
Journal of Information Technology Education Volume 5, 2006

On the Design and Development of a UML-Based
Visual Environment for Novice Programmers

Brian D. Moor and Fadi P. Deek
College of Computing Sciences,

New Jersey Institute of Technology, Newark, NJ, USA

Brian.Moor@njit.edu Fadi.Deek@njit.edu

Executive Summary
Few beginners find learning to program easy. There are many factors at work in this phenomenon
with some being simply inherent in the subject itself, while others have more to do with deficien-
cies in learning methods and resources. As a result, many programming environments, software
applications, and learning tools have been developed to address the difficulties faced by novice
programmers. Of these tools, visual-based tools and the use of visualization have proven to be
very effective in helping novices overcome several of these traditional difficulties. In this paper,
we first examine the traditional difficulties that novice programmers encounter when take an in-
troductory-level programming course are examined. It is important to gain an understanding of
the scope of these difficulties first, as the rest of this paper considers how visual tools, visualiza-
tion, and UML can be utilized to aid novice developers in these areas of difficulties. Next, we
provide an analysis of several modern visual learning tools, including EROSI, AnimPascal,
BlueJ, FLINT, BOOST, and SOLVEIT. In particular, we look at how these tools use visualization
to help mitigate the difficulties novice programmers face. Each tool is also assessed based on its
overall effectiveness of using visual aids and visualization to help the beginning programmer. We
then turn our attention to the Unified Modeling Language (UML) and how it can be utilized to
help the novice programmer in system design and modeling. The UML specification is carefully
discussed, and aspects of the specification that hold the most potential for aiding novice pro-
grammers are identified. Finally, we focus on UML modeling and present the theoretical founda-
tion for a new visual learning tool based on the UML standard. This proposed learning environ-
ment attempts to combine promising attributes of existing tools we previously examined, along
with the potential benefits of UML-based modeling. The proposed tool would provide a superior
learning environment for the novice programmer for several reasons. First, it is heavily based in
the visual domain. Visual tools have continually proven to be extremely powerful in helping nov-
ices in learning abstract computer concepts. In addition, visualization helps novices construct a
mental model of concepts, which is pivotal to further comprehension and understanding. Second,

the proposed environment would allow for
a constructivist learning approach, con-
straining the UML domain for novices, yet
easily expanded for more complex pro-
jects as the student progresses. Finally,
this tool would naturally aid in solution
delivery and documentation of the
learner’s path to solution.

Keywords: programming, novice, diffi-
culties, UML, visualization
Material published as part of this journal, either on-line or in
print, is copyrighted by the publisher of the Journal of In-
formation Technology Education. Permission to make digi-
tal or paper copy of part or all of these works for personal or
classroom use is granted without fee provided that the cop-
ies are not made or distributed for profit or commercial ad-
vantage AND that copies 1) bear this notice in full and 2)
give the full citation on the first page. It is permissible to
abstract these works so long as credit is given. To copy in all
other cases or to republish or to post on a server or to redis-
tribute to lists requires specific permission and payment of a
fee. Contact Editor@JITE.org to request redistribution per-
mission.
Editor: Glenn Lowry

mailto:Brian.Moor@njit.edu
mailto:Fadi.Deek@njit.edu

A UML-Based Visual Environment for Novice Programmers

54

Background
Traditionally, novice programmers have encountered difficulties in learning to program in several
different areas, including: the comprehension of fundamental computing concepts, the appropriate
decomposition of the problem into easily managed sub-problems, design and implementation of a
working solution, and the debugging of the resulting program. Research in the areas psychology
of programming, human-computer interaction, cognition, and pedagogy have identified and clas-
sified a number of these problems that novices face when learning to program. Bladek and Deek
(2005) note that novice difficulties can be adequately classified into the following categories:
pedagogical roots, psychological roots, programming language paradigms, programming lan-
guage intricacies, debugging skills, and external influences.

An ineffective pedagogy in learning programming is one of the most vital factors that will influ-
ence how a novice programmer will perform in subsequent experiences. Liffick and Aiken (1996)
observe that beginning programmers may stumble in their understanding of a new concept not
because it is difficult, but because it is depending on an earlier concept. Another contributor to an
ineffective pedagogy can be attributed to the lack of adequate problem solving skills. Suchan and
Smith (1997) note that as a result, novice programmers begin to write programs but generate code
without any planning or organized thought process. Consequently, Pane and Myers (1996), as
well as Olson, Catrambone, and Soloway (1987) collectively observe that general problem solv-
ing strategies should be explicitly acquired along with program development skills.

A great number of novice difficulties have been classified as having psychological roots. With
computers, the manner in which information is represented and manipulated causes a challenge to
its understanding. As a result, novices lack an adequate mental model of the machine’s internals
and how it operates. In addition, some of the programming concepts, such as recursion, are ab-
stract in nature, having no real-world counterpart for the beginner to refer to.

Novices lack the ability to perform effective sub-goal decomposition. Baile (1991) notes that de-
composing while coding is the primary factor that influences a programmer’s ability to perform
effective sub-goal decomposition. In addition, Pane and Myers (1996), as well as Bonar and So-
loway (1985) both observe that when novices lack an appropriate plan, they tend to invent one
using pre-programmed knowledge acquired through their real-world experiences. Deek, McHugh,
and Hiltz (2000), however, conclude that these plans are often inappropriate because they do not
take into account computer limitations.

Program comprehension is inherently difficult for novices. Ramalingam and Wiedenbeck (1997)
define program comprehension as the process that facilitates the understanding of an existing
program. The primary focus of beginning programming is typically on the development of pro-
gramming solutions to problem statements. Very little attention is given to comprehension skills
for programs that have already been written, and more importantly how these programs can pos-
sibly be modified and/or applied to other similar problems. Defect discovery strategies, which
play a critical role in real-world program maintenance, are almost always ignored.

Along the lines of program comprehension is the difficulties novices face in the debugging of
implemented programs. Very rarely does a program work perfectly upon the first execution at-
tempt. Therefore, debugging proves to be an essential skill that a novice programmer must de-
velop. Gugerty and Olson (1986) note that much of the skills for debugging must be learned
through the experience of writing programs and since novices lack adequate program comprehen-
sion skills, errors are often inadvertently injected into programs while debugging. Consequently,
Satratzemi, Dagdilelis, and Evageledis (2001) observe that, due to this lack of understanding, be-
ginning programmers will repeatedly attempt to correct their errors with an understanding of the
meaning of the error message produced by the compiler. For the novice, debugging frequently
becomes an exercise of trail-and-error until their program works as expected.

 Moor & Deek

 55

Other novice programmer difficulties stem from the intricacies of programming languages and
their associated paradigms. There are usually several programming language paradigms in prac-
tice at once. Understanding what a paradigm is and how it relates to the real world is frequently a
problem for novices. Deciding on what paradigm is suited for the need of novices is typically an
on-going debate. Regardless of which language paradigm is chosen, novices continue to struggle
with issues involving language syntax; looping constructs; syntactical synonyms, homonyms, and
elision; operator precedence; and the semantics and pragmatics of programming language con-
structs.

Because of the pervasive nature of the novice difficulties presented in this section, much research
has been dedicated to the understanding of these difficulties and has led to the development of
new methodologies, paradigms, programming languages, and novice learning tools to aid the be-
ginning programmer. Visualization and visual novice tools have been identified as having great
potential in helping the novice programmer overcome these difficulties. In the next section, we
discuss modern visual learning tools, along with an analysis of how each tool attempts to resolve
these difficulties and how effective they are in that task.

Analysis of Modern Visual Tools
Visual learners, as apposed to verbal or textual learners, retain information more efficiently
through images than they do from verbal means. Barbe and Milone (1981) observe that as a re-
sult, perception of information via diagrams is extremely effective for this type of learner. The
importance of visual tools and visualization usage to aid novice programmers is apparent. In this
section, we will identify and analyze several modern visual-based learning tools based on how
well they address the novice difficulties discussed in the previous section.

Classifications of Visual Learning Tools
For the purposes of this discussion, visual learning tools can be roughly classified into two cate-
gories: those that use visualization to display and animate constructs in programs that have al-
ready been written, and those that use visualization to aid novices in the program development
process. These uses of visualization are mutually exclusive and are on completely different ends
of the spectrum in terms of the ways in which they seek to aid the novice developer. Thus, we
will discuss them in the context of these two distinct groupings.

Visual tools that utilize visualization to display and animate constructs in programs that have al-
ready been developed seek to aid novice developers in the areas of program comprehension, the
understanding of abstract computer concepts, and in the debugging portion of the software devel-
opment process. Tools that fall into this category include EROSI and AnimPascal.

On the other end of the spectrum, visual tools that utilize visualization to aid the novice pro-
grammer in actual development of programs seek to aid novices in the areas of abstraction, mod-
eling, problem analysis, and problem solving. Tools that fall into this category include BlueJ,
FLINT, BOOST, and SOLVEIT.

EROSI: Explicit Representer of Subprogram Invocations
The Explicit Representer of Subprogram Invocations (EROSI) system is an easy-to-use tool that
attempts to aid novices via program visualization, particularly in the area of recursion. Recursion
is an abstract concept that is very difficult for novices to understand and, as a result, tend to be
avoided with the substitution of iterative algorithms. George (2000b) notes that EROSI helps nov-
ices obtain a “mental model to facilitate the comprehension and use of recursion as a problem
solving technique”.

A UML-Based Visual Environment for Novice Programmers

56

George (2000a) also notes that the basis for EROSI is the dynamic-logical model, in which each
recursive invocation suspends the calling program. Control of program execution is transferred to
a “new and unique” manifestation of the recursive program. Once subprogram execution is com-
plete, control is transferred back to the calling program. Each invocation results in a new copy of
the subprogram, which has its own unique set of variable and parameter values.

Bladek and Deek (2005) observe that at the heart of EROSI is the Command Module. The six
components that support the Command Module are: the Graphic and Utility Units, Text Files,
Simulation Modules, User Input, Visual Output, and the Event Logger. The Graphic and Utility
Units handle the graphical displays. Text Files comprise the menu from which instructions may
be invoked or information be provided. Simulation Modules simulate sample program execution.
User Input is generated by the student in order to invoke a simulation. Program simulation and
applicable program output is presented in the Visual Output component. The Event Logger is a
utility that records miscellaneous metrics about the use of the tool and observations about the
user.

Bladek and Deek (2005) continue to note that EROSI’s four main menu choices of particular in-
terest are: Subprograms Without Parameters, Subprograms With Parameters, Complex Calls, and
Recursion. Each of these selections, when invoked, presents the user with submenus that contain
programs that can be simulated with custom user input. The choices are ordered in increasing dif-
ficulty and program complexity. This provides the novice with an easier transition in the learning
of recursion: rather than providing random examples, a progressive approach is utilized.

As George (2000b) indicates, one of the benefits of EROSI is that the use of the tool enhances the
comprehension of: sequential program and subprogram execution, the suspension of a calling
program resulting from a subprogram invocation, the transition of control flow to the new copy of
the subprogram and its resulting actions, the return path to the suspended calling program, and
data flow through all invocations. EROSI accomplishes this through the use of visualization and
animation aided with the use of color and sound. The system indicates the execution of a recur-
sive subprogram through dynamic code visualization, where the line of source code currently be-
ing executed is highlighted. EROSI also utilizes dynamic algorithm visualization, which is an
animation feature that assists novices in the visualization of the mechanics of the algorithm being
executed.

EROSI effectively uses visualization to aid the novice in the comprehension of recursive algo-
rithms. This system helps the novice understand the flow of execution, program control, and data
flow through multiple invocations of the same subprogram. Good and Brna (1996) note, however,
that learning recursion has two aspects: the declarative aspects of learning “what it is”, and the
procedural aspects of “how to use it”. Good and Brna continue to indicate that the difficulties of
recursion are not eliminated once the concept of recursion is understood, as users will still en-
counter problems in applying it correctly and in the appropriate context.

EROSI effectively addresses the novice difficulty of comprehending abstract computer concepts,
with a focus on the concept of recursion. Through its use of visualization, animation, and pro-
vided examples, is effective at aiding novices in the comprehension of recursive programs that
have already been written. The system, however, lacks in the area of guiding users through how
to create a recursive algorithms from scratch, and determining when it is appropriate to apply a
recursive routine to a particular problem.

AnimPascal: Animated Pascal
As noted earlier, one of the primary difficulties novices face in learning how to program, is the
ability to visualize and create a mental model of the actions involved in program execution. Most
modern programming environments lack the ability to effectively animate the actions that the

 Moor & Deek

 57

program is performing. Of those that do provide such a feature, most are crude in nature and dif-
ficult to use, and thus prove to be not very helpful. In order to address this issue, Satratzemi et al.
(2001) introduced a visual education environment designed to teach novice programmers how to
develop, verify, debug, and execute programs. Based on the Pascal language, the two primary
features of AnimPascal are: a program animator, and a mechanism that can be used to analyze the
various recorded problem-solving paths.

AnimPascal provides the ability to create, edit, and compile standard Pascal programs. It has a
graphical user interface that is simple and easy to use. AnimPascal’s user interface consists of
four distinct windows: Source Window is used for input and editing of source code, Program
Output Window is used for capturing the output of the program, Display Variable Window is used
for tracking changes to program variables and Compiler Output Window is used for displaying
message output by the compiler.

At the heart of AnimPascal is its animation tool. As a user steps through a program, the current
source code line being executed is highlighted. During the step-wise execution process, variables
are updated in the display variables window, output appears in the program output window
whenever output producing statements are encountered, and windows prompting a user for input
appear whenever a statement requiring a user input is executed.

AnimPascal also has a history tracking mechanism, in which all compiled versions of a user’s
program are recorded. This feature is aimed toward programming instructors, as it is able to give
them an insight into common programming misconceptions and frequently encountered pro-
gramming mistakes. The instructors are then able to classify these misconceptions and mistakes,
and change accordingly (i.e. more examples and better explanations) in order to prevent similar
occurrences in future course offerings.

AnimPascal attempts to employ the use of visualization and animation to help novice program-
mers create a mental model of the execution of computer programs. Its “animation”, however, is
primarily textual based, with moving highlights in source code, which may not be abstract or
visually object-oriented enough in nature to be an effective learning aid for most novice pro-
grammers. While AnimPascal’s history tracking mechanism is interesting, it requires the instruc-
tor to take an active role and interest in the analysis of the data and determining the appropriate
changes to their curriculum.

Similar to EROSI, AnimPascal focuses on aiding the user comprehend programs that have al-
ready been written. The system has no functionality to help the novice programmer effectively
design and implement his/her own programs. Because of these considerations, AnimPascal has a
very limited ability to help novice programmers overcome many of the difficulties discussed
above.

BlueJ: The Interactive Java Environment
BlueJ is an integrated Java environment specifically designed for an introductory level. It was
developed as part of a university research project focused on the teaching of object-orientation to
novice programmers. Barnes and Kolling (2003) indicate that Special emphasis is placed of visu-
alization and interaction techniques to create a highly interactive environment that encourages
experimentation and exploration. BlueJ is based on the Blue system, which is an integrated learn-
ing environment, along with its own specialized language. BlueJ provides a Blue-like environ-
ment that has been extended specifically for use with the industry-standard Java language.

One of the fundamental characteristics of BlueJ is that not only can a user execute a complete
application, but also has the ability to directly interact with single object of any class and execut-
ing their public methods. An execution of BlueJ is usually done by creating an instance of a class,

A UML-Based Visual Environment for Novice Programmers

58

and then invoking one of the resulting object’s methods. This facility can be very helpful in the
development of an application, as users have the ability to test classes individually as soon as they
have been written. This feature of BlueJ attempts to address the novice difficulty of program de-
bugging. By having the ability to test as soon as classes have been written, novices are better able
to track down exactly where any errors are occurring.

In the BlueJ’s animated environment, the user can create classes and establish relationships be-
tween them by using functions available on a toolbar. Once an object has been created it is placed
in the Object Bench and its public operations can be executed. During object and program execu-
tion, BlueJ provides the ability to inspect the internal state of the object. A traditional debugging
environment, with the ability to set breakpoints and step sequentially through the code, is also
provided. Inspection of variables during object execution is every easy, as they are automatically
displayed in the debugger.

BlueJ represents a significant step forward in visual novice instruction tools. Through provided
examples, basic animation of source code execution, and the ability to execute and test classes
individually, BlueJ has an ability (though limited) to help beginners comprehend object-oriented
programs that have already been written within its framework. BlueJ’s primary benefit lies in its
visualization of class objects and the associations between them. This system, unlike the others
examined in this section up to this point, visually focuses on the object modeling rather than ac-
tual implementation of code. This encourages exploration and experimentation on the part of the
user, which brings them into an active, rather than passive role in their computer programming
education. McKeachie (1996) indicates that research has shown that in a more active environ-
ment, learners excel in comprehension, memory retention, and problem solving.

On the other hand, BlueJ probably has limited effectiveness as a novice-learning tool. First, BlueJ
focuses on the object-oriented paradigm for modeling and design, as it relies on the class diagram
as its basis structure. With concepts such as inheritance, abstractions, information hiding, and
overloading of operators, the object-oriented paradigm may prove to be too complex to be effec-
tively understood by beginners. Second, while BlueJ effectively utilizes visualization to display
object classes and the associations between them, it lacks tools to aid the user in the proper design
an implementation of object-oriented elements on their own.

FLINT: Flowchart Interpreter
Ziegler and Crews (1999) indicate that the Flowchart Interpreter (FLINT) system is an instruc-
tional programming environment designed specifically for the novice, and seeks to incorporate
design, algorithms development, testing, and debugging, into one unified tool. Through its lan-
guage independent nature, FLINT attempts to draw attention away from issues stemming from
language-specific programming syntax. Its creators, Zeigler and Crews, claim that the use of their
environment helps the user “develop a view of programming in which design and testing are inte-
gral parts of program development”.

FLINT focuses on two types of programming: iconic programming and pseudo programming. An
iconic programming tool facilitates the creation of a program by allowing the user to insert pre-
defined icons into a program construction area. When program construction is complete, the tool
generates the appropriate source pseudo-code in the desired language. Ziegler and Crews (1999)
indicate that research has shown that programmers that generate programs with such a tool are
able to better comprehend the language syntax than if such a tool had not been utilized. It should
be noted that pseudo-code cannot be directly compiled and executed, as it does not meet the re-
quirements of programming language syntax.

The FLINT environment follows a structured approach to program design. It focuses around four
stages of program design: 1) Development of a sound design, 2) Development of algorithms

 Moor & Deek

 59

based on the design, 3) Testing, and 4) Debugging. The first stage of the FLINT environment, as
noted above, focuses on the development of a sound design. This is facilitated through a step-
wise refinement process utilizing a graphical interface. The user constructs a program design in
the form of a top-down structure chart consisting of rectangular boxes connected by lines repre-
senting a hierarchical representation of the program. The structure chart begins with one box at
the top of the window that contains the description of the highest level of abstraction. Rectangular
boxes that are children of this first box represent the first level of abstraction, or sub-problems.
Each of these sub-problems nodes may contain any number of rectangles beneath it, as needed.

The second stage of FLINT assists the novice programmer in developing algorithms for each of
the boxes in the structure chart. FLINT constantly monitors the state of the design throughout
algorithm development by performing checks for connectivity between modules in the structure
chart. To ensure consistency between the algorithm and the structure chart and to ensure that the
user actually implements the design as specified, any algorithm that does not meet this require-
ment is rejected. Algorithms within FLINT are represented using structured flowcharts. The
flowchart builder is designed to be simple to use. It uses conventional flowchart constructs that
can be selected and moved using a point-and-click interface.

Testing is the third stage of FLINT. By executing their algorithm within FLINT, users are able to
get immediate feedback. The instructor has the ability to customize FLINT’s testing stage, so that
users are required to perform a certain number of test cases per algorithm. FLINT prompts the
user for sample input and the expected output for each test run. For each sample input/expected
output pair, the user must confirm that the results provided by FLINT are consistent with the ex-
pected output.

The fourth and final stage of FLINT is debugging. FLINT supports debugging by providing users
with the capability of inserting breakpoints in their algorithms. Statements and variables are high-
lighted prior to execution, giving the novice a visual representation of the flow of control and data
in the program. The pace of execution can also be controlled to aid novice comprehension by
moving through the program at a pace they are comfortable with.

FLINT represents another significant leap forward over the tools discussed in this section up to
this point. Through basic visualization and animation features, FLINT has a limited ability to help
novice programmers debug and comprehend programs that have already been written. Perhaps
the most significant advancement with FLINT over the other tools discussed is its emphasis on
structured approach to design in problem solving and program development. With the use of
structure charts, FLINT prohibits users from first getting a program to run and then abstracting a
design from it. In addition, the user is only permitted to change the algorithm by first changing
the design. These are all valuable skills for a novice programmer to develop and utilize as they
progress in their computer science education.

While FLINT does an extremely good job in presenting users with a structured framework for
problem solving and program development, it should be noted that at the time of the Ziegler and
Crews (1999) publication, the FLINT system was still under development. Until the final system
is released and tested with novice programmers, it is difficult to assess how truly effective it will
be in aiding users with traditional novice difficulties. In addition, while FLINT provides a struc-
tured approach for program development from the structure chart on, the task of creating an effec-
tive structure chart outlining the decomposition of a program to solve the problem at hand is left
predominantly to the user without any aids or guidance. As Rappin (1997) notes, some of the fun-
damental skills novices lack is the ability to create a decomposition of a problem domain into eas-
ily managed pieces, and the ability to recompose those pieces back into a coherent whole. Be-
cause FLINT lack support in these areas, the overall effectiveness of this toolset may be limited.

A UML-Based Visual Environment for Novice Programmers

60

BOOST: Basic Object Oriented Support Tool
Basic Object Oriented Support Tool (BOOST) generates Smalltalk code and supports, but does
not enforce the design activities indicated below. Rappin (1997) notes that the creator of BOOST
not only allows users to move from one step to another at any time they wish, but encourages
them to do so.

The main activities defined in the BOOST process are:

1) Brainstorming – creating a list of classes that may (or may not) be in the novice’s design.
These classes are called candidate classes.

2) Assigning Responsibility – BOOST allows the user to use Class, Responsibility, Collabo-
rator (CRC) cards to list the responsibilities of each class in their design without regard to
implementation details.

3) Design – In the design step, the user moves closer to implementation by using the respon-
sibilities to inform the creation of attributes, services, and links.

4) Design Check – The design check feature of BOOST is used to test for some of the
common errors in design.

When a user first enters BOOST, they are presented with the main design window. The user will
first brainstorm a list of classes that may potentially be part of the design. These candidate classes
are either rejected, or accepted to become part of the actual design.

Based on examination of the functionality provided by BOOST, it would probably not be very
well suited to novice instruction. Much like BlueJ, BOOST focuses on the object-oriented para-
digm for modeling and design, as it relies on class modeling as its basis structure. With concepts
such as inheritance, abstractions, information hiding, and overloading of operators, the object-
oriented paradigm may prove to be too complex to be effectively learned by a beginner. In addi-
tion, BOOST generates Smalltalk code, which would probably not be easily understood by novice
programmers.

On the other hand, BOOST does offer some ideas that could be helpful in the instruction of nov-
ice programmers. Its brainstorming and activity responsibility stage would probably be easy for
novices to use, as they could approach programming by modeling their solutions based on easily
understood real-world counterparts. In addition, this stage would encourage users to explore a
number of design possibilities. The latter two stages of design and design check would best be
left to more advanced users examining object-oriented design principals.

Perhaps the best analysis of BOOST is best taken from a word in its name: Basic. BOOST pro-
vides very basic, unstructured design functionality that would be better suited toward a more ad-
vanced programmer. Overall, it does not provide enough structure and guidance for effective
utilization by novice programmers.

SOLVEIT: Specification Oriented Language in Visual
Environment for Instruction Translation
Deek along with McHugh (Deek, 1997; Deek & McHugh, 2002a, 2002b) propose the Specifica-
tion Oriented Language in Visual Environment for Instruction Translation (SOLVEIT) system as
an integrated environment designed for novice users to learn problem solving within the context
of a software engineering framework. SOLVEIT is based on Deek’s (1997) Dual Common Model
for Problem Solving and Program Development. The dual common model is the foundation for
SOLVEIT, and represents the integration of a cognitive model for problem solving with the tasks
involved in program development. Based on this model, SOLVEIT encompasses six stages: prob-
lem formulation, solution planning, solution design, solution translation, solution testing, and so-

 Moor & Deek

 61

lution delivery. Through an integrated environment along with a collection of both general-
purpose and stage-specific tools, SOLVEIT seeks to develop the user’s problem solving and cog-
nitive skills, while also developing the skills essential to successful program development.

With the SOLVEIT environment, it is the designer’s belief that the user can perform the pro-
gramming in a learning environment that allows them to utilize and develop necessary problem
solving skills, such as information gathering, problem formulation and decomposition, and task
and data flow organization with the encumbrance of at the outset of programming language de-
pendent issues, such as syntax and intricacies of the development environment.

The first three stages of SOLVEIT are the problem solving stages, and the latter three are the pro-
gram development stages. Using SOLVEIT, the user will usually progress through these stages
sequentially, although the ability is provided jump both forward and backward between stages.
The six primary stages of SOLVEIT, along with their associated sub-stages and tools are:

• Problem Formulation - users begin by describing the problem, extracting relevant facts
from the problem description such as givens, unknowns, constraints, etc.

• Solution Planning - users at this stage begin to outline plans for solving the problem. Al-
ternative approaches are considered and evaluated, and a candidate chosen. Goals are de-
composed into further subgoals. Data models are drawn.

• Solution Design - structured charts are drawn up by the user using SOLVEIT’s tools.
Modules are created that match to subgoals defined in the previous stage. High-level al-
gorithmic specifications of the modules are created.

• Solution Translation - algorithmic specifications produced by the user in the previous
stage is used by the user as a basis for code translation to a specific programming lan-
guage, whichever that may be.

• Solution Testing - tools are available to help the user in coming up with black-box and
white-box test specifications to test his solution.

• Solution Delivery - SOLVEIT’s maintains a log of all the user’s activities during all
stages. The system’s document delivery management tool is used at this stage to organize
and produce a complete documentation package of the entire user’s work in this whole
six-stage project.

SOLVEIT offers a highly visual environment to aid novice programmers in the various stages of
problem solving and program development, while operating within a software engineering
framework. It does not maintain an individualized user model like some other novice learning
tools, but a system recorder does maintain a log on a user’s progress throughout a problem solv-
ing sessions, which allows the replay of user/system interactions.

A primary advantage of SOLVEIT is that a novice needs very few, if any, requisite skills or
knowledge in order to effectively use the system. This is due to the fact SOLVEIT focuses on
generic problem solving and program development skills, as opposed to a specific programming
language. The SOLVEIT environment is broken down into several discrete stages. The process of
working through the first stage provides the user with the requisite skill set needed to continue
through all the subsequent stages.

SOLVEIT presents the stimulus material to be learned implicitly through its design. Users begin
the process of problem solving and program development in stage one, by first describing the
problem to be solved. It should be noted that SOLVEIT does not directly tell the user how to
solve the problem, but rather the user implicitly learns problem solving and program development
skills while actually working with SOLVEIT and proceeding through its six stages of problem
formulation, planning, designing, translating, testing, and delivery of the solution.

A UML-Based Visual Environment for Novice Programmers

62

SOLVEIT provides general purpose and stage-specific tools to guide the user through its stages
of problem solving and program development. These tools include the project notebook/graphics
editor, the strategy discovery tool, the verbalization tool, and the goal decomposition tool.
SOLVEIT’s tools used to elicit performance from the user to demonstrate their understanding of
the problem statement include the information elicitation tool, and the black-box/white-box test-
ing tools. An example of SOLVEIT’s information elicitation tool is shown in Figure 1; an exam-
ple of its goal decomposition tool is shown in Figure 2.

Figure 1: SOLVEIT’s Information Elicitation Tool

Figure 2: SOLVEIT’s Goal Decomposition Tool

 Moor & Deek

 63

SOLVEIT effectively provides feedback on a user’s tasks during a particular stage by organizing
the data submitted by the user in one stage and transforming it into relevant information used in
subsequent stages. If a user encounters problems answering questions in one of these stages, this
could be an indication that the user’s answers in a previous section are incorrect and should be
revisited.

Out of all the visual tools examined in this section, SOLVEIT appears to provide the most aid to a
novice programmer in the areas of problem solving and program development. SOLVEIT offers a
very structured approach to problem solving and program development in a visual software engi-
neering framework. Much of SOLVEIT’s claim to enhancing retention and transfer in its users
lies in the fact that the system focuses on developing users’ skills by following this structured ap-
proach, as opposed to tutorial systems which concentrate on teach users instructional content. It
effectively uses a visual environment to gain the users attention and to obtain comprehension and
understanding of the principals it is trying to teach.

SOLVEIT intentionally uses program-independent tools, since its focus is on software engineer-
ing principals, rather than program-specific syntactical issues. As a result, SOLVEIT can be used
in conjunction with a variety of programming environments, such as Pascal or C. A by-product of
this, however, is that SOLVEIT is unable to aid the user in the actual implementation and debug-
ging of the actual program. It is also up to the user to go back and update SOLVEIT from the be-
ginning when a logical error is found that requires changes to their design. In addition, although
SOLVEIT does provide tools that allow users to get a fair grasp of their own understanding, it
lacks any definitive support in the area of accessing user performance.

The Unified Modeling Language (UML)
Developing a model for large-scale software systems prior to implementation is as important as
having a blueprint for a building before commencing its construction. For novice programmers,
however, proper design and modeling prior to coding is often neglected. As the complexity of
systems increases, so does the importance of a sound modeling technique. The Object Manage-
ment Group (1997a, 1997b) proposes that in the implementation of a complex system, there are
many factors that affect its overall success, but having a rigorous modeling language is essential.

What is UML?
The Unified Modeling Language (UML) is a standardized language for specifying, visu-
alizing, constructing, and documenting the intricacies of software systems, as well as for
the modeling of business processes and other non-software systems. According to the
Object Management Group (1997a, 1997b), UML represents a collection of engineering
practices that have been proven successful in the modeling of large and complex software
systems. UML uses mostly graphical notations to represent the design of software sys-
tems, and as a result, visually aids in the communication of project designs, the explora-
tion of potential designs, and in the validation of the resulting design.

The primary goals in the design of UML, as indicated by the Object Management Group (1997a,
1997b) are:

1) Provide a ready-to-use, expressive visual modeling language to and in the development
and sharing of meaningful models.

2) Provide extensibility and specialization mechanisms to extend core concepts.
3) Independence from any particular programming language or development methodology.
4) Provide a formal basis for the understanding of the modeling language.
5) Encourage growth of the Object Oriented methodology.

A UML-Based Visual Environment for Novice Programmers

64

6) Support high-level development concepts, such as frameworks, collaborations, compo-
nents, and patterns.

7) Incorporate documented best practices.

Businesses have sought techniques and methodologies to better manage the complexities of large-
scale software systems. Additionally, the acceptance of World Wide Web (WWW) as a delivery
medium, and the subsequent focus on the development of WWW-based systems, has made some
facets of software engineering easier, but has made many others more difficult. The Object Man-
agement Group (1997a, 1997b) indicates that UML was designed to respond to these needs, and
has been adopted by the industry for modeling object-oriented and component-based systems.

Object-oriented modeling languages began to appear in the mid-1970 to the late 1980s, as various
methodologists experimented with different approaches to object-oriented analysis and design.
The number of identified modeling languages increased from less than 10 to more than 50 during
the period of 1989-1994. Many users of OO methods had trouble finding complete satisfaction in
any one modeling language, thus fueling the “method wars.” By the mid-1990s, according to the
Object Management Group (1997a, 1997b), new iterations of these methods began to appear, and
these methods began to incorporate each other’s techniques, and a few clearly prominent methods
emerged. The foundations of UML are nearly two decades old and encompass successful model-
ing attributes of its numerous predecessors.

Modeling with UML
The UML specification defines twelve types of modeling diagrams, divided into three categories:
static application structures, dynamic behavior diagrams, and model management and organiza-
tion diagrams. The UML modeling diagrams are placed into these categories as follows:

1) Structural Diagrams – Include the Class Diagram, Object Diagram, Component Dia-
gram, and Deployment Diagram.

2) Behavior Diagrams – Include the Use Case Diagram, Sequence Diagram, Activity Dia-
gram, Collaboration Diagram, and State Diagram.

3) Model Management Diagrams – Include Packages, Subsystems, and Models.

Each UML diagram is designed to enable system architects and developers view a software sys-
tem from different perspectives and in various degrees of abstraction. Braun, Silvis, Shapiro, and
Versteegh (2003) observe that UML diagrams commonly created and manipulated in visual mod-
eling tools include:

• Use Case Diagram displays the relationship among actors.
• Class Diagram models class structures and contents using object-oriented components,

such as classes, packages, and objects. It also displays the relationships of the object-
oriented paradigm, such as encapsulation, inheritance, and associations.

• Interaction Diagrams include two types of diagrams:
− Sequence Diagrams display the time sequencing of events between the objects in

the model. It consists of time on the vertical axis, and different objects on the
horizontal axis.

− Collaboration Diagrams display interactions organized around objects and their
links to one another. A number scheme is used to represent the sequencing of
messages.

• State Diagrams display the sequences of states that an instantiated object can go through
in its lifetime in response to external stimuli. The state diagram also shows the object’s
responses and actions.

 Moor & Deek

 65

• Activity Diagrams are a special kind of state diagram. In activity diagrams, most of the
states are actions, and most of the transitions between these actions are triggered by com-
pletion of the actions in the source state. Activity diagrams resemble flowcharts and tend
to focus on the internal processing within an object.

• Physical Diagrams also include two types of representations:
− Component Diagrams display the high level packaging of the code itself. Also

shown are the dependencies between components, including source code, binary
code, and executable components.

− Deployment Diagrams display the configuration of run-time environments, and
the executable and code components that run on them. In the client-server world,
for example, the DBMS would run on the database server, whereas the client ap-
plication would run on another PC.

In the context of instructing novice programmers, many of these modeling constructs are ad-
vanced, as the beginner will not have had adequate real-world experience to comprehend what the
diagrams actually represent. Introduction of advanced modeling tools at this stage would be
counter-productive. In order to effectively utilize UML in the instruction of novices, a simplified
subset of its modeling capabilities must be carefully chosen. Simpler constructs can be effectively
utilized during this time period, whereas other more complex constructs are better left for intro-
duction at a later time. In the next subsection, we will identify which UML diagrams are best
suited to novice instruction, and in turn, define each one in detail and explain why they are a good
fit.

Defining an Appropriate Subset of UML for Novice Instruction
The strength of UML is derived from its flexibility, robustness, and ability to represent, on vary-
ing degrees of abstraction, the intricacies of both computer and non-computer models. In a begin-
ning environment, the introduction of the entire set of UML constructs would quickly overwhelm
and frustrate the novice programmer. Thus, a proper subset of UML diagramming functionality
that will best aid a novice programmer and leave other more complex constructs for introduction
at a later time should be defined. Of the eight UML diagram types provided, the simplest and best
suited to novice instruction include: Use Case Diagrams, State Diagrams, and Activity Diagrams.
Class Diagrams, Sequence Diagrams, and Collaboration Diagrams all deal with object-oriented
modeling and can be deferred. As Rappin (1997) notes:

The skills involved in designing, evaluating, and building a valid OO model are similar to
the modeling skills needed by other engineers in their design process. These skills in-
clude:

o The ability to create a decomposition of a problem domain into more easily
managed pieces.

o The ability to recompose those pieces back into a coherent whole.
o The ability to recognize the connections between the model and the original

object.
o The ability to evaluate the model for the purposes of predicting the behavior

of the object.
o The ability to test the validity of the model and change it as necessary.

The lack of these skills is one of the primary obstacles faced in learning Object-Oriented
methods.

As it is unlikely for a beginner to possess these skills, the object-oriented paradigm and its associ-
ated models are best left for more advanced experiences. It should be noted, however, that UML
is primarily designed as a modeling tool for the object-oriented paradigm. By eliminating UML

A UML-Based Visual Environment for Novice Programmers

66

diagrams based on the object-oriented paradigm and focusing on imperative models, we are not
defeating the basic nature of UML itself, but instead providing a structured approach to the intro-
duction of UML.

As noted above, Activity Diagrams focus on the internal processing within objects, which is in-
herently imperative in nature. State Diagrams focus on an object’s response to external stimuli,
which can be viewed as sub-procedure calls in an imperative language. Thus, UML can be intro-
duced simplistically in the form of these diagramming constructs, and later when object-oriented
principals and their associated UML diagrams are introduced, the learner will be able to augment
their modeling knowledge and experience. Activity and State Diagrams simply become
“wrapped” in the Class and associated diagramming constructs. In this structured approach,
learners will already be familiarized with the concepts of modeling, and simply expand their
knowledge to the object-oriented domain. Similarly, Component Diagrams and Deployment Dia-
grams both deal with the advanced topics of large system component packaging, distribution, and
the running of executable modules. These topics can also be deferred.

The Potential Benefits of UML in Novice Instruction
The adoption of UML in early instruction of programming may also resolve several of the diffi-
culties encountered by novice programmers. Perhaps most importantly, the usage of UML places
an emphasis on system modeling early on in a learner’s experience. With an emphasis on UML
modeling, a programmer is forced to model solutions to problems and adopt an organized ap-
proach to the design before coding while implicitly documenting a solution in a visual manner. In
addition, learners will have a visual representation of abstract concepts while allowing for a grad-
ual approach to modeling. Simple UML constructs can be introduced early on, and can be built
upon as advanced modeling constructs are introduced. In the next section, we will propose a new
visual learning tool that has its foundations based in UML. It will attempt to incorporate some of
the benefits of UML and also bridge the two classifications of visual tools noted in the earlier re-
view, namely providing both a tool that can aid the novice with designing visual solutions and aid
with the understanding of an implemented program with visual depictions at runtime.

A New Visual Learning Tool with Foundations in UML
Previously, the potential benefits of employing UML in novice programmer instruction were
identified and discussed. In addition, modern visual learning tools were critiqued and classified
into two categories: those that use visualization to aid novice comprehension with programs that
have already been written, and those that use visualization to help the novice actually design and
implement programs. It was noted, however, that modern visual learning tools fall into either of
these mutually exclusive categories; no tool was identified as having facilities to aid the novice
programmer in both. In this section, we discuss the high level attributes of a new visual tool that
attempts to incorporate the usage of UML and spans both identified categories of modern visual
tools to aid the novice programmer. The intent is to provide foundations for a new class of visual
tools that with the functionality and aid to the novice programmer.

An Emphasis on Modeling
The learning tool and associated instruction emphasizes modeling early on. As Rappin (1997)
notes, the lack of modeling skills is one of the primary obstacles beginners face in learning the
Object Oriented methodology. Strong emphasis on the development of effective modeling skills
and the adoption of UML to aid in the learning of these skills is a significant step toward the ef-
fectiveness of learning programming.

 Moor & Deek

A set of visual modeling constructs
The visual learning tool will rely exclusively on the UML Activity Diagram, which easily allows
for the incorporation of more advanced functionality. The tool shall have a visual point
click/drag-and-drop environment. The toolbox will contain the UML visual constructs as shown
in Figure 3.

The user will have the ability to create these con-
structs in a visual workspace. After clicking on the
construct, the user will have the availability to type a
descriptive name for it. By clicking and dragging
from the edge of one construct to another, the user
will be able to create directional arrow links between
the constructs, thus indicating the relationship and
activity flow between them.

Instruction and intervention
It should be noted that this tool is not intended to act
as a modeling and program development tutor. The
intervention of an expert, typically the instructor in a
traditional classroom, is an important part of this
learning environment. The tool is designed to sup-
plement novice instruction of modeling and design
concepts. An expert, such as the instructor, can
evaluate user’s work at predefined intervals over the
course of a learning session. As modeling concepts
are introduced, Rappin (1997) notes that the skills

a
t
o
c

T
o
w
d
t
l
a
q
o
t
t
n
p

T
h
f
s
s
U

Figure 3: Learner’s Toolbox of
Available UML Constructs
 67

that need to be refined include the ability to create an
ppropriate decomposition of the problem into easily managed pieces, the ability to recompose
hese pieces into the whole, and the ability to recognize connections between the model and the
riginal problem statement. The tool can be used independently to reinforce and apply design
oncepts as they are being introduced.

he first task of a programming project focuses on the problem understanding and analysis stage
f problem solving. In this stage, the tasks of the problem solver include the determination of
hat the goal of the problem is, identifying the givens provided by the problem statement, and
etermining what the unknowns are. A frequent problem encountered by novices is the introduc-
ion of defects in this stage of problem solving. As Deek (1997) points out, the earlier in the prob-
em solving process that a defect is introduced the more potential it has to cause major problems
nd the harder it will be to find. Suchan and Smith (1997) also note that a defect of severe conse-
uences may lead an inexperienced problem solver to a sub par design and subsequently to a non-
ptimal or even incorrect solution. This leads to a novice’s frustration, especially when it appears
o them that their (eventual) implementation may be syntactically correct and semantically consis-
ent with their design, but incorrect due to a logical design error. Additionally, Suchan and Smith
ote that sooner or later, novices realize that analysis defects always carry forward into their im-
lementation.

he deliverable is the Use Case Diagrams. These diagrams can be used to ensure that the learner
as fully comprehended the problem statement and that all of the requirements have been identi-
ied and understood. The importance of these diagrams lies in the fact that learner’s comprehen-
ion of the problem statement can be verified. As indicated earlier, an error introduced at this
tage will magnify itself later in the program development process. The second deliverable is the
ML Activity Diagram, which can be used to validate the learner’s modeled solution. The level

A UML-Based Visual Environment for Novice Programmers

68

of abstraction allowed in the UML Activity Diagram needs to be set based on the evaluation of
the learner’s comprehension of the modeling paradigm and ability to independently use pro-
gramming-level constructs. This will be discussed later in this section.

Coding Behind the Model
Much efforts has been devoted to determining the appropriate programming language for novice
instruction, the proper paradigm to use in early instruction, and whether the entire language con-
structs or a limited set of instructions should be available to the learner. Some, such as McIver
(2000), argue that powerful languages make writing complex programs easier, but can be
counter-productive for novice programmers while others, such as Cooper, Dann, and Pausch
(2000), recommend sidestepping the programming language altogether. This work remains out-
side of this debate and the approach advocated by the design of the tool being discussed acknowl-
edges the importance of programming but places importance on modeling and design without
downplaying the role of the programming language.

The learner can access the coding screen by double-clicking on an activity or conditional con-
struct, and enter the code behind it. Syntactical programming constructs can be introduced gradu-
ally, dependent on the level of modeling abstraction. Less abstraction will require less coding be-
hind each element, while more abstraction will allow the learner greater control over the imple-
mentation of their code. The coding window is graphical, with a toolbox that will allow for the
insertion of basic programming constructs, such as looping constructs, and variables. To simplify
the coding process, as much information as possible is obtained from the model itself, thus pre-
senting the learner with a template to work with.

Varying Degrees of Abstrac-
tion
As Bucci, Long, and Weide (2000) observe,
abstraction hides details by providing a simple
“cover story”. Early in the learning process,
novice programmers should be expected to
model even the most simplistic aspects of the
solution, as this will give them gain a funda-
mental understanding of how to properly de-
sign and code these elements. Consider the
UML activity diagram depicting how to calcu-
late a student’s grade in a course, as shown in
Figure 4.

The diagram in Figure 4 is very explicit in
how to calculate a grade in a course. It is ex-
plicit in its methods, even in the depiction of
the looping constructs used in averaging a test
and project scores. This level of detail leaves
very little flexibility to the programmer in the
coding. Most of the code behind each activity
or conditional construct will only be a line or
two. This level of abstraction, used initially
with a novice programmer, can effectively and
correctly aid in learning basic programming
concepts. As novice programmers advance,
however, they can be given more control over

Figure 4: Calculation of a Grade
with Little Abstraction

 Moor & Deek

the c
cour

The
great
need
the a
Cons

In Fi
the p
activ
and k
norm
ity d
depic
be pe

Vis
Serio
gram
Coop
tion
work
prob

Visu
of a
task
used

Figure 6: Calculation of a Grade
with Full Abstraction
Figure 5: Calculation of a Grade

with Greater Abstraction
69

oding of their projects. Consider the following model for the calculation of a grade in a
se in Figure 5.

diagram in Figure 5 provides the same functionality as the diagram in Figure 4, only with a
er level of abstraction. The looping constructs are no longer shown. The programmer will
 to code these loops behind each activity element in the diagram independently. Finally, for
dvanced novice programmer, the calculation of the student’s grade can be fully abstracted.
ider the diagram shown in Figure 6.

gure 6, the details of the calculation of the grade are left entirely to the programmer. Thus,
rogrammer will have full control over how this process is implemented. The code behind this
ity will simply have a blank screen. It is left up to the programmer to implement the loops
now that both test scores and project scores must be averaged. This activity diagram will
ally not be in a diagram on its own, as shown above. Instead, it will be part of a larger activ-

iagram. Although the details of how a grade is calculated are not shown, the importance of its
tion in the model is the recognition on the part of the novice developer that this activity must
rformed.

ualization of Program Flow, State, and Execution
us problem that plagues many programmers is that learning to write, test, and debug pro-
s requires an understanding of why and how the program (computer) solves the problem. As
er et al. (2000) observe, many programmers are unable to visualize the steps of the execu-

of the program, and as a result, are unable to figure out what went wrong when things do not
. Additionally, Cooper et al. note that the area in which a novice’s program comprehension
lem normally lies is in the understanding of program state:

In imperative languages, a trace of the program with memory snapshots can be used in an
effort to assist learners in figuring out what is going on. However, using traces may actu-
ally add to some learners’ confusion! We believe the source of confusion in figuring out
what went wrong, in all but the most trivial code, is an inadequate understanding of the
program’s state.

alization is one approach to assisting the learner in comprehending what task that each piece
program can be expected to perform, and how the pieces work together to perform the overall
of solving the problem at hand. Along similar lines, animation of program execution can be
 to help the learner in this task of “putting the pieces together”.

A UML-Based Visual Environment for Novice Programmers

70

Naps (1996), as well as Stasko, Domin-
que, Brown, and Price (1998), indicate
that the use of animation is not a new idea.
Among the numerous research efforts ar-
guing for visualization, Shu (1988) pre-
sents a particularly strong case by consid-
ering programming to require both parts of
the brain, and focuses on the need to in-
volve the artistic half, which can be satis-
fied by the involvement of pictures in the
process. Many of the systems created for
visual programming, however, are fairly
complex and difficult for beginners to
work with. In addition, they tend to rely
on an underlying programming language,
which the learners needed to master.

With a UML-based learning tool, the ani-
mation of the programmer’s design is rela-
tively straightforward. The UML activity
diagram is a visual construct by its under-
lying nature, but the model can also be
expressed in textual format and can be
easily translated and understood by the
computer. The animation of the model can

be performed as it executes, thus enabling the novice to better understand the model and aid in the
debugging process by helping the learner understand where potential logical problems are lo-
cated. Consider a simple system that gets a Social Security Number (SSN) and validates its for-
mat. An activity diagram modeling this system may look like that shown in Figure 7.

After the model is implemented and the activity and conditional constructs have been coded, it
can be executed interactively. An execu-
tion of this model may look like that
shown in Figure 8.

In the model shown in Figure 8, the
green boxes indicate activities or condi-
tions that have already been successfully
completed, while the red box shows the
activity or condition that is currently
executing. A yellow coloring would
show program execution errors. In this
diagram, it can be see that the “Get
SSN” and “Validate SSN” activities
have already been completed. The exe-
cution of the model is currently on the
“SSN Good?” conditional construct. As
an activity diagram may be invoked as a
sub-model from another diagram, the
system must have the ability to organize
various invocations of the model. This is

Figure 7: Activity Model for the Validation of
a SSN

F

igure 8: Model Execution for the Validation of
a SSN

 Moor & Deek

 71

accomplished through the activity table, shown in Table 1:

Table 1: Example of an Activity Table During Execution of a Model
Instance ID Calling Model Input Return

1 abc n/a n/a
2 xyz n/a n/a
3 xyz n/a n/a

In Table 1, it can be seen that this model has been invoked three times, once from model “abc”,
and twice from model “xyz”, with no input or return parameters. Clicking on the row for in-
stances 1, 2, or 3 will display the model and its current state, as shown in Figure 8.

The ability for learners to execute a model that they have designed, implemented, and coded is
very important; it allows the visualization of how the computer executes the model. Visualization
of program and model execution can also aid novice programmers in the debugging process.

Visualization in Model Debugging
Very rarely does a program work perfectly upon the first execution attempt. Therefore, debugging
proves to be an essential skill that a novice must develop. Programming errors that must be de-
bugged normally fall into three main categories: syntactical errors, semantic errors, and logical
errors. The compiler or interpreter usually catches syntactical errors. A visual UML model, how-
ever, can aid in the identification of semantic and logical errors.

Semantic errors, such as memory access violations, unsafe data structure usage, or any condition
that causes program execution to abort, can be flagged in the model by changing the activity box
that the error occurred in to another color, such as yellow. This will help the novice narrow down
where the error occurred. Logical errors, on the other hand, can be easily identified by looking for
abnormalities in the model state progression during the execution phase. The programmer can
then alter the model to fix the errors and easily re-execute the model to see if the problem has
been fixed.

Satrazemi et al. (2001) observe that during the debugging process, programmers repeatedly at-
tempt to correct their mistakes without understanding the error or the meaning of the message
produced by the compiler. Visualization of the execution of a UML model can be a powerful in
aiding the programmer to understand why a problem occurred. Attempts to fix the error will have
the potential to be more focused and thought out, rather than random guesses.

Comprehension of Abstract Concepts
Novice programmers have traditionally had many problems in the understanding and comprehen-
sion of abstract computer concepts, particularly those that do not have a well-defined counterpart
in the real world. In order to gain skills and master abstract concepts, learners need the ability to
generate mental models. As Deek and Espinosa (2005) note, merely saturating a learner with in-
formation will not achieve learning, but instead learners will simply continue to memorize and
regurgitate information and not gain any fundamental skills in the process. This tool can help fa-
cilitate the learner’s transformation of abstract concepts into understood mental models through
its fundamental use of visualization.

Novice comprehension of abstract computer concepts can be aided in one of two ways. First, the
concept can be modeled, and the associated code written behind it. The learner can then execute
the model, and through the observation of the progression of the model state, obtain a good men-

A UML-Based Visual Environment for Novice Programmers

72

tal model of how the abstract concept actually works. Second, the learner can be provided the
model in the tool and asked to write the code behind it. While this may require more work on the
part of the learner, the level of comprehension should be greater than with the former. One of the
areas that a UML-based novice tool can be utilized to aid the novice programmer is in the area of
recursion.

Example of recursion as an abstract concept
Recursion has traditionally been a very troublesome area for novices. Pane and Myers (1996) ob-
serve that beginners will normally resort to using iteration as an alternative to recursion. The un-
derlying problem with recursion is that most novices cannot visualize separate and unique invoca-
tions of a function, as well as flow control in a recursive function (George, 2000b). This is the
primary area in which the usage of a graphical UML-based tool can help. Consider the recursive
procedure for calculating the factorial of a number. This can be represented in a UML activity
diagram as shown in Figure 9.

In the simple UML model shown in Figure 9 for the calculation of recursively, there is only con-
ditional construct and two activities. The area of importance is in the activity on the left. As it can
be seen, it contains an invocation of a sub-model, which happens to be the Factorial sub-model
itself. Watching this diagram change state as it executes will not be enough to facilitate learner
comprehension of recursion, but does become effective when considered with the model’s activ-
ity table, an example of which is shown in Table 2:

Table 2: Example of an Activity Table During Execution of the Factorial Model
Instance ID Calling Model Input Return

1 n/a 3 6
2 Factorial 2 2
3 Factorial 1 1
4 Factorial 0 1

With this activity table, the learner can watch model state changes among multiple invocations of
the model, along with the input and return values from each one. This interactive, graphical dem-

Figure 9: Activity Diagram of Recursive Factorial Model

 Moor & Deek

 73

onstration of simple recursion should give the learner a firm grasps on this abstract concept. Rep-
resentations of recursion should not be confined to merely and illustrative role. As Good and Brna
(1996) indicate, benefit may be derived if novices are involved in, at the very least, the interpreta-
tion of representations, and more likely, in their construction. Therefore, a structured approach
should be taken when teaching recursion by giving the learner a completed model to watch exe-
cute; also by giving the learner the model, but having to write the code behind it; and finally, by
giving the learner the task of developing the model and writing the code behind it.

The usage of visualization in this learning tool is not enough, however, to fully teach the concept
of recursion. As Good and Brna (1996) point out, there are two fundamental problems areas in the
learning of recursion: the declarative aspect of learning “what is”, and the procedural aspect of
knowing “when to use”. It should be noted that usage of a visual UML-based tool such as the one
discussed here can help with the declarative aspect of learning recursion, but only fully compre-
hension, experience, and application of the principal can adequately teach a programmer the pro-
cedural aspects of recursion.

A Constructivist Learning Theory Approach
Bruner (1966) observed that learning is an active process in which learners construct ideas or
concepts based on the current/past knowledge. It is within this theoretical framework that the
concept of this proposed UML-based visual tool to aid novice programmers was developed.

To begin with is the emphasis on modeling. While the entire UML specification would be too
complex to introduce to a novice programmer, we defined a subset of the UML toolset that a nov-
ice could easily learn and apply to simple programming projects. As Rappin (1997) indicates, this
modeling experience will easily allow to add UML modeling constructs, such as Class, Sequence,
and Collaboration diagrams, to enhance the modeling skills of learners in a gradual approach.
Further, we incorporated the quantification of how much abstraction the novice learner is allowed
in their models. Instruction begins with little abstraction, so as to introduce the learner to basic
programming constructs. As the learner progress, the level of abstraction is increased, leaving
these details to the learner. The learner’s models will then focus on more high-level activities.
Third, we identified the use of an imperative language, such as Pascal or C, for the coding that
needs to take place behind the constructs of the UML model.

Conclusions
In this paper, we first summarized the traditional difficulties faced by novice programmers. Next,
we analyzed modern visual learning tools designed to mitigate some of the identified difficulties
though the use of visualization and animation. The Unified Modeling Language (UML) was then
discussed within the context of how it may be utilized in a new tool to effectively aid the novice
programmer. Finally, we discussed the theoretical foundations of a new UML-based tool that
combines modeling, software engineering principals, and visualization, into a unified environ-
ment to help novice programmers.

Visual tools have proven to be extremely powerful in helping novices in learning abstract com-
puter concepts, such as recursion. Visualization also helps novices construct a mental model of
concepts, which is pivotal to further comprehension and understanding. The tool discussed aids
the novice in visualizing a model of their proposed solutions and also helps the novice visualize
how the model behaves as the computer executes it by watching its state change during execution.
The tool also emphasizes modeling and software engineering principals from the very beginning.

In addition to these visualization benefits, this tool would aid in solution delivery and documenta-
tion of the learner’s path to solution. As the solution would be based on the constructed UML
model, it would be mostly self-documenting. Being able to execute the UML model would also

A UML-Based Visual Environment for Novice Programmers

74

enable the tool to handle test plans, so that the learner can compare the results of the solution to a
set of expected outcomes.

The discussions on the UML-based visual modeling tool presented in this paper focused only a
conceptual design. Work is needed to further define the toolset, and to specify how the UML
model will be linked to the code behind it. Work is also needed to define the constraints and pa-
rameters of the framework. Although much work is still need to utilizing a functioning example
of the proposed UML-based tool, novice programmers would strongly benefit from its emphasis
on design and modeling, as well as its visualization capabilities.

Acknowledgements
The authors wish to acknowledge the efforts of Yashvind Bhasin, NJIT PhD student, in editing
the manuscript.

References
Bailie, F. (1991, March). Improving the modularization ability of novice programmers. The Proceedings of

the ACM SIGCSE Technical Symposium on Computer Science Education, 23(1), 277-282.

Barbe, W. B. & Milone, M. N. (1981, February). What we know about modality strengths. Educational
Leadership, 38, 378-380.

Barnes, D. & Kolling, M. (2003). Objects first with Java: A practical introduction to using BlueJ. Harlow,
England: Prentice Hall/Pearson Education.

Bladek, C. & Deek, F. P. (2005). Understanding novice programmers difficulties as a requirement to speci-
fying effective learning environments. In R. Nata (Ed.), New directions in higher education. Nova Sci-
ence Publishing.

Bonar, J. & Soloway, E. (1985). Preprogramming knowledge: A major source of misconceptions. Human-
Computer Interaction, 1(2), 133-161.

Braun, D., Silvis, J., Shapiro, A., & Versteegh, J. (2003). UML tutorial. Kennesaw State University Object
Oriented Analysis and Design Team. Retrieved April 2003 from:
http://pigseye.kennesaw.edu/~dbraun/csis4650/A&D/index.htm

Bruner, J. (1966). Toward a theory of education. Cambridge, MA: Harvard University Press.

Bucci, P., Long, T. J., & Weide, B. W. (2001, February). Do we really teach abstraction? Proceedings of
the ACM SIGCSE Technical Symposium on Computer Science Education, 33(1), 26-30.

Cooper, S., Dann, W., & Pausch, R. (2000). ALICE: A 3-D tool for introductory programming concepts.
Proceedings of 5th Annual CCSC Northeastern Conference.

Deek, F. P. (1997). An integrated environment for problem solving and problem development. Unpublished
PhD Dissertation, New Jersey Institute of Technology, Newark, New Jersey.

Deek, F. P. & Espinosa, I. (2005). An evolving approach to learning problem solving and program devel-
opment: The distributed learning model. International Journal on E-Learning, 4(4), 409-426.

Deek, F. P. & McHugh, J., (2002a). An empirical evaluation of specification oriented language in visual
environment for instruction translation (SOLVEIT): A problem-solving and program development en-
vironment. Journal of Interactive Learning Research, 13(4), 339-373.

Deek, F. P. & McHugh, J., (2002b). SOLVEIT: An experimental environment for problem solving and
program development. Journal of Applied Systems Studies, 2(2), 376-396.

Deek, F. P., McHugh, J., & Hiltz, S. R. (2000). Methodology and technology for learning programming.
Journal of Systems and Information Technology, 4(1), 25-37.

http://pigseye.kennesaw.edu/~dbraun/csis4650/A&D/index.htm

 Moor & Deek

 75

George, C. (2000a, March). EROSI – Visualizing recursion and discovering new errors. Proceedings of the
ACM SIGCSE Technical Symposium on Computer Science Education, 32(1), 305-309.

George, C. (2000b, April). Experiences with novices: The importance of graphical representations in sup-
porting mental models. 12th Annual Workshop of the Psychology of Programming Interest Group, 33-
44.

Good, J. & Brna, P. (1996). Novice difficulties with recursion: Do graphical representations hold the solu-
tion? Proceedings of the European Conference on Artificial Intelligence in Education, Lisbon, Portu-
gal, September 30 - October 2, pp. 364-371.

Gugerty, L. & Olson, G. (1986, April). Debugging by skilled and novice programmers. Proceedings ACM
SIGCHI on Human Factors in Computing Systems, 17(4), 171-174.

Liffick, B. & Aiken, R. (1996, June). A novice programmer’s support environment. ACM SIGCSE Bulletin,
Proceedings of the Conference on Integrating Technology into Computer Science Education, 28(SI),
49-51.

McIver, L. (2000, April). The effect of programming language error rates of novice programmers. 12th An-
nual Workshop of the Psychology of Programming Interest Group, pp. 181-192.

McKeachie, W. J. (1996). Teaching tips: A guidebook for the beginning college teacher (8th edition). Lex-
ington, DC; Heath, MA: Heath and Company.

Naps, T. L. (1996, June). An overview of visualization: Its use and design. Proceedings of the Conference
on Integrating Technology into Computer Science Education. Barcelona, Spain, pp. 192-200.

Object Management Group (1997a). Introduction to OMG’s Unified Modeling Language (UML). Retrieved
April 2003 from: http://www.omg.org/gettingstarted/what_is_uml.htm

Object Management Group (1997b). What is OMG-UML and Why Is It Important? (UML Primer). Re-
trieved April 2003 from: http://www.omg.org/news/pr97/umlprimer.html

Olson, G. M., Catrambone, R., & Soloway, E. (1987). Programming and algebra word problems: A failure
to transfer. In G. M. Olson, S. Shepard, & E. Soloway (Eds.), Empirical studies of programmers: Sec-
ond workshop (pp. 1-13). Norwood, NJ: Ablex Publishing.

Pane, J. & Myers, B. (August 1996). Usability issues in the design of novice programming systems. School
of Computer Science Technical Report CMU-CS-96-132, Carnegie Mellon University, Pittsburgh, PA.

Ramalingam, V. & Wiedenbeck, S. (1997). An empirical study of novice program comprehension in the
imperative and object-oriented styles. Proceedings of the Empirical Studies of Programmers Work-
shop, ACM, pp 124-139.

Rappin, N., (1997). On the design of a modeling tool for students of object oriented programming. Empiri-
cal Studies of Programmers Workshop.

Satratzemi, M., Dagdilelis, V., & Evageledis, G. (2001, June). A system for program visualization and
problem-solving path assessment of novice programmers. Annual Joint Conference Integrating Tech-
nology into Computer Science Education, Proceedings of the 6th Annual Conference on Innovation and
Technology in Computer Science Education, pp. 137-140.

Shu, N. C. (1988). Visual programming. New York: Van Nostrand Reinhold.

Stasko, J. T., Dominque, J., Brown, M., & Price, B. (1998). Software visualization - Programming as a
multimedia experience. Cambridge, MA: MIT Press.

Suchan, W. & Smith, T. (1997, November). Using Ada 95 as a tool to teach problem solving to non-CS
majors. Annual International Conference on Ada, Proceedings of the Conference on Tri-Ada ’97.

Ziegler, U. & Crews, T. (1999, March). An integrated program development tool for teaching and learning
how to program. Proceedings of the ACM SIGCSE Technical Symposium on Computer Science Educa-
tion.

http://www.omg.org/gettingstarted/what_is_uml.htm
http://www.omg.org/news/pr97/umlprimer.html

A UML-Based Visual Environment for Novice Programmers

76

Biographies
Brian D. Moor is currently a Special Lecturer of Information Technology at New Jersey Institute
of Technology. He earned a Bachelor of Science in Computer Science from NJIT in 1996, fol-
lowed by a Master of Science in Computer Science from NJIT in 2003. Brian plans on pursuing
a PhD in Information Systems, also from NJIT, with a specialization in the psychology of pro-
gramming and the development of new learning tools and instructional techniques for novice
programmers.

Brian also has extensive industry experience in the areas of object oriented design and program-
ming, relational databases, graphical user interfaces, enterprise application integration, and has
mastered numerous programming languages. He has successfully completed major project im-
plementations for leading companies such as Nabisco, Kraft Foods, Philip Morris, Computer Sci-
ences Corporation, and the United States Army.

Fadi P. Deek received his B.S. Computer Science, 1985; M.S. Com-
puter Science, 1986; and Ph.D. Computer and Information Science,
1997 all from New Jersey Institute of Technology (NJIT). He is Dean
of the College of Science and Liberal Arts, and Professor of Informa-
tion Systems and Mathematical Sciences at NJIT where he began his
teaching career as a Teaching Assistant in 1985. He is also a member
of the Graduate Faculty - Rutgers University PhD Program in Man-
agement. Dr. Deek maintains an active funded-research program. His
research interests include Learning/Collaborative Systems, Software
Engineering, Programming Environments, and Computer Science Edu-

cation. Dr. Deek has published over 100 papers in journals and conference proceedings and he
has given over 40 invited and professional presentations. He is also the author of eight book chap-
ters and the co-author (with J. McHugh) of the book Computer-Supported Collaboration with
Applications to Software Development (Kluwer Academic Publishers, 2003, 265 pages) and the
co-author (with J. McHugh and O. Eljabiri) of the book Strategic Software Engineering – An In-
terdisciplinary Approach (Taylor & Francis Group - Auerbach Publications, 2005, 360 pages).
Dr. Deek has received numerous teaching, research and service awards: The NJIT Student Senate
Faculty of the Year Award, given to him in 1992 and 1993; the NJIT Honors Program Out-
standing Teacher Award in 1992; the NJIT Excellence in Teaching Award in 1990 and 1999; the
NJIT Master Teacher Designation in 2001 and the NJIT Robert W. Van Houten Award for
Teaching Excellence in 2002. He has also been awarded the NJIT Overseers Public and Institute
Service Award in 1997 and the IBM Faculty Award in 2002.

	On the Design and Development of a UML-Based Visual Environm
	Brian D. Moor and Fadi P. Deek�College of Computing Sciences
	Brian.Moor@njit.edu Fadi.Deek@njit.edu

	Executive Summary
	Background
	Analysis of Modern Visual Tools
	Classifications of Visual Learning Tools
	EROSI: Explicit Representer of Subprogram Invocations
	AnimPascal: Animated Pascal
	BlueJ: The Interactive Java Environment
	FLINT: Flowchart Interpreter
	BOOST: Basic Object Oriented Support Tool
	SOLVEIT: Specification Oriented Language in Visual �Environm

	The Unified Modeling Language (UML)
	What is UML?
	Modeling with UML
	Defining an Appropriate Subset of UML for Novice Instruction
	The Potential Benefits of UML in Novice Instruction

	A New Visual Learning Tool with Foundations in UML
	An Emphasis on Modeling
	A set of visual modeling constructs
	Instruction and intervention
	Coding Behind the Model

	Varying Degrees of Abstraction
	Visualization of Program Flow, State, and Execution
	Visualization in Model Debugging

	Comprehension of Abstract Concepts
	Example of recursion as an abstract concept

	A Constructivist Learning Theory Approach

	Conclusions
	Acknowledgements
	References
	Biographies

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedExtraBold
 /AbadiMT-CondensedLight
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AharoniBold
 /Algerian
 /AllegroBT-Regular
 /AlmanacMT
 /Aloisen
 /AmazoneBT-Regular
 /AmericanaBT-Bold
 /AmericanaBT-ExtraBold
 /AmericanaBT-ExtraBoldCondensed
 /AmericanaBT-Italic
 /AmericanaBT-Roman
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AnniesHand-Plain
 /ArdleysHand-Plain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArronsHand-Plain
 /AubreysHand-Plain
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BalloonBT-Bold
 /BalloonBT-ExtraBold
 /BalloonBT-Light
 /BankGothicBT-Medium
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BelweBT-Bold
 /BelweBT-Light
 /BelweBT-Medium
 /BelweBT-RomanCondensed
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardTangoBT-Regular
 /BibleScrT
 /BlackadderITC-Regular
 /BlippoBT-Black
 /BonApetitMT
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookdings
 /BookmanITCbyBT-Demi
 /BookmanITCbyBT-DemiItalic
 /BookmanITCbyBT-Light
 /BookmanITCbyBT-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BradleyHandITC
 /Braggadocio
 /BremenBT-Bold
 /BritannicBold
 /Broadway
 /BrodyD
 /Brush445BT-Regular
 /Brush738BT-RegularA
 /BrushScriptBT-Regular
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /CataneoBT-Bold
 /CataneoBT-Light
 /CataneoBT-Regular
 /CataneoBT-RegularSwash
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /CaxtonBT-Light
 /CaxtonBT-LightItalic
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CharlesworthBold
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondensed
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialScriptBT-Regular
 /CommonBullets
 /CooperBlack
 /CooperBT-Black
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-BlackItalicHeadline
 /CooperBT-BlackOutline
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CopperplateGothic-Bold
 /CopperplateGothicBT-Bold
 /CopperplateGothic-Light
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CosmicPlain
 /CosmicTwoPlain
 /CountdownD
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CrystalsHand-Plain
 /CurlzMT
 /DauphinPlain
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DirectionsMT
 /DiskusD-Medi
 /EdgertonsHand-Plain
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /ElliesHand-Plain
 /EmbassyBT-Regular
 /EnglischeSchT-Bold
 /EnglischeSchT-DemiBold
 /EnglischeSchT-Regu
 /English111AdagioBT-Regular
 /English111PrestoBT-Regular
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversMT
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /EurostileBold
 /EurostileRegular
 /EwieD
 /FelixTitlingMT
 /FencesPlain
 /FixedMiriamTransparent
 /FlashD-Bold
 /FlashD-Ligh
 /FlemishScriptBT-Regular
 /FlorasHand-Plain
 /FootlightMTLight
 /Formal436BT-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /Freehand471BT-Regular
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FrutigerLinotype-Bold
 /FrutigerLinotype-BoldItalic
 /FrutigerLinotype-Italic
 /FrutigerLinotype-Roman
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GailsHand-Plain
 /GandoBT-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeometricSlab703BT-XtraBoldCond
 /GeometricSlab703BT-XtraBoldItal
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyHandtooledBT-Regular
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudyStout
 /Gradl
 /Haettenschweiler
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoboBT-Regular
 /HolidaysMT
 /Home
 /Home-Bold
 /Home-Italic
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /ImpressBT-Regular
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Inter
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /JamesHand-Plain
 /Jokerman-Regular
 /JolenesHand-Plain
 /JuiceITC-Regular
 /Julius-BThyssen
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeypunchPlain
 /KeystrokesMT
 /KidsPlain
 /KinoMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /KunstlerScript
 /LasVegasD
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LevenimMT
 /LevenimMTBold
 /LibertyBT-Regular
 /Lithograph-Bold
 /LithographLight
 /LubalinGraphITCbyBT-Bold
 /LubalinGraphITCbyBT-Book
 /LubalinGraphITCbyBT-Medium
 /LubalinGraphITCbyBT-XtraLight
 /LuciaBT-Regular
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /MaiandraGD-DemiBold
 /MaiandraGD-Regular
 /Map-Symbols
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MeadBold
 /MercuriusScriptMT-Bold
 /MicrosoftSansSerif
 /Minion-Web
 /MiniPicsArtJam
 /MiniPicsClassic
 /MiniPicsLilCritters
 /MiniPicsLilEdibles
 /MiniPicsLilEvents
 /MiniPicsLilStuff
 /MiniPicsLilVehicles
 /MiniPicsRedRock
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /Monotypecom
 /MonotypeCorsiva
 /MonotypeSorts
 /MonotypeSorts2
 /MotterFemD
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MurrayHillBT-Bold
 /Narkisim
 /NevisonCasD
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAbyBT-Regular
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /OldEnglishTextMT
 /Onyx
 /OrbitBbyBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /PartiesMT
 /PepitaMT
 /PepperPlain
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PioneerITCbyBT-Regular
 /PlacardMT-Condensed
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /PosterBodoniBT-Roman
 /PresidentPlain
 /Pristina-Regular
 /PTBarnumBT-Regular
 /QuestsHand-Plain
 /QuicksilverITC-Normal
 /QuillScript-Normal
 /QuorumITCbyBT-Black
 /QuorumITCbyBT-Light
 /QuorumITCbyBT-Medium
 /RageItalic
 /RansomBold
 /RansomBoldItalic
 /RansomItalic
 /RansomRegular
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RodTransparent
 /ScriptMTBold
 /SeagullBT-Bold
 /SeagullBT-Heavy
 /SeagullBT-Light
 /SeagullBT-Medium
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /ShowcardGothic-Reg
 /SignsMT
 /SimSun
 /SloganD
 /SnapITC-Regular
 /SnellBT-Black
 /SnellBT-Bold
 /SnellBT-Regular
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SportsThreeMT
 /SportsTwoMT
 /SquareSlabserif711BT-Bold
 /SquareSlabserif711BT-Light
 /SquareSlabserif711BT-Medium
 /Staccato222BT-Regular
 /Staccato555BT-RegularA
 /Stencil
 /StymieBT-Bold
 /StymieBT-BoldItalic
 /StymieBT-ExtraBold
 /StymieBT-ExtraBoldCondensed
 /StymieBT-Light
 /StymieBT-LightItalic
 /StymieBT-Medium
 /StymieBT-MediumItalic
 /Swiss911BT-ExtraCompressed
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TechnicalItalic
 /TechnicalPlain
 /TempusSansITC
 /TiffanyITCbyBT-Demi
 /TiffanyITCbyBT-DemiItalic
 /TiffanyITCbyBT-Heavy
 /TiffanyITCbyBT-HeavyItalic
 /TiffanyITCbyBT-Light
 /TiffanyITCbyBT-LightItalic
 /Times-Bold
 /Times-BoldItalic
 /TimeScrD-Bold
 /TimeScrD-Ligh
 /TimeScrD-Medi
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /TLAsian
 /TLCentralEurope
 /TLCyrillic2
 /TLEastEurope2
 /TLHelpCyrillic
 /TLNaskh2
 /TLNaskhHelp31
 /TransportMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypoUprightBT-Regular
 /VacationMT
 /VAGRoundedBT-Regular
 /VanessasHand-Plain
 /Vb02
 /VbAVT
 /VBjrnet
 /VBmw
 /VBox
 /VBRH
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /VivaldiD
 /Vivaldii
 /VladimirScrD
 /VladimirScript
 /Webdings
 /WendysHand-Plain
 /Westminster
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfDingbats
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-BlackExtended
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 310
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 310
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 310
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

