical 
significance, distribution free tests, and yield the same level of  statistical significance as parametric 
tests when the sample size is large, i.e., 30+ (Gall et al., 1996; Pallant, 2007). Although non-
parametric partial correlation test was conducted instead of  the parametric partial correlation due to 
assumptions violation (e.g. normality), the parametric and non-parametric partial correlation tests 
provided the same conclusion. 

FINDINGS 

The data revealed that the self-efficacy perceptions levels of  IS students ranged from 37 to 99, with 
an overall mean of  3.55 (SD = .63). In terms of  percentage distribution, 22.2% of  students have 
high level of  self-efficacy perceptions (M > 4.00), 76.4% have medium level of  self-efficacy percep-
tions (M > 2.00 but < 4.00), and 1.4% of  students have low level of  self-efficacy perceptions (M < 
2.00). Relatively, students’ perceived value of  learning to program ranged from 7 to 15, with an over-
all mean of  4.45 (SD = .63) and fell into medium and high level. In regard to percentage distribution, 
72.1% of  students perceived high value of  programming while 27.9% of  students perceived medium 
value of  programming.  

Towards meeting our goal, which is measuring the correlation between programming self-efficacy 
and three related factors, the output of  running the first non-parametric parametric partial correla-
tion test showed that there was a statistically significant, moderate, positive correlation between stu-
dent independence and persistence in programming tasks and perceived value of  learning program-
ming whilst controlling for course (r (118) = .306, N = 121, p = .001), supporting Hypothesis 1. In 
addition, there was a statistically significant, low, negative correlation between student independence 
and persistence in programming tasks and times of  consulting TA for help whilst controlling for 
course (r (118) = -.199, N = 121, p = .030), supporting Hypothesis 3. However, the analysis showed 
that there was no significant correlation between independence and persistence in programming 
tasks and number of  practicing programming hours whilst controlling for course (r (118) = .004, N 
= 121, p = .965). Therefore, Hypothesis 2 was not supported.  

The output of  running the second non-parametric parametric partial correlation test showed that 
there was a statistically significant, moderate positive correlation between student scaffolding for 
programming and perceived value of  learning programming whilst controlling for course (r (118) = 
.397, N = 121, p < .001), supporting Hypothesis 1 as well. On the other hand, there was no significant 
correlation between scaffolding for programming and times of  consulting TA for help (r (118) = -
.113, N = 121, p = .219), and between scaffolding for programming and number of  practicing pro-
gramming hours (r (118) = .031, N = 121, p = .740) whilst controlling for course. Table 3 presents a 
summary of  how these findings support (or contradict) with the study hypotheses. 

Table 3. Summary of  How Findings Support (or Contradict) with the Hypotheses. 

HYPOTHESES FINDINGS 

Hypothesis 1: There is an association between 
the value of  learning programming and student 
programming self-efficacy. 

 

There was a statistically significant correlation 
between student overall self-efficacy (independ-
ence and persistence in programming tasks and 
student scaffolding for programming) and per-
ceived value of  learning programming whilst 
controlling for course; hence, Hypothesis 1 is 
supported. 
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HYPOTHESES FINDINGS 

Hypothesis 2: There is an association between 
programming practice and student programming 
self-efficacy. 

 

There was no significant correlation between 
overall self-efficacy (independence and persis-
tence in programming tasks and student scaffold-
ing for programming) and number of  practicing 
programming hours whilst controlling for course; 
hence, Hypothesis 2 is not supported. 

Hypothesis 3: There is an association between 
consulting TA(s) and student programming self-
efficacy. 

 

There was a statistically significant correlation 
between student independence and persistence in 
programming tasks (a factor of  Programming 
self-efficacy) and times of  consulting TA for help 
whilst controlling for course, supporting Hy-
pothesis 3. However, there was no significant 
correlation between scaffolding for programming 
(a factor of  Programming self-efficacy) and times 
of  consulting TA for help whilst controlling for 
course which contradicts with Hypothesis 3. 

 

Finally, towards meeting our second goal, which is identifying business students’ future profession as 
programmers, we analyzed the open-ended question on the survey using frequency of  participants’ 
responses and completing qualitative coding of  participants’ responses. A total of  127 out of  140 
participants responded to the prompt of  “Explain how you view programming as being a part in 
your future profession”. The data revealed that categories representing IS undergraduates are similar 
to Chilana et al.’s (2015) four categories for skill classification (novice, communicator, end-user, and 
professional), with a new category of  “competent” emerging. 

The results revealed that only seven students (5%) expected to be novice programmers in their future 
professions. This group showed limited willingness to expand their knowledge beyond what they 
have acquired from the general technical environment, and they expect to hold jobs with basic tech-
nology use. A total of  20 participants (16%) viewed themselves as future communicators—those 
who can read and write basic lines of  code and work effectively with expert programmers in their 
future workplaces. In addition, 32 students (25%) anticipated being end-user programmers—those 
who are able to use software and applications for data entry and analysis purposes and to develop 
pieces of  code for these applications that are tailored to specific needs (such as data analyst).  

Furthermore, 54 participants (43%) viewed themselves as being competent programmers—those 
who are able to write a complete code (e.g., complete program or website) but not as advanced as CS 
programmers. Some expected positions for this group would be software, applications, and/or web-
site developers. This group of  participants is categorized as a new category of  programmers that is 
not found in Chilana et al.’s (2015) four categories of  programmers. Finally, only 14 participants 
(11%) viewed themselves as future professional programmers—those who are able to write a com-
plete and advanced code as professionally as CS majors. These individuals will have job positions 
higher than the competent group, such as senior level of  software specialists, applications program-
mers, and/or website developers. Figure 2 illustrates the distribution of  participants’ responses.  
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Figure 2. Undergraduate Information Systems students’ view of  their programming skills 
needed for their future profession. 

As a result of  the distribution of  IS students’ vision of  their future coding career, we developed Fig-
ure 3, which represents undergraduate IS students’ programming categories. None of  the partici-
pants viewed themselves as being experts, as this category is unlikely to be achieved by undergraduate 
students. 

 
Figure 3. Categories of programming skills for undergraduate  

Information Systems students. 

DISCUSSION AND CONCLUSIONS 
This research focused on the aspect of  students’ programming self-efficacy in order to assist educa-
tors construct class activities that support class materials. The factor analysis results showed that the 
latent variables of  the construct Java programming self-efficacy were loaded in two factors and la-
beled as (1) independence and persistence in programming tasks, and (2) scaffolding for program-
ming. The first research question addressed whether IS students’ perceived value of  learning pro-
gramming, their own practice time, and frequency of  TA consultations associate with their pro-
gramming self-efficacy. Both independence and persistence in programming tasks and scaffolding for 
programming (overall programming self-efficacy) showed that they are positively correlated with stu-
dent perceived value of  learning to program. This indicates that the more students value the learning 
to program, the more they become independent and persist in solving challenging programming 
problems. Relatively, once students receive appropriate support or scaffolding to learn programming, 
the more they value programming. This finding confirms what other studies found regarding how 
the value of  learning programming is an important factor to learn programming (Blumenfeld et al., 
2006; Wu et al., 2010; X. Zhang, 2013). Although the data as presented in the findings indicated that 
the participants of  this study do value programming, the sources that assist them to gain this value 

--------------------------------------------------------------------------------------------

Novice Communicator End-User Competent Professional Expert

Very basic 
programming  
knowledge

Read and 
write basic 
lines of 
coding

Use software 
for data entry 
and analysis, 
able to write, 
and manipulate 
pieces of code

Responsible 
to write a 
complete 
code of a 
program, but 
not sufficient 

Write a 
complete 
sufficient 
code of 
program or 
website

After many years 
of experience 
since graduation
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cannot be confirmed. We anticipate as a part of  this study that students’ value of  learning program-
ming can be obtained using a combination of  various resources, such as meeting with guest speakers 
who graduated with IS degrees, watching interviews of  successful people in programming from 
around the world, and linking course activities with IS projects funded by IT companies. Such activi-
ties will expose students to real world experience and competition to win competent programming 
jobs.   

The finding of  having a significant negative correlation between independence and persistence in 
learning programming and the amount of  time of  consulting TAs for help seemed logical. It indi-
cates that the more students become independent in solving programming tasks, the less they need to 
consult TAs for assistance. However, the data also showed that there is no significant correlation be-
tween scaffolding and the amount of  time consulting TAs for help. This finding does not indicate 
diminishing the importance of  support that TAs provide while learning programming, but the IS 
students participated in this study might not consider TAs as the only source for help. The partici-
pants might receive help from their peers, from the help center provided by their college, and/or 
from any other individuals outside the class; therefore, we are looking forward to considering these 
external support factors in our continuous work.  

The data results also showed that time spent to practice programming does not correlate with inde-
pendence and persistence in programming tasks and scaffolding for programming (overall program-
ming self-efficacy). The lack of  the correlation was unexpected, which contradicts with what Özmen 
and Altun (2014) found in their study. Özmen and Altun concluded that there is a relationship be-
tween practice time and student programming self-efficacy, which in turn reduces the difficulty to 
learn programming. One possible explanation is that practice assignments were not restricted 
throughout this research, and students were not earnest in practice programming since practice ex-
amples were ungraded and un-trackable by the instructor or the TAs. In the current study, students 
were given these practice examples to work on outside the class on their own time; henceforth, we 
advise IS educators to make the practice time outside the class trackable and gradable task using an 
IS technology. Research showed that adopting interactive textbooks into introductory STEM (sci-
ence, technology, engineering, and math) courses improves student coding skills (Edgcomb & Vahid, 
2014, 2015; Edgcomb, Vahid, Lysecky, & Lysecky, 2017). With the help of  the interactive program-
ming textbook, we believe that IS educators will be able to track students’ programming practice time 
and grade students’ activities.  

An investigation of  the overall programming self-efficacy showed that IS students’ programming 
self-efficacy perception levels are generally at medium level as presented in the findings. This finding 
is consistent with a similar conclusion drew from Korkmaz and Altun’s study (2014). As program-
ming skill is a critical part of  IS careers (Konecki, 2014), we can confirm that the IS students’ per-
ceived level of  programming self-efficacy is not appropriate to be competent programmers. This lev-
el is an indicator that students generally are not confident in designing and implementing a complete 
software solution. This requires collecting more data to investigate other factors that potentially con-
tribute to IS students’ programming self-efficacy, such as computer programming background and 
previous math exposure, motivation, and economic status.  

The second research question addressed IS students’ expectations about how their belief  on pro-
gramming levels conforms to their learning goals. Based on the qualitative findings of  this study, the 
results showed that there is a new category that emerged for IS students beside Chilana et al.’s (2015) 
non-Computer Science programmers’ four categories. Data distribution of  IS students participated in 
this research was grouped into five programmer categories: novice, communicator, end-user, compe-
tent, and professional. A high percentage (N = 54 or 43%) of  the participants’ responses showed 
that IS students think that they need to be competent programmers in order to succeed in their fu-
ture profession. The new category of  competent programmers supports what Barker (2002) articu-
lated. Barker called for the necessity to have programming skills higher than skills required for being 
end-user programmers; therefore, IS students need to be competent when they will need to write a 
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complete code (e.g., complete a program or website) but not as advanced as CS programmers. Ac-
cording to Heinlein (1987), a competent IS student programmer should be able to architect, imple-
ment, debug, and customize software applications, manage, market, and document software projects; 
and ultimately possess a dual role with technical and business orientation. 

Participants’ responses showed that three groups of  students (N = 59 or 46%) see themselves in the 
future as novice, communicator, or end-user programmers. We suspect that these three categories are 
the groups who struggle with learning programming because, as Rogerson and Scott (2010) de-
scribed, the difference between the students’ expectation of  what to learn and the class requirements 
is most likely the source of  struggle in learning programming. Moreover, based on the current pro-
jection by the U.S. Department of  Labor (2018), IS students in these three categories do not possess 
needed competent programming skills to meet the employment specification in the IS job market. 

Interestingly, we did not expect to have some IS students (N = 11%) who desired to be professional 
in programming, because to be a professional in programming, CS is the main major that could pro-
vide such skill. The CS degree major is math heavy at the undergraduate level that trains students to 
be professional in programming. Therefore, this group of  students might have a misunderstanding 
of  what would take to be professional programmers, which necessitates the need to focus not only 
on programming, but also to focus on the underlying algorithms and data structure that make codes 
work; nevertheless, this not compatible with what IS students need.  

IS students’ programming self-efficacy perception at medium level is inconsistent with students’ pro-
gramming expectations. IS students who possess medium self-efficacy levels are often programming 
at the competent level (neither at the end-user or professional levels). We anticipate that this finding 
necessitates IS educators to increase students’ programming self-efficacy by providing the class activi-
ties that support the programming skill level consistent with students’ expectations. Thus, we urge IS 
educators, as the ones who know their students the most, need to clearly state verbally and in the 
class syllabus about the IS course objectives and learning outcomes as well as how much time and 
effort are expected from students to spend to learn programming.  

It would be much easier for educators if  IS students programming skills fall into a specific category, 
which in turn would assist in creating uniform programming courses across a variety of  IS specialties 
but based on our finding of  having different programming categories of  IS students, the variety of  
skills needed among these technology users poses a significant challenge to instructional planning. As 
a result of  this variation in learning needs, teaching programming in a realistic context might be a 
useful catalyst to the needed changes in student attitudes and perceptions of  learning to program and 
programming instruction, or a contextual teaching approach (Hudson & Whisler, 2007). Contextual 
teaching would provide IS students with opportunities to learn and practice the skills they will be 
expected to use in their future careers, which supports both academic and career success. 

Based on the contextual learning approach, IS educators may create programming courses that differ 
across specialties so that programming or coding classes are specific to each specialty based on stu-
dents’ future respective domains. Therefore, coordination between IS educators and career-specific 
decision makers that identify necessary programming knowledge and skills for various career do-
mains is critical to producing instructional programs that are tailored to meet actual career demands. 
This type of  coordination will help educators reduce programming content that students are unlikely 
to need in their future careers. Establishing greater career relevance in programming courses is likely 
to increase the value that students place on learning programming skills. To the degree that valuing 
programming is related to higher programming self-efficacy, contextual learning may encourage stu-
dents to learn programming and indirectly reduce fears about learning to program because contextual 
learning offers high levels of  relevance and actual skill practice. 
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LIMITATIONS 
Relative to generalizing the findings, the sample size could be considered relatively small. This can be 
referred to the normal setting in many universities, which is in our case a limited number of  under-
graduate IS students who were attending the two programming courses offered by their departments. 
However, this sample size was statistically appropriate to run the designated statistical and factor 
analysis for this study. Additionally, a self-report survey was used to obtain the data; therefore, the 
results could be influenced by the students’ social willingness to provide desirable information rather 
than their honest responses. Nevertheless, surveys are one of  the most appropriate quantitative re-
search methods, as they tend to identify “trends in attitudes, opinions, behaviors, or characteristics of  
a large group of  people” (Creswell, 2012, p. 21).  

RECOMMENDATIONS  
We conclude by offering some recommendations for future research. First, an interactive program-
ming tool is a suggested supplement for IS educators to increase student enthusiasm about practice 
time of  programming that would influence their programming self-efficacy. Second, this research can 
be replicated by using the same methodology with participants from other universities and use vari-
ous high-level programming languages. This would contribute in making the findings more general-
izable. Third, this study mainly focused on self-efficacy and its related variables discussed in the liter-
ature that assist IS educators growing their undergraduate IS students programming competency. 
Future research could enrich the use of  the survey by incorporating individual interviews, focus 
group interviews, and/or classroom observations to provide a more comprehensive understanding 
of  IS students’ programming acquisition. 
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APPENDIX 

PART  I: JAVA PROGRAMMING TASKS  
Please rate your confidence in doing the following Java programming related tasks using a scale of  
(1-not at all confident; 2-mostly not confident; 3- Neither confident nor unconfident; 4-mostly con-
fident;5-absolutely confident) 

1. I could write syntactically correct Java statements. 
2. I could understand the language structure of  Java and the usage of  the reserved words. 
3. I could write logically correct blocks of  code using Java.  
4. I could write a Java program that displays a greeting message. 
5. I could write a Java program that computes the average of  three numbers.  
6. I could write a Java program that computes the average of  any given number of  num-

bers. 
7. I could use built-in functions that are available in the various Java swing GUIs. 
8. I could build my own Java swing GUIs.  
9. I could write a small Java program given a small problem that is familiar to me. 
10. I could write a reasonably sized Java program that can solve a problem this is only 

vaguely familiar to me. 
11. I could write a long and complex Java program to solve any given problem as long as the 

specifications are clearly defined.  
12. I could organize and design my program in a modular manner.  
13. I could understand the object-oriented paradigm.  
14. I could identify the objects in the problem domain and could declare, define, and use 

them. 
15. I could make use of  a pre-written function, given a clearly labeled declaration of  the 

function. 
16. I could make use of  a class that is already defined, given a clearly labeled declaration of  

the class.  
17. I could debug (correct all the errors) a long and complex program that I had written and 

make it work. 
18. I could comprehend a long, complex multi-file program.  
19. I could complete a programming project if  someone showed me how to solve the prob-

lem first.  
20. I could complete a programming project if  I had only the language reference manual for 

help. 
21. I could complete a programming project if  I could call someone for help if  I got stuck.  
22. I could complete a programming project once someone else helped me get started.  
23. I could complete a programming project if  I had a lot of  time to complete the program. 
24. I could complete a programming project if  I had just the built-in help facility for assis-

tance.  
25. While working on a programming project, if  I got stuck at a point I could find ways of  

overcoming the problem.  
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26. I could come up with a suitable strategy for a given programming project in a short time.  
27. I could manage my time efficiently if  I had a pressing deadline on a programming pro-

ject.  
28. I could mentally trace through the execution of  a long, complex multi-file program giv-

en to me.  
29. I could rewrite lengthy and confusing portions of  code to be more readable and clearer.  
30. I could find a way to concentrate on my program, even when there were many distrac-

tors around me. 
31. I could find ways of  motivating myself  to program, even if  the problem area was of  no 

interest to me.  
32. I could write a program that someone else could comprehend and add features to at a 

later date. 

PART  II: PERCEIVED VALUE OF LEARNING PROGRAMMING 
Please indicate to what degree you agree with each of  the following statements using a scale of  (1 - 
strongly disagree; 2 – somewhat disagree; 3 - Neither agree nor disagree; 4 – somewhat agree; 5 - 
strongly agree) 

1. Learning programming helps me not only in my academia, but also to solve problems in 
my daily life. 

2. Learning programming in one class increases my productivity in other programming 
classes. 

3. Learning programming improves the value of  my degree.  
4. Learning programming provides me a high chance to get a job quickly.  
5. Learning programming increases the chance of  getting high payment in my future ca-

reer. 

PART  III: FUTURE USE OF PROGRAMMING 
1. Explain how you view programming as being a part in your future profession (e.g., end-

user programmer, professional programmer, or anything else)? 

PART  IV: DEMOGRAPHIC INFORMATION 
1. What is your age?  
2. What is your gender? (Male/Female)  
3. Which class are you in? (Application Design and Development (CIS 240)/  
4. Advanced Application Design and Development (CIS 340)  
5. How many hours do you spend per week to practice the weekly assigned  
6. programs by the instructor?  
7. How many times in this semester did you consult the teaching assistant for  
8. help in your assignments?  
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