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Abstract

In biological data, it is often the case that observed data are available only for a subset of samples. When a
kernel matrix is derived from such data, we have to leave the entries for unavailable samples as missing. In
this paper, the missing entries are completed by exploiting an auxiliary kernel matrix derived from another
information source. The parametric model of kernel matrices is created as a set of spectral variants of the
auxiliary kernel matrix, and the missing entries are estimated by fitting this model to the existing entries. For
model fitting, we adopt them algorithm (distinguished from the EM algorithm of Dempster et al., 1977)
based on the information geometry of positive definite matrices. We will report promising results on bacteria
clustering experiments using two marker sequences: 16S and gyrB.

Keywords: Information geometryemalgorithm, Kernel matrix completion, Bacteria clustering

1. Introduction

In kernel machines such as support vector machines (SVM)(Eapf'and Smola, 2002), objects are repre-
sented as a kernel matrix, wherebjects are represented asann positive semidefinite matrix. Essentially

the (i, j) entry of the kernel matrix describes the similarity betwée#im and j-th objects. Due to positive
semidefiniteness, the objects can be embeddadamts in an Euclidean feature space such that the inner
product between two points equals to the corresponding entry of kernel matrix. This property enables us to
apply diverse learning methods (for example, SVM or kernel PCA) without explicitly constructing a feature
space (Sablkopf and Smola, 2002).

Biological data such as amino acid sequences, gene expression arrays and phylogenetic profiles are de-
rived from expensive experiments (Brown, 2002). Typically initial experimental measurements are so noisy
that they cannot be given to learning machines directly. Since high quality data are created by extensive work
of human experts, it is often the case that good data are available only for a subset of samples. When a kernel
matrix is derived from such incomplete data, we have to leave the entries for unavailable sampésiras
We call such a matrix an “incomplete matrix”. Our aim is to estimate the missing entries, but it is obviously
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impossible without additional information. So we make use paeametric modebf admissible matrices,
and estimate missing entries by fitting the model to existing entries.

In this scheme, it is important to define a parametric model appropriately. For example, Graepel (2002)
used the set of all positive definite matrices as a model. Although this model worked well when only a
few entries are missing, this model is too general for our cases where whole columns and rows are missing.
Thus we need another information source for constructing a parametric model. Fortunately, in biological
data, it is common that one object is described by two or more representations. For example, genes are
represented by gene networks and gene expression arrays at the same time (Vert and Kanehisa, 2003). Also
a bacterium is represented by several marker sequences (Yamamoto et al., 2000). In this paper, we assume
thatauxiliary dataare available from another information source. From the auxiliary data, a complete kernel
matrix called theauxiliary matrixis derived and a parametric model is created by giving perturbations to this
matrix. When creating a parametric model of admissible matrices from an auxiliary matrix, one typical way
is to define the parametric model as slectral variant$ which have the same eigenvectors but different
eigenvalues (Cristianini et al., 2002). When several auxiliary matrices are available, the weighted sum of
these matrices would be a good parametric model as well (Lanckriet et al., 2002).

In order to fit a parametric model, the distance between two matrices has to be determined. A common
way is to define the Euclidean distance between matrices (for example, the Frobenius norm) and make use
of the Euclidean geometry. Recently Vert and Kanehisa (2003) tackled with the incomplete matrix approxi-
mation problem by means of kernel CCA. Also Cristianini et al. (2002) proposed a similarity measure called
“alignment”, which is basically the cosine between two matrices. In contrast that their methods are based
on the Euclidean geometry, this paper will follow an alternative way: we will define the Kullback-Leibler
(KL) divergence between two kernel matrices and make use of the Riemannian information geometry (Ohara
et al., 1996). The KL divergence is derived by relating a kernel matrix to a covariance matrix of Gaussian
distribution. The primal advantage is that the KL divergence allows us to usenttedgorithm (Amari,

1995) to approximate an incomplete kernel matrix. Erendm steps are formulated as convex program-
ming problems, and moreover they can be solved analytically when spectral variants are used as a parametric
model.

We performed bacteria clustering experiments using two marker sequences: 16S and gyrB (Yamamoto
et al., 2000). We derived the incomplete and auxiliary kernel matrices from gyrB and 16S, respectively. As
a result, even when 50% of columns/rows are missing, the clustering performance of the completed matrix
was better than that of the auxiliary matrix, which illustrates the effectiveness of our approach in real world
problems.

This paper is organized as follows: Section 2 introduces the information geometry to the space of positive
definite matrices. Based on geometric concepts,ethalgorithm for matrix completion is presented in
Section 3, where detailed computations are deferred in Section 4. In Section 5, the matrix completion problem
is formulated as statistical inference and the equivalence betweemtned EM algorithms (Dempster et al.,

1977) is shown. Then the bacteria clustering experiment is described in Section 6. After seeking for possible
extensions in Section 7, we conclude the paper in Section 8.

2. Information Geometry of Positive Definite Matrices

We first explain how to introduce the information geometry (Amari and Nagaoka, 2001) in the space of
positive definite matrices. Let us define the set otlatld positive definite matrices d5. The first step is to
relate ad x d positive definite matri>® € P to the Gaussian distribution with mean 0 and covariance matrix
P:

1

p(x|P) = FrEECRE exp(—%xT P~1x). 1)

1. The spectral variants model is so simple and has favorable geometrical properties as will be discussed in Section 3. Moreover, the
complexity of this model has recently been analyzed by Bousquet and Herrmann (2003). For simplicity, we will exclusively focus
on this model in the rest of this paper, but there remains much to explore about matrix models.
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It is well known that the Gaussian distribution belongs to the exponential family. The canonical form of an
exponential family distribution is written as

P(x18) = exp(8r(x) —W(8)),

wherer (X) is the vector of sufficient statistic8,is the natural parameter and6) is the normalization factor.
When (1) is rewritten in the canonical form, we have the sufficient statistics as

1 1 T
rx)=— (EXE,...,ix(zj,xlxz,...,xd_lxd) ,

and the natural parameter as

0= (P Y11,....[P Yaa, [P Y12, ., [P Y 14) ',

where[M];; denotes théi, j) entry of matrixM. The natural parametérprovides a coordinate system to
specify a positive definite matri®, which is called thé-coordinate system (or treecoordinate system). On

the other hand, there is an alternative representation for the exponential family. Let us define the mean of
ri(x) asn;: For example, when (X) = XsX,

ni = / X5 p(x|8)dx = Py.

This new set of parameterg provides another coordinate system, calfedoordinate system (or the-
coordinate system):

N=(P,...,Pad,P12,...,Pa_14) -
Let us consider the following cungt) connecting two point81 and; linearly in 6 coordinates:
B(t) =1(62 —01) + 0.
When written is the matrix form, this reads
Plt)=t(Pt—P Y+ P L.

This curve is regarded as a straight line from the exponential viewpoint and is called an exponential geodesic
or e-geodesic. In particular, each coordinate cuBve-t, 8; =c; (j # i) is ane-geodesic. When the-
geodesic between any two points in a manif®ld P is included inS, the manifolds is said to bee-flat. On

the other hand, the mixture geodesiawgeodesic is defined as

n(t) =t(nz—ny) +n1.

In the matrix form, this reads
P(t) =t(P,—P1)+Pr.

When them-geodesic between any two pointsSnis included inS, the manifoldS is said to ben-flat.
In information geometry, the distance between probability distributions is defined as the Kullback-Leibler
divergence (Amari and Nagaoka, 2001):

KL(pa)= [ p(x)log%dx

By relating a positive definite matrix to the covariance matrix of Gaussian (1), we have the Kullback-Leibler
(KL) divergence for two matriceB Q:

KL(P,Q) = tr(Q !P) +logdetQ — logdetP — d.
With respect to a manifol§ C P and a poinP ¢ P, the projection fronP to S is defined as the point i
closest tdP. Since the KL divergence is asymmetric, there are two kinds of projection:
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e e-projection:Q* = argmin,.s KL(Q,P).
e mrprojection:Q* = argminycs KL(P,Q).

It is proved that them-projection to are-flat submanifold is unique, angprojection to arm-flat manifold
is unigue (Amari and Nagaoka, 2001). This uniqueness property means that the corresponding optimization
problem is convex and so the global optimal solution is easily obtained by any reasonable method.

3. Completion of an Incomplete Kernel Matrix

In this section, we describe tleenalgorithm to complete an incomplete kernel matrix. kgt ..,x, € X be

the set of samples of interest. In supervised learning cases, this set includes both training and test sets, thus
we are considering the transductive setting (Vapnik, 1998). Let us assume that the data is available for the
first n samples, and unavailable for the remaining= ¢ — n samples. Denote b, ann x n kernel matrix,

which is derived from the data for the finssamples. Then, an incomplete kernel matrix is described as

Ki Dwn
D= : 2
< Dyn  Dnn ) @)

whereDyy, is ann x m matrix andDyp, is anm x m symmetric matrix. Sinc® has missing entries, it cannot
be presented as a pointfh Instead, all the possible kernel matrices form a manifold

D = {D|Dyn € O™™ Dppc O™™ Dpp= D, D=0},

whereD > 0 means thaD is positive definite. We call it thelata manifoldas in the conventional EM
algorithm (Ikeda et al., 1999). It is easy to verify thais anm-flat manifold; hence, the-projection toD is
unique.

Next let us define the parametric model to approxiniateHere the model is derived as the spectral
variants ofKg, which is an/ x ¢ auxiliary kernel matrix. Let us defing andv; as thei-th eigenvalue and
eigenvector oKg, respectively ThenKg is decomposed as follows:

¢
Kg = ZL)\iViViT.
i=
Define

Mi = ViviTa (3)

then all the spectral variants are representéd as
¢
M={M|M=75 BjMj, Bed’, M0}
j=1

We call it the model manifold (Ikeda et al., 1999). Since the eigenve(:\‘/l;)}fég1 are orthonormalVl can be
reparametrized as follows:

¢

M ={M[M=(Y bjMj)~%, bed’, M>0}, (4)
=1

whereb; = 1/B;. Itis easily seen that the manifoM is e-flat andm-flat at the same time. Such a manifold

is called dually-flat.

2. When! is large, the minor eigenvalues Kg may be extremely small and the numerical computation of eigenvectors could be
instable. For stabilizing eigenvectors, it is effective to add a small positive constant to all the diagonal elements.

3. In some cases, it would also be good to consthlicdnly with major eigenvectors, i.&d = zik:l BiM; + Bol, wherek < £,Bp € O,
andl is the unit matrix.
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Figure 1: Information geometric picture of tieenalgorithm. The data manifol® corresponds to the set
of all completed matrices, whereas the model manifdidcorresponds to the set of all spectral
variants of an auxiliary matrix. The nearest points are found by gradually minimizing the KL
divergence by repeatirejandm projections.

Our approximation problem is formulated as finding the nearest points in two manifoldsD i3l and
M € M to minimizeKL(D,M). In geometric terms, this problem is to find the nearest points betelah
andm-flat manifolds. It is well known that such a problem is solved by an alternating procedure called the
emalgorithm (Amari, 1995). Themalgorithm gradually minimizes the KL divergence by repeatsiep
andm-step alternately (Figure 1).

In the e-step, the following optimization problem is solved with fixiMy Find D € D that minimizes
KL(D,M). This is rewritten as follows: Fin®,, andDpp, that minimize

Le = tr(DM~1) — logdetD, (5)

subject to the constraint thBt>- 0. As indicated by information geometry, this is a convex problem, which
can readily be solved by any reasonable optimizer. Moreover the solution is obtained in a closed form: Let
us partitionM ! as

1 Sw Snh
M= ( SJh Shh ) ©
The solution of (5) is described as
Duv = —KiSnSp, (7
Dhh = Sy + S SinKi SinS - (8)

The derivation of (7) and (8) will be described in Section 4.1.
In the m-step, the following optimization problem is solved with fixiBg Find M € M that minimizes
KL(D,M). This is rewritten as follows: Fintd € 0 that minimizes

¢ l
Lm= 3 bjtr(M;D)—logde(y b;M;) ©)
=1 =1
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subject to the constraint thid > 0. When{Mj}f:l are defined as (3), the closed form solution of (9) is
obtained as
bi =1/tr(M;D), i=1,....¢ (10)

The derivation of (10) will be described in Section 4.2.

4. Computing Projections

This section presents the derivationedndm-projections in detail.

4.1 e-projection

In the following, we will derive the=-projection ofM as (7) and (8). The optimization problem (5) is firstly
solved without regarding the constraibt- 0, and then the solution is verified to satisfy the constraint. It is
well known that the log determinant of a partitioned matrix is described as

logdetD = log detK; +logde{Dnn — DK, Dyn).
Thus,Le in (5) is rewritten as follows:
Le = tr(DM1)—logdeD
tr(DM~1) — logdet; — logde{Dpn — DyK; Dyn).
When we partitiorM —* as (6), it turns out that

Le = tr(Ki Sw) + 2tr(DynSun) + tr(DnnShn) — log detK; — logdetDyn — DypK; *Dyn). (11)
The saddle point equation with respecig, is obtained as
oL
S = Sih— (Dhh— DypK; Dun) 4, (12)
ath
becaus%% logdelC = C~1 for any symmetric matri. Solving (12) with respect tBy;,, we have
Dhh = Sy + DynK 1 Dyh. (13)

Substituting (13) into (11), we have
Le = tr(Ki Sw) + 2tr(DyhSin) + tr(l + SiiDypK; *Dyn) — logdetk; — log detSyp.

Now the saddle point equation with respecDig, is obtained as
OLe
0Dyn

Solving this equation, we have the solution (7) By, By substituting (7) into (13), we have the solution (8)
for Dhh.
Next, let us verify that the solutiob is positive definiteD > 0), that is,

c'Dc> 0, (14)
for anyc € O¢, ¢ # 0. The left hand side of (14) is written as
T
T C1 Ki Dvn C1
c Dc= .
(Cz) <DvTh th>(02>
By using the relation (13), we have the following:

c"De = |[K{ %1 — K 2Dynca||? + oS e (15)

WhenM > 0, its inverse is also positive definits( = 0). As Sy, is a submatrix oM~1 as shown in (6),
we haveﬁh1 > 0. Accordingly, the second term of (15) is strictly positive. Since the first term is nonnegative,
we finally prove that" Dc > 0.

= 2Sh+ 2K, 'DynSih = 0.
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4.2 m-projection

Here we will show the derivation of the-projection (10). Firstly let us derive the solutibrto minimize
¢ ‘
Lm= ij tr(M;D) —Iogdetz bjMj)
= =1
without the constraintl - 0. SincedlogdetQ—1/0Q = Q, the saddle point equations are described as
Z b;M =tr(M;D), i=1...,0 (16)

Remembering thail; = vJvJT, we have

¢
Zb M Z bJ jVJ—T.

The left hand side of (16) is rewritten as

1
z biMj)~1) = tr(viv;" Z b =vjv)).

Sincevi" v; = 0 (i # j), we have the following:

1 + 1
zbj —tr(biv|vi )—H.
Therefore, the solution of (16) is analytically obtained as
-1
b =1/tr(M;D) = (viTDvi) L =10

WhenD is positive definite, we hawe' Dv; > 0 and thus; > 0. Since{bf1 ¢_, correspond to the eigenvalues
of M, M is proven to be positive definite.

We have shown that the-projection is obtained analytically when the model manifold corresponds to
spectral variants of a matrix. However, it is not always the case. For example, consider vesaliai@ry
matricesNy,...,N; and the model manifold is constructed as the harmonic mixture of them:

Cc
M ={M|M=(5 b)) beD M:>0}. (17)
=1

This is ane-flat manifold, so the optimization problem is convex, but the analytical solvability depends on
geometric properties of auxiliary matricgbl } ,(Ohara, 1999). We will briefly discuss this issue in the
Appendix.

5. Relation to the EM algorithm

In statistical inference with missing data, the EM algorithm (Dempster et al., 1977) is commonly used. By
posing the matrix completion problem as statistical inference, the EM algorithm can be applied, and—as
shown later—it eventually leads to the same procedure. To describe the matrix completion problems, it is
sufficient to define the geometry of matrices. So, in a sense, it is cumbersome to relate matrix completion
to statistical concepts—random variables, observations and so on—and then use the geometry of probability
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distributions. Nevertheless it would be meaningful to rewrite our method in terms of statistical concepts for
establishing connections to other methods such as the probabilistic PCA (Tipping and Bishop, 1999), the
Gaussian processes (Williams, 1999, @sand Opper, 2002) and the Bayesian covariance kernel (Seeger,
2002).
Letv andh be then andmdimensional visible and hidden variables. From observedtiiacovariance
matrix ofv is known as
Eow'] =K,

whereE, denotes the expectation with respect to observed data. However, we do not know the covariances
Dvh = Eo[vh] andDyp, = Eo[hh']. Our purpose is to obtain the maximum likelihood estimate of parameter
b of the following Gaussian model:

p(v,hlb) = WM’(_%( " )TM_l( " >>

whereM is described as (4).
In the course of maximum likelihood estimation, we have to estimate the observed covabgnaesl
Dnh in an appropriate way. The EM algorithm consists of the following two steps.

e E-Step: Fixb and updat®,, andDyp, by conditional expectation.
e M-Step: FixD and updatd by maximum likelihood estimation.

It is shown that the likelihood of observed data increases monotonically by repeating these two steps (Demp-
ster etal., 1977).

The M-step maximizes the likelihood, which is easily seen to be equivalent to minimizing the KL diver-
gence (Amari, 1995). So the M-step is equivalent tathetep (9). However, the equivalence between E-step
ande-step is not obvious, because the former is based on conditional expectation and the latter minimizes
the KL divergence. In the E-step, the covariance matrices are computed from the conditional distribution
described as

1 1
p(hlv,b) = WW exp(—z(h + S SihY) " Sm(h+ S;#ﬂw)) ;

whereSmatrices are derived as (6). Taking expectation with this distribution, we have

Eolvh' [V = —w'SpSy,
Eolhh’ [V] = S+ SSinwv' SnSip-

Then the covariance matrices are estimated as

Dun=EoBp[vh" [V] = —KiSinSp,

Din=EoEp[hh’ [V = S + Sin SinKi SinSyn-
Since these solutions are equivalent to (7) and (8), respectively, the E-step is shown to be equivalent to the
e-step in this case. It is well known that the conditional expectation leads to the minimization of the KL

divergence in most cases (Casznd Tusnady, 1984, Neal and Hinton, 1999). However, there are special
cases that the EM aremalgorithms are different (Amari, 1995).

4. In fact, we do not have observed data in any sense. However, we assumed them as a matter of form femelatigdv.
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6. Bacteria Classification Experiment

In this section, we perform unsupervised classification experiments for bacteria based on two marker se-
guences: 16S and gyrB. Basically we would like to identify the genus of a bacterium by means of extracted
entities from the cell. It is known that several specific proteins and RNAs can be used for genus identifi-
cation (Kasai et al., 1998). Among them, we especially focus on 16S rRNA and gyrase subunit B (gyrB)
protein. 16S rRNA is an essential constituent in all living organisms, and the existence of many conserved
regions in the rRNA genes allows the alignment of their sequences derived from distantly related organisms,
while their variable regions are useful for the distinction of closely related organisms. GyrB is a type || DNA
topoisomerase which is an enzyme that controls and modifies the topological states of DNA supercoils. This
protein is known to be well preserved over evolutional history among bacterial organisms thus is supposed to
be a better identifier than the traditional 16S rRNA (Kasai et al., 1998). Notice that 16S is represented as a
nucleotide sequence with 4 symbols, and gyrB is an amino acid sequence with 20 symbols. Since gyrB has
been found to be useful more recently than 16S (Yamamoto et al., 2000), gyrB sequences are available only
for a limited number of bacteria. Thus, it is considered that gyrB is more “expensive” than 16S.

Our dataset has 52 bacteria of three gen€arynebacterium 10, Mycobacterium 31, Rhodococcus
11), each of which has both 16S and gyrB sequences. For simplicity, let us call these genera as class 1-3,
respectively. For 16S and gyrB, we computed the second order count kernel, which is the dot product of
bimer counts (Tsuda et al., 2002). Each kernel matrix is normalized such that the norm of each sample in
the feature space becomes one. The kernel matrices of gyrB and 16S can be seen in Figure 2 (b) and (c),
respectively. For reference, we show an ideal matrix as Figure 2 (a), which indicates the true classes. In
our scenario, for a considerable number of bacteria, gyrB sequences are not available as in Figure 2 (d). We
will complete the missing entries by tlmalgorithm with the spectral variants of the 16S matrix. When
theemalgorithm converges, we end up with two matrices: ¢cbmpleted matrixon data manifold and the
estimated matrivon model manifoldM . The completed and estimated matrices are shown in Figure 2 (e)
and (f), respectively. These two matrices are in general not the same, because the two manifolds may not
have intersection.

In order to evaluate the quality of completed and estimated matrices, K-means clustering is performed in
the feature space of each kernel. Clustering is repeated 20 times with different initial centers selected ran-
domly from the samples. We have chosen the clustering result with the smallest squared error. In evaluation,
we use the mutual information score between the obtained clusters and the true classes (Vaithyanathan and
Dom, 1999)° LetUy,...,U. be the obtained clusters afid . . ., T, be the true classes. Lpt; be the fraction
of the samples which belong to bdthandT;. Also let p;, andp j be the fractions of the sampleslifh and
T;, respectively. The mutual information is defined as

C < pij
pij log——.
i;gl ! pi. Pj.

The clustering experiment is performed by randomly removing samples from the gyrB data. The ratio
of missing samples is changed from 0% to 90%. The mutual information scores of completed and estimated
matrices averaged over 20 trials are shown in Figures 3 and 4, respectively. Comparing the two matrices, the
estimated matrix performed significantly worse than the complete matrix. It is because the completed matrix
maintains existing entries unchanged, and so the class information in the gyrB matrix is well preserved. We
especially focus on the comparison between the completed matrix and the 16S matrix, because there is no
pointin performing themalgorithm when the 16S matrix works better than the completed matrix. According
to the plot, the mutual information score of the completed matrix was larger than that of the 16S matrix up
to 50% missing ratio. Itimplies that the matrix completion is meaningful even in quite hard situations—50%
sample loss implies 75% loss in entries. This result encourages us (and hopefully readers) to agply the
algorithm to other data such as gene networks (Vert and Kanehisa, 2003).

5. As another evaluation measure, you can use the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985, Yeung and Ruzzo, 2001).
In this experiment, we computed the ARI as well, and the similar results were obtained.
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(a) Ideal (b) gyrB (complete)

(c) 16S

(e) completed matrix

vl

Figure 2: An example of kernel matrix completion. Suppose that we have an incomplete kernel matrix like
(d). Our purpose is to complete the missing part by using a complete auxiliary kernel matrix (c).
As the result of themalgorithm, we end up with two matrices. One is the completed matrix (e)
on the data manifold, and the other is the estimated matrix (f) on the model manifold. Notice that
(a) describes the correct class labels and (b) shows the complete version of (d).
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I nf ormati on

Mut ual

0.2L . w w w w w w w w w
0O 10 20 30 40 50 60 70 80 90
M ssing Sanples (%

Figure 3: Clustering performance of the completed matrix. The solid curve shows the averaged mutual
information score of the completed matrix, and the error bar describes the standard deviation.
The upper and lower flat lines show the mutual information scores of the complete gyrB and 16S
kernel matrices, respectively.
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Figure 4: Clustering performance of the estimated matrix. The solid curve shows the averaged mutual infor-
mation score of the estimated matrix, and the error bar describes the standard deviation.
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7. Possible Extension

As we related themalgorithm to maximum likelihood inference in Section 5, it is straightforward to gener-
alize it to the maximuna posteriori(MAP) inference or more generally the Bayes inference (Robert, 1994).
For example, we are going to modify tleenalgorithm to obtain the MAP estimate. The MAP estimation
amounts to minimizing the KL divergence penalized by a prior,

KL(D,M) —logm(M), DeD, MeM,

wheret(M) is a prior distribution forM. Since the additional term-logm(M) depends only, only the
m-step is changed so as to minimize the above objective function with respdct to

Let us give a simple example of the MAP estimation in the spectral variants case. In Bayesian infer-
ence, it is common to take@njugate prior so that the posterior distribution remains as a member of the
exponential family. Since the model paramdigs related to a covariance matrix, we choose the Gamma
distribution, which works as a conjugate prior for the variance of Gaussian distribution (Robert, 1994). The
prior distribution is defined independently for edghas

1 bj
1H

wherev; anda; denote hyperparameters, by which the mean and the variance are spectigy] by a;v;
andV(bj) = GJZVJ', respectively. Then step for the MAP estimation is to minimize

l
L™ =Lm— Y logm(bj; vj,aj),
=1

which leads to the equation

¢ o
(S biM; Vitl_ymD)+ L i1
=) bi o

In the spectral variants case, the left hand side is reduced/bp, thus we obtain the MAP solution in a

closed form as Vi
|

~ w(MD)+1/a;’

When we construct the spectral variants model, the eigenvaluesthe auxiliary matrixkg are dis-
carded. It may cause the undesirable solution, whesarries significant information. To solve the problem,
we can use the MAP estimation by constraining the parameter values around the corresponding eigenvalues.
A typical choice is thav; is set to a certain constang andaj is determined so that the mean vatug; is
)\j, i.e.dj =>\j/Vo.

o] i=1...,¢

8. Conclusion

In this paper, we introduced the information geometry in the space of kernel matrices, and appéied the
algorithm to matrix completion. The main difference from other Euclidean methods is that we use the KL
divergence. In general, we cannot determine which distance is better, because it is highly data dependent.
Nevertheless our method has a great utility, because it can be implemented with algebraic computation only
and we do not need any specialized optimizer such as semidefinite programming (Graepel, 2002, Cristianini
et al., 2002, Lanckriet et al., 2002). However, one disadvantage of our method is tren#dgorithm

may get stuck at local minima. Though each step is stated as a convex optimization problem, the overall
optimization problem is not convex (Amari, 1995).
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In Section 5, we related matrix completion to statistical inference. In future works, it would be interesting
to involve advanced methods in statistical inference, such as generalized EM (Dempster et al., 1977) and
variational Bayes (Attias, 1999). Also we are looking forward to apply our method to diverse kinds of real
data which are not limited to bioinformatics.
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Appendix A. Analytical Solvability of the m-step

In this appendix, we discuss the solvability of thestep. The left hand side of (16) is thecoordinate of the

submanifoldM , while b; denote thee-coordinate oM. Thee-coordinate andan-coordinate are connected

by the Legendre transform (Amari and Nagaoka, 2001). In the mother maRifdhie Legendre transform

is easily obtained as the inverse of the matrix. In the submanibldf P, however, it is difficult to obtain

the Legendre transform in general. The difficulty is caused by the difference of geodesics delMhexhih

P. When the geodesic defined by a coordinate system of a subma®ifold coincides with the geodesic

defined by the corresponding global coordinate syste®,dhe submanifold is calledutoparallel In our

caseM is autoparallel for the-coordinate, but it is not always autoparallel for thecoordinate. When the

submanifold is autoparallel for the both coordinate systems, the submanifold is called doubly autoparallel.
Let us consider when a submanifold becomes doubly autoparallel. To begin with, let us define the product

* between twal x d symmetric matriceX,Y € Synid),

XY = %(wixy (18)

The algebra equipped with the usual matrix sum and the product (18) is called the Jordan algebra of the vector
space ofSynid). The following theorem provides the necessary and sufficient condition for a submanifold
to be doubly autoparallel (Ohara, 1999).

Theorem 1 Assume the identity matrix | is an element of the submarifbldhenM is doubly autoparallel
if and only if the tangent space M is a Jordan subalgebra of Syuh).

Ohara (1999) has also shown thatMf is doubly autoparallel, thenr-projection can be solved analytically,
that is, the optimal solution is obtained by one Newton step.

For example, let us consider a submanifd/d C P is determined as (17), th@-coordinate orM is
defined by

ni :tr(Ni(i biNj) ).
=1

Although them-projection ontdVl from D is explicitly given byn; =tr(N;D), the Legendre transform from
to thee-coordinate; is not obtained in a closed form in general. Howevel, iforms the Jordan subalgebra,
that is, the following holds for all, j:

N;i * Nj € sparf{Ng,...,Nc}),

thenM is doubly autoparallel and the Legendre transform can be obtained in a closed form. In the spectral
variants case that we have considehdd; viviT and

Ni*Nj = 0 e sparf{Ng,...,Nc}).

Thus them-projection is obtained analytically in this case.
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