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Abstract

Keyword Spotting, applied to handwritten text documents, aims to
retrieve the documents, or parts of them, that are relevant for a query,
given by the user, within a large collection of documents. The topic
has gained a large interest in the last 20 years among Pattern Recog-
nition researchers, as well as digital libraries and archives.

This thesis, first defines the goal of Keyword Spotting from a De-
cision Theory perspective. Then, the problem is tackled following a
probabilistic formulation. More precisely, Keyword Spotting is pre-
sented as a particular instance of Information Retrieval, where the
content of the documents is unknown, but can be modeled by a prob-
ability distribution. In addition, the thesis also proves that, under the
correct probability distributions, the framework provides the optimal

solution, under many of the evaluation measures traditionally used
in the field.

Later, different statistical models are used to represent the prob-
ability distribution over the content of the documents. These mod-
els, Hidden Markov Models or Recurrent Neural Networks, are es-
timated from training data, and the corresponding distributions over

the transcripts of the images can be efficiently represented using Weighted

Finite State Transducers.

In order to make the framework practical for large collections of
documents, this thesis presents several algorithms to build probabilis-
tic word indexes, using both lexicon-based and lexicon-free models.
These indexes are very similar to the ones used by traditional search
engines.
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Furthermore, we study the relationship between the presented for-
mulation and other seminal approaches in the field of Keyword Spot-
ting, highlighting some limitations of the latter.

Finally, all the contributions are evaluated experimentally, not only
on standard academic benchmarks, but also on collections including
tens of thousands of pages of historical manuscripts. The results show
that the proposed framework and algorithms allow to build very ac-
curate and very fast Keyword Spotting systems, with a solid underly-
ing theory.



Resum

La detecci6 de paraules clau (Keyword Spotting, en angles), aplicada
a documents de text manuscrit, té com a objectiu recuperar els docu-
ments, o parts d’ells, que siguen rellevants per a una certa consulta
(query, en angles), indicada per l'usuari, dintre d’una gran col-leccié
de documents. La tematica ha recollit un gran interés en els tltims 20
anys entre investigadors en Reconeixement de Formes (Pattern Recog-
nition), aixi com biblioteques i arxius digitals.

Aquesta tesi defineix 'objectiu de la detecci6 de paraules claus a
partir d"una perspectiva basada en la Teoria de la Decisi6 i una for-
mulacié probabilistica adequada. Més concretament, la detecci6 de
paraules clau es presenta com un cas concret de Recuperacié de la
Informaci6 (Information Retrieval), on el contingut dels documents és
desconegut, pero pot ser modelat mitjangant una distribucié de prob-
abilitat. A més, la tesi també demostra que, sota les distribucions de
probabilitat correctes, el marc de treball desenvolupat condueix a la
solucié optima del problema, segons diverses mesures d’avaluacié
utilitzades tradicionalment en el camp.

Després, diferents models estadistics s’utilitzen per representar
les distribucions necessaries: Xarxes Neuronal Recurrents i Models
Ocults de Markov. Els parametres d’aquests s6n estimats a partir de
dades d’entrenament, i les corresponents distribucions sén represen-
tades mitjancant Transductors d’Estats Finits amb Pesos (Weighted Fi-
nite State Transducers).

Amb l'objectiu de fer el marc de treball atil per a grans col-leccions
de documents, es presenten distints algorismes per construir indexs
de paraules a partir dels models probabilistics, tan basats en un lexic
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tancat com en un obert. Aquests indexs sén molt semblants als util-
itzats per motors de cerca tradicionals.

A més a més, s’estudia la relaci6 que hi ha entre la formulaci6
probabilistica presentada i altres metodes de gran influéncia en el
camp de la deteccié de paraules clau, destacant algunes limitacions
dels segons.

Finalment, totes les aportacions s’avaluen de forma experimental,
no sols utilitzant proves academics estandard, sin6 també en col-leccions
amb desenes de milers de pagines provinents de manuscrits historics.
Els resultats mostren que el marc de treball presentat permet construir
sistemes de detecci6 de paraules clau molt acurats i rapids, amb una
solida base teorica.



Resumen

La deteccién de palabras clave (Keyword Spotting, en inglés), aplicada
a documentos de texto manuscrito, tiene como objetivo recuperar los
documentos, o partes de ellos, que sean relevantes para una cierta
consulta (query, en inglés), indicada por el usuario, entre una gran
coleccién de documentos. La tematica ha recogido un gran interés en
los dltimos 20 afios entre investigadores en Reconocimiento de For-
mas (Pattern Recognition), asi como bibliotecas y archivos digitales.

Esta tesis, en primer lugar, define el objetivo de la deteccion de
palabras clave a partir de una perspectiva basada en la Teorfa de
la Decisién y una formulacién probabilistica adecuada. Mads conc-
retamente, la deteccién de palabras clave se presenta como un caso
particular de Recuperacion de la Informacién (Information Retrieval),
donde el contenido de los documentos es desconocido, pero puede
ser modelado mediante una distribucién de probabilidad. Ademés, la
tesis también demuestra que, bajo las distribuciones de probabilidad
correctas, el marco de trabajo desarrollada conduce a la solucién 6p-
tima del problema, segtin multiples medidas de evaluacién utilizadas
tradicionalmente en el campo.

Mas tarde, se utilizan distintos modelos estadisticos para repre-
sentar las distribuciones necesarias: Redes Neuronales Recurrentes o
Modelos Ocultos de Markov. Los pardametros de estos son estimados
a partir de datos de entrenamiento, y las respectivas distribuciones
son representadas mediante Transductores de Estados Finitos con Pe-
sos (Weighted Finite State Transducers).

Con el objetivo de hacer que el marco de trabajo sea practico en
grandes colecciones de documentos, se presentan distintos algorit-
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mos para construir indices de palabras a partir de modelos probabilis-
ticos, basados tanto en un léxico cerrado como abierto. Estos indices
son muy similares a los utilizados por los motores de bisqueda tradi-
cionales.

Ademas, se estudia la relacién que hay entre la formulacién prob-
abilistica presentada y otros métodos de gran influencia en el campo
de la detecciéon de palabras clave, destacando cuédles son las limita-
ciones de los segundos.

Finalmente, todas la aportaciones se evaltian de forma experimen-
tal, no sélo utilizando pruebas académicas estdndar, sino también en

colecciones con decenas de miles de pdginas provenientes de manuscritos

histéricos. Los resultados muestran que el marco de trabajo presen-
tado permite construir sistemas de deteccién de palabras clave muy
répidos y precisos, con una sdlida base tedrica.
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Preface

The main goal of the thesis is to provide a theoretically-sound, effi-
cient and robust algorithms to create word indexes from documents
with an unknown content (i.e. documents with stochastic content).

In order to explain the details to build such indexes, the thesis has
been sequentially organized in 10 chapters. We encourage the reader
to follow this sequential order. Nevertheless, some chapters can be
skimmed or read in a different order, depending on the particular in-
terests of the reader. Figure 1 shows the main dependencies between
the different chapters of this thesis.

Chapter 1 covers the basic preliminaries and traditional solutions
to the problem of Keyword Spotting. Then, chapter 2, presents the
probabilistic framework that we have developed to tackle Keyword
Spotting. These chapters should not be skipped in order to ensure a
common vocabulary, and to understand the core of the theory behind
this dissertation.

Chapter 3 presents several of the typically used evaluation mea-
sures in the field of Keyword Spotting (Recall, Precision, Average Pre-
cision, etc.) and we proof that our probabilistic perspective provides
an optimal ranking for all of them, under certain conditions. If the
reader is already familiar with the evaluation measures used in the
field, and/or is not fond of mathematical proofs, one can skip this
chapter. However, we encourage to read it, since the optimality re-
sults are referenced in posteriors chapters of the thesis.

Chapter 4 describes the models for handwritten text that we have
used for the experimental evaluation of our framework, namely Hid-
den Markov Models and Recurrent Neural Networks. If the reader
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Figure 1. Illustration of the dependencies between the different chapters of this the-
sis.

is familiar with these models, then the first sections of this chapter
may be skimmed. In any case, we highly encourage to read in detail
section 4.6, where Weighted Finite State Transducers are presented.
These are fundamental to understand the indexing algorithms.

Chapter 5 introduces the algorithms developed in this thesis to
build such probabilistic indexes, in order to allow for fast Keyword
Spotting solutions. This chapter, together with chapter 2, is one of the
cornerstones of this dissertation.

Chapters 6 and 7 present, respectively, how our probabilistic frame-
work relates with some traditional approaches, how to use it to tackle
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other forms of Keyword Spotting, as well as other applications that
have not been deeply studied by the community yet.

Chapter 8 presents the experimental evaluation of the proposed
framework and algorithms, experiments showing the relationship with
previous approaches, and non-traditional forms of Keyword Spot-
ting.

Moreover, in chapter 9 we show that our solutions can be used to
efficiently index collections of handwritten documents, much larger
than traditional academic data sets.

Finally, chapter 10 summarizes the contributions of this work, in-
cluding the scientific publications and open sourced software result-
ing from this work, and suggests interesting lines of future research.






Notation

Description

Random variables

Vectors

Matrices or tensors

Element of the matrix (or tensor) at row i and column j

A sequence of length T

A sequence of vectors of length T
Used in equations to define a symbol or function

The equality holds under some assumption

In algorithms, the value of b is assigned to variable a
Probability mass function

Probability density function

Parametric probability mass function with respect to 0
Parametric probability density function w.r.t. 6
Expected value of an expression

Expected value of an expression conditioned on some
other
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Preliminaries

During thousands of years the human kind used handwriting to pre-
serve and share knowledge. However, its availability and speed of
distribution was very limited, until the invention of the printing press,
by Johannes Gutenberg (circa 1439). The printing press allowed an
incredible acceleration in the distribution of information, and made
possible that segments of the population that had never had access
before, could start to gain it [McLuhan, 1962].

Moreover, handwriting has not always been the must reliable way
of preserving information. Perhaps, the most iconic symbol of the de-
struction of human knowledge is the burning of the ancient library
of Alexandria. Although its destruction is probably not due to a sin-
gle event, it is certain that the library suffered several and important
losses during its history, until its final collapse [MacLeod, 2004]. This
is perhaps the most used example to illustrate how fragile are paper
and ink, but it is not the only one in History.

In the current digital era, with the usage of computers and digi-
tal formats, information can be stored in a cheaper and more reliable
way than ever before. In addition, any person around the world with
access to a computer with Internet connection, can retrieve any piece
of information, even if it is stored anywhere else in the globe. This
has the potential to bring a true democratization of human knowledge,
that was started with the invention of the printing press in the XVth
century.

Given the previous reasons, it is no surprise that hundreds of
archives and libraries have started digitizing their collections in order
to protect their information from the passing of time, and also to allow
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users to access their resources using the World Wide Web [Jimenez,
2007,D’Orazio, 2012, Madrigal, 2013, Paniagua, 2018].

During the 1950s and 1960s, the development of Handwritten Text
Recognition (HTR) started, among other reasons, to make the digi-
tized manuscripts more accessible. In the last 50 years, the field of
HTR has improved significantly, and products that adopt its devel-
opments are present in the backpacks, pockets and desks of many
people around the world. Nevertheless, when dealing with historical
scanned documents, the current HTR solutions are still not accurate
enough to deal with the large amount of variability that these docu-
ments present.

In the 1990s, researchers started working on Keyword Spotting
(KWS) as an alternative to HTR. Regarding historical handwritten
documents, the aim of KWS was to allow users to search for any key-
word in a large collection of documents, without the need of a fully
accurate transcription of the manuscripts.

Precisely, this has been one of the main motivations driving the
this thesis. That is, to improve and develop new technology that al-
lows libraries and archives to store the information contained in their
manuscript collections, and that enables users to access this informa-
tion in a efficient and robust manner.

In particular, this dissertation aims to do so by providing a formal
probabilistic formulation of KWS. The core of the probabilistic view
of the problem is the combination of seminal works from the Informa-
tion Retrieval and Pattern Recognition fields, developed during the
1960s and 1970s. Surprisingly, this formulation has been practically
neglected in the history of KWS applied to handwritten documents,
although other application areas of KWS (i.e. in the speech commu-
nity), and a few works in the handwritten domain, have drawn some
connections between KWS and general Information Retrieval.

1.1 The field of a hundred names

The scientific literature is flooded with works that chase the aims de-
scribed earlier. Nevertheless, depending on the authors’ background
or community, different names are used for tackling virtually the same
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problem. One remarkable example is the name Spoken Term Detec-
tion (or STD), which is widely used by the speech processing com-
munity [Rose, 1995, Miller et al., 2007, Hazen et al., 2009]. Although
the name Keyword Spotting (or KWS) has been used in the past by
the speech processing community as well [Rohlicek et al., 1989, Wein-
traub, 1993], the former name has been broadly adopted in the recent
years.

The contributions from the speech community are very significant,
since they tackled the problem earlier than the researchers interested
in historical handwritten documents [Khoubyari and Hull, 1993,Chen
et al., 1993, Manmatha et al., 1996a, Manmatha et al., 1996b, Keaton
et al., 1997]. As a matter of fact, some of the popular strategies to
perform keyword spotting for handwritten documents were adopted
from the speech community (see [Fischer et al., 2012], for example).

This should not come as a surprise to the reader, since the hand-
written text recognition community has benefited for a long time from
the developments made by their speech recognition colleagues: the
use of Hidden Markov and Gaussian Mixture Models was first used
for speech recognition [Jelinek, 1976], and then adopted by text recog-
nition researchers [Kundu et al., 1989], and the same occurred with
modern artificial neural network architectures, such as the Long-Short
Term Memories (see [Graves et al., 2004] and [Graves and Schmidhu-
ber, 2009]).

Sometimes, even within the same community, two different names
are used to refer to the same problem. For instance, in the handwrit-
ten documents community, many researchers prefer the term Word
Spotting [Manmatha et al., 1996a, Fischer et al., 2012]. And, just to
make the things a bit more confusing, some researchers have used
these names to refer to different problems (e.g. [Cambria et al., 2013]).

In this dissertation, we will use the term Keyword Spotting (abbre-
viated as KWS) which is the most popular in the literature nowadays.
However, if the reader wants to investigate other works with the same
or very similar aims, she should carefully review the literature related
to all these topics:

e Keyword Spotting
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e Word Spotting

e Spoken Term Detection (only for speech signals)

1.2 Taxonomy of Keyword Spotting systems

Different Keyword Spotting systems and publications can be classi-
fied using multiple criteria. In this section we aim to present the
different categories that can be employed to classify a particular so-
lution, which will be useful later to understand the assumptions and
limitations of different approaches.

1.2.1 SEGMENTATION ASSUMPTIONS

One of the most important practical distinctions between different
Keyword Spotting systems is related to the assumptions that each sys-
tem makes regarding the segmentation of the original document im-
ages. Collections of real handwritten document images have a large
variability, and certain assumptions may be reasonable in some cases
but not others. Any assumption that one system makes, is a real limi-
tation if that assumption does not hold in reality.

1.2.1.1 Word segmentation

Many KWS approaches in the literature assume that is possible to
have an accurate segmentation of the words present in the documents
[Manmatha et al., 1996a, Almazan et al., 2012, Almazan et al., 2014,
Sfikas et al., 2016, Sudholt and Fink, 2016, Mondal et al., 2016]. Gen-
erally, these approaches work directly with the cropped bounding
boxes of the words in the document, and the query introduced by the
user, which can be either a string or another image (see section 1.2.3).
Many research assume that this allows to simplify the problem of
KWS and helps to determine the best-case performance.

However, we can identify the following problems in these:

1. Manual word segmentation is not practical. This is quite obvious,
since we aim to automate the processing of handwritten doc-
uments. It does not seem reasonable that one of the steps in-
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volved needs of human labor to be completed. In addition, one
has to realize that accurate word segmentation into bounding
boxes or bounding polygons is a very tedious task (and thus,
expensive).

2. Automatic word segmentation is not good enough. Some authors
argue that, although manual word segmentation is not practi-
cal for obvious reasons, current automatic word segmentation
approaches are good enough to perform word spotting. While
this could be true for some academic data sets, actual data from
real collections of historical documents clearly contradicts this
hypothesis. See fig. 1.1, for example.
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Figure 1.1. Accurate word segmentation is not always possible to perform. While
isolated words are clearly identifiable in image (a), even expert human paleogra-
phers would face problems segmenting the individual words in image (b).

3. Working with isolated word images discards useful information. No-
tice that, if we try to identify whether a given query keyword
is written in a particular cropped word region, we are assum-
ing that the word contained in this particular region is inde-
pendent of other words in the document. This assumption is
obviously false, and it has been extensively shown in the liter-
ature that, using textual context information can substantially
improve the results [Marti and Bunke, 2001b, Fischer et al., 2013,
Toselli et al., 2015]. As an example of the importance of the con-
text, see fig. 1.2. In theory, word segmentation does not nec-
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essarily discard context information, but virtually all works as-
suming word segmentation ignore it.
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Figure 1.2. Textual context is a useful aid to identify words in handwritten text.
Although the word “House” cannot be read in the image, any reader fairly formed
in politics (or statistics), can infer it from the typical use of the English language or, at
least, she would guess that words like “automobile” are very unlikely in this context.

1.2.1.2  Line segmentation

An important subset of papers in KWS assume that accurate line-
segmentation is feasible in practice [Fischer et al., 2012]. These works
typically use the machinery developed for Spoken Term Detection,
since the x-axis in images (or y-axis for vertical-oriented text) can be
interpreted as the time-axis in speech.

Of course, manual line segmentation is not feasible for real appli-
cations, for the same reasons as manual word segmentation. How-
ever, current automatic line segmentation approaches offer a very
good accuracy in many historical collections, and thus this is a less re-
strictive segmentation assumption in practice [Likforman-Sulem et al.,
2007, Louloudis et al., 2009, Griining et al., 2017] .

One additional benefit that these systems offer, in front of most
word segmentation-based approaches, is that they are able to take
into account textual context information to improve the accuracy.

Nevertheless, the computation needed to take into account the
context information is not negligible. The time needed to process a
text line typically grows exponentially with the size of the textual
context considered, unless some pruning and approximation strate-
gies are used to accelerate the process. For instance, the number of
states in a n-gram language models, which directly affects the run-
ning time of keyword spotting and text recognition systems using
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these, increases exponentially with the context size n (more details
will be discussed in section 4.5). Yet, this extra computational re-
sources are only needed during a single step of the construction of
the KWS index, as we will see in chapter 5.

1.2.1.3 Segmentation-free

Finally, the less restrictive scenario is where no segmentation assump-
tion is made whatsoever. There are many works that claim to follow
a “segmentation-free” approach, however they actually are divided
into two clearly separated steps: first, the location and segmentation
of word-like areas of the image, and then deciding which of these ar-
eas are relevant for the given query [Rusifiol et al., 2011, Almazén et al.,
2012, Papandreou et al., 2016, Rothacker et al., 2017].

Regardless of whether the system is implicitly or explicitly free of
any segmentation assumption, we believe that all methods should be
evaluated at some point under a fully automatic segmentation-free
scenario. Mainly, because this will be the real operating scenario once
the systems are deployed in libraries and archives, where millions
of document pages have to be processed. Thus, despite the fact that
the methods presented in this dissertation generally operate on seg-
mented lines, we will carry on some experiments where no manual
segmentation of the pages is given (see section 8.8).

1.2.2 RETRIEVED OBJECTS

Another important aspect of any KWS system is the type of the re-
trieved objects. In practice, this is usually related to the previous sub-
section: most works that operate under a line segmentation assump-
tion retrieve “relevant lines” for a given query, and systems working
under a word segmentation assumption, typically retrieve “relevant
word instances”. Nevertheless, although this is the usual practice, it
does not mean that it is the only possible combination, nor the most
recommended. Figure 1.3 illustrates the different types of retrieved
objects described below.
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Figure 1.3. Different types of objects to retrieve after a user query. For instance, if
the user searches for “Labour”, a keyword spotting system could choose to retrieve
(a) individual instances of this keyword, (b) lines where this word was written, or (c)
whole pages or paragraphs containing the keyword.

1.2.2.1 Word instances

As we mentioned before, a large portion of the keyword spotting
systems described in the literature operate under the word segmen-
tation assumption: that is, the system assumes that accurate word
segmented regions have been extracted from the collection of images.
Thus, when a user gives a query keyword to the system, it will pro-
vide a ranked list of the word regions that, according to the system,
correspond to the given keyword [Manmatha et al., 1996a, Almazan
et al., 2014, Sfikas et al., 2016, Sudholt and Fink, 2016, Gémez et al.,
2017].

1.2.2.2 Lines

In a similar way than before, the system will retrieve full text line re-
gions where it believes that the user’s query keyword is written. This
approach is followed also by many works [Fischer et al., 2012, Frinken
et al., 2012, Toselli et al., 2013, Puigcerver et al., 2015c, Toselli et al.,
2016b]. The benefit of this approach is twofold: first, it gives more con-
text to the user to decide whether or not the retrieved object is actually
of interest to the human labor required to produce the ground truth
is much smaller. Also, it provides with performance measure values
highly correlated with those systems retrieving word instances [Ville-
gas et al., 2016b, Villegas et al., 2016a].
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1.2.2.3 Pages

Last, but not least, the spotting system could choose to retrieve full
pages or paragraphs containing multiple lines. This would give the
user further context, and the measuring of the quality of the results
would resemble more the traditional applications of Information Re-
trieval. Remember, that the user is trying to spot some keyword in
our collection of documents because she needs to satisfy some need
of information, and it is highly probable that the required information
cannot be found in a single text line of our collection. Hence, it would
make perfect sense that the system reported full text pages or para-
graphs.

However, because most keyword spotting works are focused at
a very low level (decide whether or not a word instance in a col-
lection of images is the one that the user was searching for), they
disregard this scenario. There are some works that evaluate their
systems retrieving paragraphs, with more complex queries [Villegas
et al., 2016a, Toselli et al., 2018b].

1.2.3 QUERY REPRESENTATION

The user may interact with the system in different ways, in order to
present the query keyword. The two classical alternatives are the
Query-by-String and Query-by-Example paradigms. Figure 1.4 shows
a representation of the two paradigms, which are explained next.

Query:
Query: (,,/#L‘ o /
lcountry\ ‘ 4 : ‘/

(a) (b)

Figure 1.4. Illustration of the different query paradigms used in the Keyword Spot-
ting literature. The yellow box represents the user input. In figure (a) the user types
a query string using her keyboard, while in figure (b) she uses an exemplar image
containing the keyword to search for.
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1.2.3.1 Query-by-String

On the one hand, the Query-by-String (QbS) paradigm assumes that
the query keyword is presented to the system as an individual symbol
part of a vocabulary lexicon or, alternatively, as a sequence of charac-
ters of a given alphabet. This paradigm is typically adopted in the
speech community [Rohlicek et al., 1989, Weintraub, 1993, Rose, 1995],
and many of the handwriting community works influenced by the for-
mer [Fischer et al., 2012, Frinken et al., 2012, Toselli et al., 2013, Toselli
et al., 2015].

1.2.3.2  Query-by-Example

On the other hand, the Query-by-Example (QbE) paradigm assumes
that an exemplar image, containing the query keyword of interest,
is given to the system, and it has to find the instances of the same
keyword within the collection of document images [Manmatha et al.,
1996a, Almazdan et al., 2012, Tarafdar et al., 2013, Retsinas et al., 2016,
Sfikas et al., 2016, Mondal et al., 2016].

Historically, in this case, KWS is seen as a particular instance of
Content-based Image Retrieval (CBIR) [Toshikazu et al., 1991, Bird
et al., 1996, Smeulders et al., 2000], since most researchers focusing
on this paradigm have a Computer Vision background, where CBIR
has a long tradition.

In this thesis, we will focus mainly on the QbS paradigm, how-
ever our probabilistic framework will also be applied to the QbE case.
Without giving much further details, it will be shown in successive
chapters (see section 2.3) that the QbE case only introduces one ad-
ditional hidden variable with respect to the QbS case, and this only
requires minor modifications to the algorithms.

One clear advantage of QbS in front of QbE is that the user only
needs her keyboard to search for any imaginable concept that she
wishes, and a broader set of queries (such as Boolean queries or ar-
bitrary regular expressions) can be used. Notice that the QbE is more
restricted in this sense, since, in principle, we would need at least one
exemplar image for each of the keywords forming the query.
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Nevertheless, the QbE paradigm also offers some advantages in
front of some QbS approaches. In particular, as we will discuss later
(see section 5.2), QbS approaches relying on a closed lexicon are prone
to the out-of-vocabulary problem, while QbE approaches are essen-
tially resistant to it.

1.2.4 TRAINING DATA

Finally, a fundamental distinction among different KWS systems is
whether they need human annotated training data to be built. This
is a very important distinction, since systems that do not need an-
notated data (i.e. unsupervised methods) are much cheaper to build
than those requiring large quantities of annotated samples (also know
as supervised methods).

1.2.4.1 Unsupervised

Initial works on KWS for historical documents typically fall into this
category [Khoubyari and Hull, 1993, Manmatha et al., 1996a, Keaton
et al.,, 1997]. Virtually all the unsupervised approaches have been re-
stricted to the query-by-example paradigm, explained before. Typ-
ically, researchers apply some feature extraction mechanism on the
images (typically, pre-segmented word-shaped boxes) in order to ex-
tract visual features that could discriminate similar images. Then, they
compare the features extracted from the collection of images against
the features obtained from the query, in order to rank them by some
similarity (or dissimilarity) measure. Recently, there are still works be-
ing published under this paradigm [Tarafdar et al., 2013, Papandreou
et al., 2016, Retsinas et al., 2016, Dey et al., 2016, Zagoris et al., 2017],
although the popular trend is to use supervised methods.

1.2.4.2  Supervised

Because visually similar or dissimilar images do not necessary mean
relevant or irrelevant pairs of objects, researchers soon noticed that
better quality results could be obtained by using supervised meth-
ods. In fact, most recent successful KWS methods are supervised
algorithms [Fischer et al., 2012, Frinken et al., 2012, Almazan et al,,
2014,Sudholt and Fink, 2016, Toselli et al., 2013].
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This thesis focuses on supervised methods. As it will be shown,
our framework involves the probability distribution of the content of
the text images (i.e. the posterior probability over transcripts), and su-
pervised methods excel in the task of learning parametric models for
these kind of distributions. However, experimental evaluation with
different amounts of supervised training data will be carried on, in
order to measure the amount of needed annotation.

1.3 Information Retrieval

In this dissertation, KWS is interpreted as a particular scenario of a
(very) simple information need. Precisely, this is the goal of Informa-
tion Retrieval (IR), as an academic field: to build information systems
that enable users to find useful information among large collections
of unstructured documents [Manning et al., 2008]. The academic field
was originated almost in parallel to computers, back in the 1940s
and 1950s, mainly in order to organize companies and libraries cata-
logs [Sanderson and Croft, 2012]. With the popularization and spread
of the Internet, the field gained significant importance and has been
the central business of various companies (such as Yahoo, Google or
the extinct Altavista or Lycos).

The term information need is very fuzzy and can be ambiguous in
many cases. For instance, when a user searches for “Paris” while she
is planning her holiday trip, she probably wishes to find nice hotels,
the best flight fares and interesting attractions. However, when some
local Frenchwoman searches from “Paris” on the Internet, she is prob-
ably expecting to find other types of information (e.g. the web ad-
dress of the City Hall, hospitals, etc.). The task of the IR system is to
provide the users with relevant answers for their information need.

When we place traditional KWS systems and literature under the
IR goggles, the definition of relevant information is trivial: a docu-
ment (i.e. full page, text line or individual word instance) is relevant
if, and only if, it contains an instance of the queried keyword. How-
ever, these systems have to cope with different sources of ambiguity:
in particular, the textual content of the documents is unknown. This
contrasts with the early web search example, where the very defini-
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tion of relevance is ambiguous, but the content of the documents is
not.

Regardless of the source of uncertainty, probability is the standard
way of measuring it. Thus, the systems presented in this dissertation
can be interpreted as instances of Probabilistic IR systems [Manning
et al., 2008] applied to KWS in handwritten documents.

Finally, we want to emphasize the fact that aiming at building “in-
dexes” from text images was one of the foundational goals of KWS
[Manmatha et al., 1996a, Manmatha et al., 1996b], as well as inter-
preting KWS as an instance of Information Retrieval. However, the
indexes that we build are more closely related to the ones used by
traditional search engines, which make them very easy to use and
integrate with existing IR systems.

In order to better illustrate our indexing goals, fig. 1.5 shows an
example of one of the probabilistic KWS indexes that we intend to
build, for a given (segment of a) page containing handwritten text.
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Keyword  Prob. Bounding box
2 0.93 1-36-20-31
21 0.07 1-36-24-31
It 0.98 33-36-27-31
If 0.01 33-36-26-31
some 0.83 570-198-78-31
soner 0.02 576-198-83-31

Figure 1.5. Illustration of a probabilistic index similar to the ones that we intend to
build as the outcome of this thesis.
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In this example, the index contains the list of candidate words
written in the image, with its location (bounding box) and the confi-
dence (probability) of the system in that entry. For example, our KWS
system is very confident that the word “It” and “some” are written
in the image, although it is less certain about the latter. At the end of
this thesis, the reader will be able to understand the algorithms used
to build this index and the theory supporting them.

1.4 Pattern Recognition

As we discussed in the previous section, KWS can be interpreted as
a form of Information Retrieval where the content of the documents
is unknown. Recall that we are dealing with scanned document im-
ages containing text. Thus, under a probabilistic formulation, we
need to guess which text is likely to actually be written in such im-
ages. Precisely, Pattern Recognition (PR) is the academic field that fo-
cuses on the recognition of patterns from arbitrary data [Duda et al,,
2000, Bishop, 2006]. PR is sometimes considered a branch of Machine
Learning (ML), but many authors consider them synonyms [Bishop,
2006].

As the title of this thesis suggest, it focuses on probabilistic (or
statistical) PR algorithms. In fact, although many PR algorithms or
tasks may not involve the explicit computation of any probability or
distribution, many of them can be reinterpreted in these terms, and
all of them use statistical methods to (1) learn the parameters of the
algorithm from a given training data, and (2) decide (or predict) some
set of optimal actions or outcomes from new evaluation data.

Pattern Recognition has proven to be a phenomenal approach to
find general rules to solve problems from examples. In practice, once
we have trained our model from data, we need to check that it ac-
tually generalizes well to previously unseen data (produces the cor-
rect answer). This is an essential step to ensure that our algorithm
is not just memorizing the data supplied during training. Different
algorithms and models have different generalization properties. The
number of parameters of model, the dimensionality of the data, the in-
dependence assumptions taken into consideration, etc. are just a few
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aspects that affect the ability of a PR method to be successful [Duda
et al., 2000, Bishop, 2006, Murphy, 2012].

1.5 Decision Theory

Decision Theory is the study of the reasoning underlying an agent’s
choices. In particular, Decision Theory is used to decide the optimal
strategy with respect some utility or loss function. Decision Theory
is deeply linked to Pattern Recognition. Notice that during the train-
ing phase of any PR method, the system has to decide the optimal set
of parameters, according to some optimization criterion (e.g. maxi-
mizing the likelihood function, or minimizing the least squares error).
Similarly, during the evaluation phase, the system hast to decide the
optimal values of the desired variables, according to some criterion
(e.g. minimize the expected classification error).

In this thesis, we will use Decision Theory to prove that the de-
veloped probabilistic framework is optimal for a broad set of criteria
typically used in KWS and many other IR application.

The simplest application example of Decision Theory is to solve
a binary classification problem. That is, given some object and two
classes (sometimes, also known as categories or labels), we need to
decide to which class this object belongs to. In any binary classification
problem there are four possible outcomes, which can be represented
by a 2 x 2 cost matrix (or, equivalently, a utility matrix).

In the context of KWS, given a query and some arbitrary object to
retrieve, the system needs to decide whether that object is relevant for
the query or not (i.e. whether it should be retrieved). Table 1.1 shows
the cost matrix, A, involved in the decision.

Because the truth about the relevance of the object for the given
query is unknown, we want to make a decision that minimizes the
expected cost of the outcome. Thus, we denote the relevance of an ob-
ject with a binary random variable, R. When the object is “Relevant”,
we assume that the value is R = 1. When the object is “Not relevant”,
the value of the variable is R = 0.
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Table 1.1. Cost matrix for the binary decision problem involved in Keyword Spot-
ting. For instance, Aj is the cost of classifying as “Not relevant” an object which
actually is “Relevant”.

Decision
Not relevant Relevant

Not relevant AT AV

Truth Relevant A 10 All

Since the definition of relevance depends on the object and the
query, in order to make the optimal choice we need to know the true
conditional probability P(R | X = x,V = v), where x and v rep-
resent the given object and query, respectively. If the relevance de-
pended on other variables, we would need to condition its value also
on them. Nevertheless, the following reasoning is independent on
the variables on which the value of R depends, thus we will drop the
conditions from the next notation.

The optimal value of the variable R (denoted with r*) that mini-
mizes the expected cost, is given by the Bayes decision rule:

r* = argminE[A,,]
refo1} "’
=argmin P(R = 0)Aos + P(R =1)Ap (1.1)
{01}

Here, r denotes the true value of the relevance variable, while #/
represents an hypothetical decision. Performing simple operations
on the previous expression we can derive a decision rule that depends
only on P(R = 1) and a single threshold value #:

. 0 P(R=0)Agp+P(R=1)A19 < P(R=0)Ann+P(R=1)A1
1 otherwise

_ Ao —A _
0 P(R=1) < mzay—an—np = 1 (1.2)
1 otherwise

A low threshold will likely rise the number of false positives (or
Type-I errors), since we will increase the number of objects assigned
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to the “Relevant” class. On the contrary, a high value of the threshold
will increase the number of false negatives (or Type-II errors), since
more objects will be marked as “Not relevant”. These two types of
errors play a crucial role in many quality measures used to evaluate
Information Retrieval systems (see chapter 3).






Probabilistic Keyword Spotting

In section 1.5 we briefly related KWS (and many other Information Re-
trieval scenarios) to a binary classification problem: to decide whether
a particular image is relevant for a given query. Note that even in the
segmentation-free scenario where the system has to retrieve all the
relevant positions within a candidate image, the problem can still be
formulated as a binary classification problem. The only difference is
that the concept of relevance is conditioned on the image x, the query
v, and a particular position, p, within the image.

Next, we will present in detail a probabilistic formulation of KWS,
which is one of the main contributions of this thesis. First, we will
study the concept of position-independent relevance, where we do not
care about the exact position of the spotted words within the image
regions considered. Then, the concept of position-dependent relevance
will be introduced for different types of positions. This will later be
used to tackle segmentation-free KWS, in such scenarios where the
system has to retrieve all the instances of the query words within a
unsegmented collection of images.

2.1 Position-independent Keyword Spotting

In this section, we assume that we aim to determine whether or not
the text specified by a given query, v, is written somewhere in a given
image x. For instance, the candidate image could be a segmented
word image, a text line containing several words, or a full text page
containing multiple text lines. Notice that we are not concerned on
the particular location of the queried text within the image, or whether
v is written more than once in the image. This definition of relevance
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can be expressed as:

1 v is written somewhere in x
def { (21)

0 otherwise

Notice that in the previous definition, the condition that needs to
be met to determine the relevance is not rigorously (mathematically)
formulated. Let w be the actual text depicted in the image x (i.e. its
unknown true transcript). When we say that “the text v is written
somewhere in x” we just understand that v is included in w. Observe
that, if the transcript of the image (w) is given, the concept of relevance
does not depend on the image itself, only on its transcript. Now, we
are able to rigorously define the concept of relevance.

o 1 — / /!
R|x,v = R|x,w,o = R|w,v def @ w?w (2.2)
0 otherwise

where v, w’,w” € ¥* are assumed to be sequences of symbols over
an adequate set, X, of linguistic units such as characters, syllables,
words, etc. For the sake of clarity, rather than writing w = w'vw"” we

will use w € L(v) & 5#5*, where L(v) will denote the language (i.e.
set of sequences) over X such that v is contained in all the sequences
of L(v):

e 1 €L
Rixv=R|wov & @ (U) (2.3)
0 otherwise

Following the decision theory framework described in section 1.5,
we aim to compute P(R = 1 | X = x,V = v) in order to decide
whether or not the image region x is relevant for the query v. Since the
relevance is defined in terms of the text written in the image, we will
need to marginalize over the variable W, representing the transcripts
of the image region x.

PR=1|X=xV=0v)= ) PR=1LW=w|X=xV=0)=
wex*
Y PR=1|X=xV=0o,W=w)PW=w|X=xV =0)
werx

(2.4)
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Recall that our definition of relevance® in eq. (2.3) is conditionally

independent on the image itself when the transcript is given. This
simply means that P(R | X, V,W) = P(R | V,W). In addition, we can
also assume that the transcript of an image is conditionally indepen-
dent on the query, when the image is given (i.e. P(W | X, V) = P(W | X)).
This assumption is actually true in practice, since users can perform
any kind of query, regardless of the text rendered in a particular im-
age. Using these two facts, the previous equation simplifies to:

PR=1|X=xV =0v)=
Y PR=1|V=o,W=w)P(W=w]|X=x) (2.5)

wer*

Now, we can split the sum over all possible w € X* into two dis-
joint sets, L(v) and £* — L(v) = {w:w ¢ L(v) }:

P(R=1|X=xV=0)=
Y, PR=1|V=o,W=w)PW=w|X=x) +
weL(v)
Y PR=1|V=0o,W=w)P(W=w|X=x) (2.6)
w¢L(v)

Finally, observe that from the definition of relevance in eq. (2.3)
PR=1|V =9W = w) = 1 for all the transcripts including
the queried text v (i.e. w € L(v)). Likewise, for all the transcripts not
including v this probability will be exactly zero. Thus, the relevance
probability is equal to:

PR=1|X=xV=0v)= ) PW=w|X=x) (2.7)
weL(v)

Up to this point we did not need to specify which is the concrete
set of linguistic units, X, used to represent both query text and tran-
scripts. A discussion about possible choices will appear in chapter 5,
along with corresponding developments and specific techniques for
each choice. Also, as will be discussed in chapter 7, all the above for-
mulation applies also for more complex queries where v is not just

1 Also used by virtually all KWS benchmarks.
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a single sequence of characters or words, but a set of sequences de-
fined by Boolean operators (AND/OR/NOT) or even general regular
expressions.

In the remaining of this chapter, however, we will assume that X
is a set of words and v consists in just a single word. This will per-
mit a more focused (and traditional) presentation, which allows for
an easier reading without entailing any loss of generality. Under this
assumption, fig. 2.1 illustrates the application of eq. (2.7) to a rather
extreme case where the underlying transcript of a text image is some-
how ambiguous.

LG 6( \/'L k - | CHES

all /1.0

not / 0.8 — roxes /1.0
_/
no /0.2 tall / 1.0 foxes / 1.0

Figure 2.1. An image with two possible transcripts. The two are: “not all foxes”
(probability 0.8), and “no tall foxes” (probability 0.2). They are represented by a
complete path through a weighted directed acyclic graph, depicted below the image,
and their posteriors are the product of the weights through the path.

On the one hand, the person that wrote the text may have in-
tended to write “not all foxes”, but she did not put enough space after
the word “not”. On the other hand, she perhaps intended to write “no
tall foxes” and forgot to leave enough space after the word “no”. In
any case, one might argue that the first transcript is more likely than
the second one, since the adjective “tall” usually refers to people, and
foxes are animals not particularly tall after all.

Given this premise, we can now compute the probability of rele-
vance of any given query word. For instance, for the word “tall” there
is only one transcript including this word, with probability equal to
0.2. However, notice that the word “foxes” is included in all possible
transcripts, thus the probability that the image is relevant for this key-
word is 1.0, which is equal to the sum of the posteriors of all possible
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transcripts of the image.

P(R=1|X =xV = “tall”) = 0.2
P(R=1]| X =x,V = “foxes”) = 1.0

2.1.1 WORD-SEGMENTED IMAGE REGIONS

In the particular case that the image region x represents a segmented
word image, then eq. (2.7) reduces to the posterior of the query key-
word v, given the word image.

PR=1|X=x,V=0)ZPW=0|X=x) (2.8)

This is due to the fact that L(v) = {v}, when the image regions
are assumed to contain a single word.

In this particular case, there is a direct equivalence between the
probability distributions used in word spotting and text recognition.
However, this is not true in the general scenario where x may contain
an arbitrarily large number of words.

2.2 Position-dependent Keyword Spotting

In this section, we will study the keyword spotting scenarios when we
wish to determine whether or not a given query keyword, v, is written
at a specific position of interest, p, within the image region x. This is es-
pecially useful when the image region x contains a significant amount
of text, such as a line or full page. Then, the user typically would ex-
pect the location of the spotted word within the image, and not only
to answer whether the image was relevant or not. As we mentioned
earlier, this is particularly required in the case of segmentation-free
KWS.

Notice that we are using the vector notation for the position, since
we could represent an arbitrary position. For instance, a position
could be just a pixel coordinate within the image x, or we could rep-
resent the left and right columns of a text line image (in these cases,
p € IN?). If the text image x contains multiple text lines we could
want to use word bounding box coordinates as positions (p € IN%).
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Finally, we could want to represent not a physical position within
the image, but a logical position within the transcript of the image
(p € N).

In particular, we will study three cases for the meaning of a posi-
tion p:

1. The position p € IN represents a column within a text line im-
age. In this case, we will just denote the position as c, instead
of using p. L. will denote the random variable representing the
column of interest.

2. The position p € IN? represents a segment (or interval) within a
text line image. In this case, we will assume that we work with
horizontally-oriented text and that (co, c1) represent the left and
right columns of the interval, respectively. L, will denote the
random variable over the segment of interest.

3. The position p € IN represents the logical position within the
transcript of a text line image. In this case, we will simply refer
to the position using the variable k. L, will denote the random
variable over the position of interest.

The reader should notice that we are assuming that the image x
represents a text line in all three cases. It is worth emphasizing that
these definitions could be easily extended to fully segmentation-free
scenarios (x representing a full page), but we decided to rely on the
line-segmentation assumption for practical reasons: modern meth-
ods for text line detection and segmentation are quite robust and it
is very common to work at this level when processing handwritten
documents.

2.2.1 RELEVANCE OF AN IMAGE COLUMN

In this scenario, we want to determine whether or not the query key-
word, v, is written in a particular column, c, of the text line image,
x. We will say that the word is written in a column of a text line, if
the bounding box of the keyword representation includes the column.
Figure 2.2 gives a clear example to better understand the idea.
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s

yre\ Ve \/CL LeHeES

Figure 2.2. Example showing two relevant columns (c; and c3) of the given image
and the query keyword “foxes”, and a non-relevant column (c1). Intuitively, any
column of the image belonging to the bounding box of the keyword within the image
will be relevant.

We can capture this intuition in a more formal statement:

R|x,0,¢c =

def {1 v is written at column c of the line image x (2.9)

0 otherwise

As we did in the previous section, we need to formalize slightly
better this definition, in order to express in mathematical notation
what we mean by “a word is written at a column”.

In the previous section, where we did not care about the location
of the words depicted in the image, we only needed to introduce a
random variable W to represent the actual text written in the image.
Nevertheless, notice that the transcript can be aligned in many differ-
ent ways to each column of the image.

Alignments can be represented in many different ways, depend-
ing on the constraints over them. For instance with one additional
random variable A, over sequences of natural numbers, we can repre-
sent the initial column of each word in the transcript w = wy, ..., wy,
of the text line image.

Suppose that the transcript of the given text line x is given by the
sequence W = Wy, = Wy, ..., Wy, and the initial column of each word
in the transcript is given by the sequence ay.,41 = a1, ..., a,, C. Notice
that in order to simplify the definitions and equations, we are assum-
ing that the sequence of columns representing the alighment, has an
extra element at the end which is always equal to the total number
of columns, C. This allows us to fully formalize the definition of rele-
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vance of a given query keyword, text line image, and column:
R|x,v,c=

1 Elk:wk:v/\akgc<ak+1

R|v,c,wiy, a1ye1 = { (2.10)

0 otherwise

Now, we are able to give an expression for the relevance probabil-
ity of a column, by marginalizing over the random variables W and A.
In the following equations, the random variables will be dropped in
order to simplify the notation. As an illustration, we would simplify
the probability P(R=1|X=xV =v,L: =c) as P(R=1]x,9,¢),
since the symbols representing the values that the random variables
take are enough to identify the corresponding random variables.

PR=1|X=xV=u,Lr=c¢)=
)y Y P(R=1|x0,¢win a101)P(Win, 1011 | %,0,¢)

Wy, EXF A1:41 €INn+l

(2.11)

First, as we did in the development of the previous section, we
must notice that the relevance does not depend on the image itself
when the transcript of the text line and its alignment are given. Like-
wise, the transcript and its alignment only depend on the image itself,
and not on the query keyword and column that the user may be inter-
ested in. Thus, the equation above simplifies to:

PR=1|X=x,V=u,L=c¢)=
) Y. P(R=1]|0,¢wyn a1ns1)P(Wrin, a1t | x) (2.12)

w1, €XF A1:p+1 S\t

Finally, we can split the sums into two subsets: the set of tran-
scripts and alignments for which eq. (2.10) is equal to 1, and those for
which it is equal to 0. Thus, the expression is simplified to:

P(R=1|X=xV =0,L =c) =
Z Z P(W = Wiy, A = a1:n+41 | X = .’Xf) (2.13)

W1y EE*,EIk: a1:n+1€]N”+1:
Wk=Y ge<c<agiq
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In short, this is the sum of the probability of all transcripts and
alignments such that the transcript includes the word v at some posi-
tion, and the alignment of that word includes the column c.

Now, we can use this equation to plot a “heat-map” on top of the
text line image, representing the probability that the given keyword is
written in each column of the image. For instance, let’s consider again
the example depicted in fig. 2.1. However, this time, the weighted
directed acyclic graph will not only represent the transcripts of the
text line image, but also their possible alignments.

Figure 2.3 shows the same example image as before, with the heat-
map for the query keyword “all” superimposed, and the new graph
with the transcripts, their probabilities (words and weights in the
edges), and (some of) the alignments of these (represented by the start
column, depicted at each node of the graph). Notice that this is a very
visual way to report the location of the spotted word to the user.

not / 0.1

Figure 2.3. Heat map representing the relevance probability of the image columns
for the query keyword “all”. The heat-map was computed using the probability
distribution over the transcripts and alignments of the image, P(W, A | X = x), rep-
resented by the weighted directed acyclic graph (words and numbers in the edges
represent transcripts and probabilities, and the numbers in the nodes represent the
alignment). Columns with high probability are filled with blue, and those with a
low probability are filled with red. For instance, all columns between the 31st and
the 58th have a relevance probability equal to 0.8.
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According to eq. (2.13), in order to compute the relevance proba-
bility of an image column, ¢, for a given keyword v, we need to sum
the posterior probability of all alignments (i.e. paths in the graph)
where the word written on top of column c is equal to v. In the figure
above, let’s consider the 45th column (the procedure for any column
in the range [31,58) would be identical and yield the same result),
and let’s consider the keyword “all”.

There are four edges in the graph that traverse the 45th column.
We will denote each edge by the tuple (start state, end state, word,
probability). For each of them we will compute the total posterior
probability mass due to this edge, that is the sum of all paths through
each of them.

(28,58, all, 0.7), with total probability 0.7 - 0.7 - 1.0 = 0.49.

(28,64, all,0.3), with total probability 0.7 - 0.3 - 1.0 = 0.21.

(31,64, all,0.3), with total probability 0.1-0.3 - 1.0 = 0.03.

(31,58, all, 0.7), with total probability 0.1-0.7 - 1.0 = 0.07.

Thus, the relevance probability of this column, for the keyword
“all” is 0.8 (the sum of the four paths), as shown in the figure.

2.2.2 RELEVANCE OF AN IMAGE SEGMENT

In the previous section, we presented a probability distribution that
allowed us to draw a “heat-map” in order to represent the location of
the spotted words, for a given query. In this section, we will present
an alternative distribution which is more useful in practice, when one
wants to build a search index of the terms written in a collection of
text lines.

In this section, we aim to determine whether or not the query key-
word, v, is written exactly at a particular segment of the text line x,
delimited by columns ¢y and c; (i.e. it starts at column ¢y and ends
at ¢ of the text line image). Intuitively, we want our definition of
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relevant to be:

def | 1 v starts at column ¢y and ends at ¢ of x
R |x,v,c0,c1 =

0 otherwise
(2.14)

In order to properly define this concept, we will need to represent
the alignments of the transcripts with the text line image, as we did
in the previous section. Thus, we will use again the random variable
A to represent the alignment of the transcript. A is a random variable
over sequences of columns, ay.,41 = a1, ...,a,,C.

R|x,v,¢c0,c1 =

def 1 Elk:wk:v/\ak:co/\akﬂzcl
R | v,co,c1, Wi, A1:ns1 = .
0 otherwise

(2.15)

Observe that we are imposing the constraint in the definition that
the k-th word in the transcript must be equal to the query keyword,
and it’s alignment must start and end exactly at columns ¢y and c; of
the text line image.

Following the same steps as in the previous section, one arrives to
the next expression, which is used to compute the relevance probabil-
ity of a text line segment.

P(R=1|X=x,V=9,L, = (cp, 1)) =
)y ). P(W = wi.p, A = 11 | X = x) (2.16)

wl%]fi*z;ﬂk: 111 eNnt+lL

Ap=Co/N\j4+1=C1

Notice that we can compute eq. (2.13) (i,e. P(R = 1 | x,9,¢)),
from eq. (2.16) (i.e. P(R = 1| x,9,¢p, ¢1)) by summing the relevance
probability of all segments that contain the column c. In addition, the
relevance probability introduced in this section allows us to extract
other useful information like how many instances of a given query
keyword are written in the given text line.

Following the example in fig. 2.3, we could retrieve the segments
where the word “all” is likely to be written, and their probabilities.
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Table 2.1. Possible horizontal segments where the word “all” is written in the exam-
ple depicted in fig. 2.3.

Term Segment Probability

all 28-58 0.49
all 28-64 0.21
all 31-58 0.07
all 31-64 0.03

2.2.3 RELEVANCE OF A TRANSCRIPT POSITION

In the previous section we introduced a relevance probability of a
text line segment, which we could use to tell whether or not a given
segment of a given text line is relevant for the given query keyword.
Nonetheless, from table 2.1 one can notice that multiple alignment
possibilities for the same word instance can dilute the total probability
mass.

Intuitively, we would like to provide the user with the multiple
instances of the keyword within the text line, with their best (or ex-
pected) alignment (i.e. segment).

In order to do so, one could try to sum the probability of all the
overlapping segments. And then, keep the interval with the high-
est probability Nevertheless, this may become problematic since it is
possible that multiple instances of the same word appear in the text
line with some overlapping segments. Figure 2.4 highlights this prob-
lem using (part of) a famous proverb from the Greek philosopher Par-
menides of Elea (born circa 515 BC).

As a better alternative, in this section we propose a new relevance
probability conditioned on the text line x, the query keyword v, and
the logical position within the transcript sequence. Intuitively, we want
to decide whether or not the k-th word (word at position k) of the
text line depicted in the image x is relevant for the query v. Thus,
intuitively, we could define this concept of relevance as:

R|x0 k% (2.17)

gef | 1 v is the k-th word in image x
0 otherwise
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hat / 0.6

Figure 2.4. Example showing that multiple instances of the same keyword (e.g.
“that”) may have overlapping segments. Notice that the instance of the word “that”
in the interval 0-33 overlaps with another instance of the same word in the interval
31-62. The set of hypotheses includes also other transcripts like “Hat that is is” or “t
hat that is is”. Punctuation marks are excluded to simplify the graph. Although the
example seems artificial, it comes from Parmenides’ proverb: “That that is, is. That
that is not, is not.”.

Yet, in order to properly define it we need to use the transcript
of the text line w, represented as a sequence of words w = wy.,, =
w1, ..., Wy, as we did in the previous sections.

def 1 Ek:wk:v

Rlx,v,k=R| vk wy, = 2.18
| | L 0 otherwise ( )

In order to compute P(R =1 | X =,V = v, L, = k), we marginal-
ize over the variable W, representing the transcript of the text line x,
and we obtain:

PR=1|X=x,V=u,Lc=k)=
Y. P(R=1]x0kwyy)P(wy, | x,0,k) =
wl:nGZ*
Y. P(R=1]v,kwiy)P(wr, | x) =
wl:nGZ*
Y, PW=wy, | X =1x) (2.19)

Wy ex*, 3k:
Wr=0v
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In short, we need to compute the sum of the posterior probability
of all transcripts of the text line x, wy., such that the query keyword,
v, is present at the k-th position of the transcript.

As an illustration of the differences between the relevance prob-
ability of the segments, presented in section 2.2.2, and the one pre-
sented above, refer to table 2.2. This example shows some of the rele-
vance probabilities that would be computed from fig. 2.4, using both
eq. (2.16) and eq. (2.18), for the query keywords “that” and “is”. In
the case of the relevance probability for word positions, the expected
value of the segment is also shown. Here, the differences are signifi-
cant. However, it will be shown later that they are much smaller in
practice. This is due to the fact that the statistical models used and
the algorithms that adjust their parameters, tend to assign most of
the probability mass to the most likely alignment.

Table 2.2. Example highlighting the differences between the relevance probabilities
computed according to eq. (2.16) (left) and eq. (2.18) (right). Observe that the prob-
abilities of the word segments are much sparse than that of the word positions. In
addition, notice that one could not directly sum the probabilities of overlapping seg-
ments, since the possible intervals of different segments may overlap. The expected
value of the interval is also shown for the word positions probabilities. Observe that
all paths contribute to the pair (“is”, 4) since all possible transcripts contain the word
in that position.

Term Segment Prob. Term k Prob. [E[Segment]
that 0-31 0.35 that 1 0.85 0.0-32.2
that 0-33 0.5 that 2 095 32.1-62.0
that 31-62 047 that 3  0.05 32.2-62.0
that 3362 053 i 3 095  62.0-789
is 62-78 0.7 is 4 1.0 78.1-98.9
is 62-81 0.3 is 5 0.05 78.9-100.0
is 78-100 0.7

is 81-100 0.3

2.3 Query-by-example paradigm

Traditionally, as we already mentioned in section 1.2.3, many researchers
in the field focused on the query-by-example (QbE) paradigm, where
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the query is not presented to the system as a given string, but as an
example image. In the previous probabilistic formulation, however,
we assumed that the keyword v was given as a discrete symbol in a
vocabulary (or a sequence of discrete symbols in an alphabet).

Nevertheless, we can still derive a proper probabilistic formula-
tion for query-by-example. The key step is to introduce an additional
random variable, V, which represents the actual keyword written in
the query image, y. In the QbS case, the value of V is given, but in the
QDbE its value is hidden.

2.3.1 POSITION-INDEPENDENT KEYWORD SPOTTING FOR QBE

Next, we will derive a form for the relevance probability when a text
region image, x, and a query image, y are given. That is, we will
derive an expression for P(R =1 | X = x,Y = y). In particular, this
expression will make use of marginalization over all possible values
of the hidden random variable V.

PR=1|X=xY=y)=
Y PR=1[X=xY=yV=0)P(V=0|X=xY=y) (220)

vEL*

Now, we can safely assume that transcript (v) of the query image
does not depend on the text image region x, only on the query image
itself, y. Likewise, the relevance of a pair of images only depends
on the transcript of these images, and not on the images, themselves.
Thus, by marginalizing P(R =1 | X = x,Y = y,V = v) among all
possible transcripts w of the text region x, we get:

PR=1|X=xY=y)=
Y. Y P(R=1|V=oW=w)P(W=w|X=x)P(V=0|Y=y)

vEXF weX*

(2.21)

As discussed earlier, observe that, applying the definition of rele-
vanceineq. (2.3), P(R=1|V =9, W = w) = 1 for all the transcripts
that include the query keyword v (i.e. w € L(v)). Likewise, for all
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the transcripts that not include the keyword this probability will be
exactly zero. Thus, the relevance probability is equal to:

PR=1|X=xY=y)=
Y. ) PW=w[X=x)P(V=0|Y=y) =

veX* wel(v)

Y P(V=ou|Y=y) ) PW=w|X=x)=

veEX* weL(v)
Y P(V=v|Y=y)P(R=1|X=xV=0) (2.22)
veX*

This equation implies that in order to compute the relevance prob-
ability in the query-by-example scenario (i.e. given a text image re-
gion x and a query image y), we simply need to compute the sum of
the query-by-string relevance probabilities, for all possible transcripts
of the query image, weighted by their posteriors.

2.3.1.1 Word-segmented image regions

The previous equation takes an even simpler expression when both x
and y contain a single word, which is the case for traditional word-
segmented query-by-example KWS. Recall from eq. (2.8) that in a
word-segmented query-by-string KWS scenario, the relevance proba-
bility is equivalent to the word posterior of the given query string.
On the other hand, in the query-by-example scenario, we marginalize
over all possible values of V:

PR=1|X=xY=y)= ) P(V=0|Y=y)P(W=0|X=x)
veL*
(2.23)
This is because, since we assume that the images contain individ-
ual segmented words, L(v) from eq. (2.22) can only contain one ele-
ment: v (i.e. L(v) = {v}).

2.3.2 POSITION-DEPENDENT KEYWORD SPOTTING FOR QBE

The other relevance probabilities conditioned on some position that
were presented in section 2.2 can also be (trivially) adapted to the
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query-by-example scenario using the same marginalization approach.
In summary, the position-dependent relevance probabilities under
the query-by-example paradigm are:

e Relevance of an image column:

PR=1|X=xY=y L =c)=
Y P(V=v|Y=y)P(R=1|X=x,V=0,L=c) (2.24)

veX*

(A)

e Relevance of an image segment:

PR=1|X=x,Y=y,L,=(co, 1)) =

Y P(V=v|Y=y)P(R=1|X=x,V=0,L,=(co,c1)) (2.25)
vex*
(B)

e Relevance of a transcript position:

PR=1|X=xY=y,Lc=k) =
Y P(V=v|Y=y)P(R=1|X=xV=0v,Lc=k) (2.26)

vEL*

©

Where (A), (B) and (C) are defined as in egs. (2.13), (2.16) and (2.19),
respectively.

2.4 Segmentation-free spotting using position-dependent rel-
evance

So far we have assumed that the text region x encloses a segmented
word, or more generally, a segmented text line. As we mentioned
in the introduction, most publications in the field of KWS for hand-
written documents actually fall in these two scenarios. However, one
must not forget that our final goal is to be able to search through entire
collections of documents with no manual segmentation of either the
individual words or text line instances. Thus, the remaining question
is: how can we address the problem of segmentation-free spotting?
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Typically, two approaches are followed to address this: (a) one
could use a sliding window approach with word-shaped or text line-
shaped windows and then apply the previous methods in each of the
windows, or (b) one could try to automatically detect and segment
the interesting text regions from the page images.

Observe that the first approach, although more general, entails an
enormous amount of computation, since the number of potential text
regions to consider quickly explodes, particularly when considering
large documents. Instead, we propose to use automatic (text line) seg-
mentation of the pages, and then use our probabilistic methods in the
segmented lines.

Most publications aiming at segmentation-free KWS want to ob-
tain the bounding boxes of all the instances of a given keyword within
the pages of our collection of documents. That is, the retrieved objects
are individual word instances of the given query keyword. Notice
that, once the text line has been segmented, the methods described
in sections 2.2.2 and 2.2.3 can extract the location of the keyword in-
stance(s) within the text line. With this information, and the location
of the text line within the page image, it is trivial to obtain the bound-
ing box of the spotted word within the page image. Actually, we have
performed experiments using this approach (see section 8.8), in com-
bination with our probabilistic framework.

Observe, that this is not the only possible retrieval goal. For in-
stance, in [Villegas et al., 2016b], the goal was to retrieve relevant seg-
ments from a collection of documents, where a segment is a collection
of 5 sequential text lines. Retrieving relevant segments was important
because the queries could be formed by multiple keywords, similar
to the popular Boolean or “phrase queries” in traditional Information
Retrieval, and it is unusual that all words are written in the same text
line. Nevertheless, we could still automatically segment the text lines
and then compute the value of P(R=1| X =x,V =v), where x repre-
sents the full segment.

Finally, it is worth mentioning that the relevance probability de-
scribed in section 2.2.1 can be used to obtain a “heat-map” over the
full text page. The idea is essentially the same as in fig. 2.3, but we
obtain the text lines using a sliding window approach, which gives
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visually appealing results as shown in fig. 2.5. This figure shows a
two-dimensional heat-map over a page segment, for the query key-
word “matter”.

Figure 2.5. Relevance probability heat-map over a page fragment. The heat-map was
computed using eq. (2.13) and a sliding window over the page image. Pixels where
the keyword “matter” is written have a higher relevance probability than others.
Observe that the model can distinguish properly similar words to the query (such as
the plural “matters”).

In short, the probabilistic framework presented in this chapter
can be used to tackle different scenarios where Keyword Spotting is
applied: from word-based segmentation to fully segmentation-free
KWS, for both query-by-string and query-by-example paradigms.

2.5 Relationship among position-dependent and independent
relevance

We have introduced several relevance probabilities concerning differ-
ent types of objects that a KWS system may find useful to retrieve as
results of a query.

1. P(R=1| X =,V = v) could be used to retrieve any type of
text image region, depending on what x represents: individual
segmented words, text lines, paragraphs or full pages.

22P(R=1| X =x,V = 9,Ly = ¢) could be used to retrieve
individual columns within a text line image.
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3. P(R=1]| X =xV =09,L; = (co,c1)) could retrieve word
segments within a text line image.

4. P(R=1| X =x,V =v,L, = k) could retrieve word positions
within a text transcript from an arbitrary text image region (ei-
ther a text line, or a paragraph, as long as its transcript admits a
sequential representation).

One might wonder what is the relationship between the different
probabilities presented. Or, even more practical, how can we use one
of them to approximate or bound another relevance probability.

For instance, suppose that we are designing a KWS system that
has to retrieve relevant text lines given a query keyword. Then, the
obvious choice would be to use P(R=1|X=x,V=v), with x repre-
senting an individual text line. However, if we want to show the user
where the keyword was spotted within the text line, we need to use a
different probability to get, for instance, the segment with the highest
relevance probability (i.e. P(R=1|X =x,V =v,L, = (co,c1))). How-
ever, these two probabilities answer two different questions. But, can
we use one to address the other with some guarantees?

In this section we will study the relationship between the rele-
vance probabilities introduced in the previous section. We shall see
that several upper and lower bounds can be established among them.

2.5.1 FRECHET INEQUALITIES

As we mentioned in section 2.1, P(R=1| X =x,V =v) represents the
relevance probability independently of any position of interest, while
the rest of relevance probabilities are conditioned on different types
of locations (columns, column intervals, or word positions).

Now, let’s assume that we are dealing with an arbitrary enumer-
able type of location?, represented by the random variable L. Then,
we can interpret the position-independent relevance probability as a

2Notice that all the types of positions described in section 2.2 are actually enu-
merable and finite for a given image (although the set of possible locations may be
very large).



2.5.1. FRECHET INEQUALITIES 39

disjunctive probability over all possible locations. That is, the position-
independent probability is equal to the position-dependent probabil-
ity of the first location, or the second, or the third location, etc.

Indeed, recall that the position-independent relevance definition
was:

df |1 ©is written somewhere in x
R|xv =

0 otherwise

which is equivalent to:

,

v is written at position /; of x
v is written at position I, of x
def 1

R | X, 0 = . . ..
v is written at position /,_1 of x

v is written at position /,, of x

0 otherwise

Figure 2.6 shows a simplification of the generic position-independent
and position-dependent KWS scenarios. In the figure, the big box rep-
resents the whole image region, x, which contains three different lo-
cations I, I and /3. In each location, the possible transcript of each
location is represented by the colored circles and their probability is
represented by the fraction of circles of a given color. For instance, in
the first location the probability of the word “blue” is equal to %.

For the sake of simplicity, in the example we will assume that the
transcript of each location is independent of the others. Thus, the
transcript of each location would be given by selecting a circle in each
box. However, it is extremely important to realize that this indepen-
dence assumptions is obviously false in real scenarios. For instance,
when the positions represent columns of an image, the word aligned
to neighbor columns is obviously not independent. Likewise, when
the positions represent segments of the image, the text aligned to over-
lapping and contiguous segments is also not independent.

Now, back to fig. 2.6, we might wonder what is the relevance
probability of the word “blue” in a specific location. For instance,
P(R=1|X=x,V="blue”,L=1I;) = P(W="blue” | X=x,L=1;) = .
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i ) I3

Figure 2.6. Example of the relationship between position-independent and position-
dependent relevance probabilities. A text region is represented by the biggest box,
x, and several positions within the region are presented by the smallest boxes (i.e.
1, Iy, and I3). The circles inside each box represent the possible transcripts of
the corresponding position. Thus, the probability that the first position is rele-
vant for the query “blue” is equal to P(R = 1| X = x,V = “blue”,L = I;) = . How-
ever, the probability that the whole region is relevant for the query is equal to

P(R=1|X=xV ="blue”) = ‘% ~ 0.7. The Fréchet inequalities tell us that

3=05<P(R=1|X=xV="blue”) < 2 ~08.

Likewise, the probabilities P(R=1|X=x,V="blue”,L=1) = 1 and
P(R=1|X=x,V ="blue”,L=1I) = 2.

On the other hand, according to our position-independent rele-
vance, P(R=1| X=x,V ="blue”) is the probability that the transcript
of at least one box is equal to “blue”. This is equal to one minus the
probability that none of the boxes’ transcripts is equal to “blue”. Thus,
P(R=1|X=x,V="blue”) =1-2.2.3 =2 ~0.7.

In our particular example, the position-independent relevance prob-
ability can be computed easily from the position-dependent ones, be-
cause we assumed that the transcript of each position was indepen-
dent from the others. When this assumption does not hold, one can
use the Fréchet inequalities of the logical disjunction [Fréchet, 1935] to
find bounds for the position-independent relevance.

In general, given a set of logical propositions {A; : 1 < i < n}
(e.g. the i-th position of x is relevant for the keyword v), the Fréchet
inequalities [Fréchet, 1935] are:

o Inequalities of the logical disjunction:

max P(A;) < P(A;V---VA,) <min{l,)_P(A;))} (227

1
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¢ Inequalities of the logical conjunction:

max{O,ZP(Ai) —(n—=1)} <P(AiN---NAy) <minP(A;)

1

(2.28)

In our particular scenario, for any position-dependent and position-
independent probability distributions, eq. (2.27) implies that:

mlaxP(R:1|X:x,V:v,L:l)§
PR=1|X=xV=0)<

min{l,ZP(RzlyX:x,Vzv,L:Z)} (2.29)
1

In fact, the lower bound on the relevance probability has already
been used in previous Keyword Spotting systems, as an heuristic to
compute relevance scores for text lines [Toselli et al., 2013, Toselli et al.,
2016b, Toselli et al., 2016a].

Figure 2.7 shows the relationship among the different relevance
probabilities introduced earlier. Fréchet inequalities give different
lower bounds for P(R =1|X = x,V = v). In addition, theorem 2.1
sketches a proof for the relationship between the column and the seg-
ment probabilities.

P(R=1|X=xV =0)
maxj < max, <

’P(Rzl|X:x,V:v,LK:k)HP(R:1|X:x,V:v,LT:c)‘

maxcg,,, < maxc

’P(Rzl | X=xV=0L,= (Co,Cl))‘

Figure 2.7.  Diagram of the relationship among the different relevance prob-
abilities for a fixed text image x and keyword v. The inequalities should be
read in the direction of the arrows, e.g. maxy P(R=1|X=xV =0v,Lc =k) <
P(R=1|X=xV =0).
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Theorem 2.1. For a given text image x and keyword v, the highest relevance
probability among all segments is lower than or equal to the highest relevance
probability among all columns.

maxP(R=1|X=x,V =19,L, = (¢, c1)) <

Co,C1

maxP(R=1|X=xV =0,L; =¢)

c

Proof sketch. Let’s consider the segment (co, c1) with the highest rele-
vance probability for a fixed text image x and query keyword v.

According to eq. (2.16), P(R=1|X=x,V=1v,L,=(co, c1)) is equal
to the sum of the probability of all possible transcripts of x such that
the keyword v starts at column ¢y and ends at c;.

Similarly, P(R=1|X =x,V =09,L; = ¢) is equal to the sum of
the probability of all possible transcripts of x where the keyword v is
written in a segment containing the column ¢ (see eq. (2.13)).

Now, suppose that a segment (c, ¢} ) overlaps with (co, c1), where
the keyword v is also written. For all columns in the overlapping
region , their relevance probability will be greater than that of the
individual segments (see eq. (2.13)). And, obviously, their relevance
probability is lower than or equal to the maximum among all columns.

O



The Probability Ranking
Principle

3.1 Ranking multiple relevant images

In the previous chapter we introduced different relevance probabili-
ties that we used to decide whether or not a given image region (or a
position within an image region), is relevant for the given query. As
we already saw in section 1.5, these probabilities allow a KWS system
to make the optimal decision under some binary classification loss.

In reality, the actual loss function depends on the user querying
the system. Thus, a given system should be able to perform well un-
der multiple of these losses. Thankfully, as we saw in section 1.5, a
binary classification loss can be expressed simply as a threshold value,
that the user would set according to her preferences.

This means that evaluating the performance of a given KWS un-
der multiple binary classification losses, is equivalent to evaluating
the quality of the ranking that such system produces for a given list
of documents and queries. In fact, this is how users actually interact
with traditional Information Retrieval systems, such as web search
engines.

Thus, we need to decide what is the optimal strategy to rank the
set of documents for a given query (or set of queries), so that some
criterion is optimized (maximized, or minimized).

A very well known strategy in the field of Information Retrieval to
tackle this problem is the so-called Probability Ranking Principle, origi-
nally formulated by William S. Cooper, and published in [Robertson,
1977]:
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If a reference retrieval system’s response to each request is
a ranking of the documents in the collection in order of de-
creasing probability of relevance to the user who submit-
ted the request, where the probabilities are estimated as
accurately as possible on the basis of whatever data have
been made available to the system for this purpose, the
overall effectiveness of the system to its user will be the
best that is obtainable on the basis of those data.

In the following section, we shall see that this principle is actually
optimal for a wide range of quality measures as long as the following
assumptions are met:

1. The relevance of a given object and query is independent of
other objects and other queries. That is, the joint distribution
of conditional relevance probabilities factorizes in:

N
P(Ry,...,RN | X1, o, XN, Vi, oo, V) = [ [ P(Ri | X, V)
j=1

1

2. The true relevance probability is known for all objects and queries
in the evaluation set. That is, given an evaluation set { (;, x;, v;) :
1 <i < N}, then:

i | xi,vi~P(R; | X =x;,V = v;)

Notice that position-dependent KWS and other IR instances, where
the relevance is conditioned on more variables, are also represented
by the previous assumptions, if one considers the random variable V
to be defined over the Cartesian product of all the underlying vari-
ables.

Luckily, the first assumption holds in virtually all the existing Key-
word Spotting benchmarks. Yet, it may be false in other IR applica-
tions. The second assumption, however, is never correct, since the
true distributions are unknown, and have to be estimated from data.

During the development of this chapter we will use the term “re-
trieved objects” to emphasize that our results apply to any IR system
where the aforementioned assumptions hold.
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3.2 Evaluation measures and optimality

When stating that a certain strategy (i.e. decision rule) is optimal, one
needs to state with respect to which criterion that optimality holds.
And, of course, then one has to prove it. However, all papers that we
could find that refer to the “optimality” of the PRP cite the original
publication [Robertson, 1977]. Yet, this work only proves that the PRP
is optimal under the binary classification scenario (0-1 loss) presented
in section 1.5, and for two of the most basic retrieval quality measures:
the Precision-at-k and Recall-at-k.

In this section, several popular measures to evaluate the quality
of a ranking system are introduced, and we prove that the PRP is
the optimal strategy with respect to all of them. More specifically, we
present alternative proofs regarding the Precision-at-k and Recall-at-k,
and, more importantly, we present proofs of the optimality with the
very popular Average Precision and Discounted Cumulative Gain
(for both unnormalized and normalized versions).

In all cases, the proofs show that the PRP maximizes the expected
value of the corresponding measure. Following the principles of De-
cision Theory, we need to optimize this value since the true relevance
of each retrieved object for the respective query is unknown.

Given an ordered list of N elements, we will denote the relevance
of the element at position i with the random variable R;. Thus, the
sequence of random variables for the N elements is Rj, ..., Rn.

Note that each element refers to some retrieved object for some
particular query. Thus, in the context of KWS, the relevance prob-
ability of the i-th element in the list would be conditioned on the
corresponding image, keyword (and position within the image, in
position-dependent scenarios). Despite that, we will drop the con-
ditioned variables from the notation, for a clearer presentation.

The procedure to complete all proofs is almost identical: first, we
will derive an expression for the expected value of the corresponding
quality measure, and then we will show that such expected value can
increase as long as the ranked list is not ordered in decreasing order
of the relevance probability.
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3.2.1 PRECISION-AT-k

Definition 3.1. Precision-at-k of a ranked list, sometimes abbreviated
as P@k, measures the fraction of the k-top retrieved elements that are
actually relevant.

d_

k
m(Ry,...,Ry 3 2 (3.1)

One can easily compute the expected value of the P@k, taking into
account the independence assumption on the relevance probabilities,

i.e. P(Rl,. ..,RN) = Hz‘P(Ri>:
N k 1 k
E [ (Ry,..., Ry :EZ EEP(RZ- =1) (3.2)
i=1

Theorem 3.1. A sequence of elements ordered by decreasing relevance prob-
ability (ie. P(R; = 1) > P(R; = 1),1 < i < j < N) maximizes the
expected value of the Precision-at-k, for any cut-off 1 < k < N.

Proof. Notice that for any given k, any set of k results with the largest
sum of P(R; = 1) maximizes eq. (3.2). Thus, by sorting the N re-
sults according to its decreasing relevance probability, the k-top re-
sults maximize eq. (3.2) for any possible value of k. O

3.2.2 RECALL-AT-k

Definition 3.2. Recall-at-k of a ranked list, sometimes abbreviated as
R@k, measures the fraction of all relevant elements that are found in
the k-top of the retrieved list.

0 T(Ry,...,Ry) =

3.3
T(R1,..., RN Z R; otherwise (3.3)

pk(Rll"'/RN)d:d{

where T(Ry,...,Ry) is the total number of relevant elements in the
sequence Ry, ..., Ry.

N
T(Ry,...,Rn) = YR (3.4)
i=1
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In the previous definition, we chose to express T as a function
of Ry,...,Ry to highlight the fact that T is also a random variable
whose value depends on those. For the sake of clarity, we will just
write T to refer to T(Ry,...,Ry). and T to refer to the number of
relevant elements among the top-k of the retrieved list. Following
this notation, an alternative definition of Recall-at-k and Precision-at-
k would be:

def )]0 T=0 def Tk def
Pk {TTk otherwise = ¥ k Tk ; K (3.5)
The calculation of the expected value of the Recall-at-k is slightly
more tedious than for the Precision-at-k. The reason is that the de-
nominator does not factorize with respect to the expectation, since it
is not a constant in this case. However, we can use the law of total ex-
pectation to marginalize the expected value into a sum of conditional
expectations.

E [Pk(er---/RN)] = ZP(T = f)IE [Pk(er---/RN) | T = t] (36)

Now, the value of T is constant within each conditional expecta-
tion. Also, by definition, when T = 0, the Recall-at-k is always 0
(hence, it does not depend on the ranking). Finally, using the linearity
of the conditional expectation, the previous equality can be rewritten
as:

N P —
]E[pk<R1,..., = Z IE

t 1

iR,]T_t]

k

=1
N
Z Z]ER|T_t

i=1
N P(T = t)

)

t=1

T¢(Ry,...,Ry | T=1) (37

With Tx(Ry,...,Ry | T = t) defined as the expected number of rel-
evant elements within the top-k positions when the total number of
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relevant events is t.

k
Te(Ri,...,Ry [ T=HE Y E[R; | T =] (3.8)
i=1
When the sequence of relevant events can be inferred from the con-
text, we will simply write it as Ti(#). It is important to emphasize that
this quantity is different from T}, which is not an expected value, but
a random variable.

Lemma 3.2. Given a ranked list with relevance variables R4, ..., Ry, and
a cut-off position k, if we swap any pair of elements at positions | and m, for
any value of 1 <1 < kand k < m < N, the difference in Ty(t) is equal to:

P(Rj=1)—P(Ry,=1)
For any value of 1 <k < Nand1 <t < N.
Proof. Let’s suppose that the relevance variables of the original and
the swapped sequences are, respectively, Ry,..., Ry and R}, ..., R},

such that R; = R, R, = Rjand R; = R}, Vi ¢ {I,m}. We will use Tj
and T} to denote the expected value of Ty (t) and T[(t), respectively.

Thus, for the first sequence we have:

k
To=Ti(Ry,...,Ry | T=1) =Y E[R; | T=1t =
i=1

N

—1
]ER|T_t+JE[RZ\T_t+ZIERyT_t] (3.9)
i=1 i=l+1

Taking into account that the two sequences only differ at positions
l and m, and that T = T’ (i.e. the total number of relevant elements is
identical), we have the following expression for the second sequence:

T =Te(R,,...,Ry | T' =t) =
]—

—_

k
E[R} |T'=H+ER)|T'=t]+ Y E[R}|T' =t] =
i=l+1

Ing

—
—_

—1 k
ER;|T=t]+E[Ry|T=t+ ) E[R|T=¢t  (3.10)
i=1 i=l+1



3.2.2. RECALL-AT-K 49

Note that the expressions for T and Tk/ are almost identical, ex-
cept for the I-th position. The difference of the two is:

Ti—Ti =
E[R |T=t—E[Ry|T=t=
P(Ri=1)E[l|T=tR =1 —P(Ry =1)E[1|T=tR, =1]=
(3.11)
P(R;=1)—P(Ry=1)
(3.12)

The equality in eq. (3.11) holds under the assumption that the rel-
evance probability of an object and query is independent of the oth-
ers. O

Theorem 3.3. A sequence of elements ordered by decreasing relevance prob-
ability (ie. P(R; = 1) > P(R; = 1),1 < i < j < N) maximizes the
expected value of the Recall-at-k, for any cut-off 1 < k < N.

Proof. Let’s suppose that the relevance variables of the original se-
quence are Ry, ..., Ry, and those of the modified sequence are R}, ..., R},
such that R; = R;,, R,y = Rjand R; = R}, Vi ¢ {I, m}.

Following eq. (3.7), the expected values of the R@k, for both se-
quences, are:

Y p(T=t
r=) (t)Tk(Rl,...,RN | T =t) (3.13)
t=1
N /
pk’:ZP(Tt_t)Tk( L Ry T =1) (3.14)
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Taking into account that T = T’ and lemma 3.2, the difference
between the two is equal to:

Ok — Pk =
N _
z; P(Tt_ D - 1) =
(P(R = 1)~ P(R, = 1)) Y PT=1) (315

t=1
Observe that the sum YN, P(Tt:t) is equal to zero if, and only if,
P(T = 0) =1 (i.e. it is impossible that any retrieved element is rele-
vant). In such case, P(R; = 1) = P(R,, = 1) = 0. In any other case,
the previous sum is strictly positive and it does not affect the sign of
the difference in the expected value of the R@k. Thus:

>0 P(R;=1)>P(R,=1)
Ok —Prs=0 P(Ry=1)=P(Ry=1) (3.16)
<0 PR, =1)<P(Ry=1)

Equation (3.16) implies that, for any sequence of results, if we
swap an arbitrary element among the top-k, with any other element
not in the top-k, we will improve the expected value of the R@k if, and
only if, the relevance probability of first one is strictly lower than that
of the latter.

Thus, if we sort the sequence of N results by their decreasing rele-
vance probability, we guarantee that the expected value of R@k is the
maximum for any 1 < k < N. ]

3.2.3 AVERAGE PRECISION

In general, the Average Precision (AP) is defined as the area under the
Recall-Precision curve.

def 1
AP = ; mt(p)dp (3.17)

However, this definition cannot be applied in practice since the
precision is not a function of the recall, and, most importantly, neither
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the recall nor precision are continuous. In practice, researchers use a
different definition of the AP,

Definition 3.3. The Average Precision (AP) of a ranked list of ele-
ments with corresponding relevance variables Rj, ..., Ry is defined
as:

0 T=0

o % Z;':l R; otherwise
(3.18)

N
AP(Ry,...,RN)E Y mino; = {
i=1

Here, Ap; = p;i — pi—1 (see eq. (3.5)). The special case of T = 0 is
due to the fact that % is not defined.

Next, we calculate an expression for the expected value of the AP.
Because T depends on the relevance variables, we need to use the
conditional expectation in order to extract it from the expectation op-
erator, as we did in section 3.2.2.

E [AP(Ry, ..., Ry)]

t=0
N N i
P(T =1t) R;
Y — E ZTZZRHT:t = (3.19)
t=1 i=1 j=1
N _ N _
ZP(T_t) Z]E[RZTZ | T=1] (3:20)
=1 t i=1 !
N
P(T =t
Y <t)S(R1,...,RN I T=1t) (3.21)
t=1
with
dei s E[R;T; | T = t]
S(Ry,..., Ry | T=H=) ——+——— (3.22)

i—1 t

Notice that the equality between egs. (3.19) and (3.20) is due to the
definition of T; (see eq. (3.5)) and the linearity of the expectation. For
the sake of clarity, when the set of relevant variables Ry, ..., Ry can

be inferred from the context, we will use S(t) as an alternative to
S(Ry,...,RN | T =1t).
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In addition, we can express S(f) with respect to an auxiliary value
Skj+r(t), which is equal to the former sum excluding the indexes at
positions k and k + 1, by simply using basic properties of the addition
operation:

S(t) =S(Ry,...,Ry | T=1t) =
kilIE[RiTi I T=t] Y E[RT|T=t N

+ )

1 1

i=1 i=k+2
E[RTi | T=1]  E[Rg1Tir | T =] _
k k+1
E[RTi | T=1]  E[Rgs1Tir | T =]

t 2

Skperr (t) + p P (3.23)
Definition 3.4. The random variable denoting the total number of
relevant elements, excluding the elements at positions i and j, is rep-

resented by Ty It’s value is given by the expression:

T, % Y. Re=T—-Ri—R,
1<k<N:
ke {ij}
For any pair 1 <i,j < N such thati # j.

Lemma 3.4. Given a ranked list with relevance variables Ry, ..., Ry, if
we swap any pair of elements at positions k and k 4+ 1, for any value of
1 <k < N, the difference in the values of the sum S(t) is equal to:

P(Rg=1) = P(Rgy1 =1)
Kkt 1)

E[Ti 1+ 1| Teper =t —1]
For any value of 1 <t < N.

Proof. Let’s consider two sequences of relevance variables Ry, ..., Ry
and Rj,..., R}, such that Ry = R;<+1' Rit1 = R, and R; = R,
Vi & {k,k+ 1} (that is, the two sequences are equal except that ele-
ments at positions k and k 4 1 have been swapped). We will use S
and S’ to denote the value of the sum S(t) for the first and the second
lists, respectively.
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Thus, for the first sequence of relevant variables we have:

S:S(Rl,...,RN|T:t):
E[RTi | T=1]  E[Rgy1Tir | T =]

Skker(t) + k * k+1 -
ERi(Tr—1 + R T=t E|Ry 1T, T=t

And for the second sequence, we have:

S,:S( ,1,,R3\]|T/:t)
ER(T,_ +R) | T =t]  E[R 1 Tiyr | T =t

S}fk‘tfr(t) + i + P _
Sw(t) + IE[R]H“l(kal _;RkJrl) | T = t] I IE[RkT]]{(+_|1_ |1T = t]

(3.25)

The previous equations use the fact that Sgr+r(t) = S ,r(t) and
Tiy1 = T4, since these values do not change when we swap the
elements at positions k and k + 1 (review egs. (3.5) and (3.23)).

Then, the difference S — S’ is equal to:

S5 =
E[Ri(Ty—1 +Ry) [ T=1] n ERp1Te [ T=1
k k+1
E[Ri11(Teo1 + Ren) | T =1 n E[RTiy1 | T=1]
k k+1
E[Ri(Ti—1 + Ri) = Rey1 (Tem1 + Ryey) | T = 1] n
k
]E[Rk+1Tk+1 —RTe | T = t] _
k+1
E[(Rk — Rgs1) Te1 + R]I;Rk ~ RieriRen [T=1] (3.26)
E[(Ret1 — Re) Ty | T = 1]
3.27
k+1 (3:27)

Now, let’s focus on the value of each expectation in the previous
equation. First, notice that if Ry = Ry, the value of all expectations
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is canceled, and thus the difference S — S’ is equal to zero. Using
the fact that the relevance of an element is independent of the others,
definition 3.4 and basic properties of probabilities, the expectation in
eq. (3.26) is equal to:

P(R = )PRk+1—O)1E[Tk 1+1\T_tRk_1Rk+l_o
P(Ry = 1)P(Rgyq = O)JE[Tk 1+1\T_15Rk_11<k+1_0

PR =0)P(Ryp1 = 1) E[Tj1 4+ 1| Tpper =t —1] +
P(Rg =1)P(Rgy1 =O0)E[Tj— 1 + 1| Tiper =t —1
(P(Re =1) = P(Ryyg = 1)) E[Trq + 1| Toper =t —1
(3.28)

The last step is due to the fact that, for binary random variables,
P(A=1)P(B=0)—-P(A=0)P(B=1)=P(A=1)— P(B=1),which
can be easily derived given that P(A = 0) = 1 — P(A =1), and re-
spectively for the random variable B.

Similarly, for the second expectation we obtain:

E[(Rit1 = Ri)Tiesn | T =t] =
P(Ry = 0)P(Rgs1 = 1) E[Ti_1 +1| T =t Ry = 0, Rpy = 1] +
PRy =1)P(Rey1 =0)E[-Tx 1 —1|T=t R =1L Rep1 =1] =
(P(Res1 =1) = P(Rx =1)) E[Tj—1 + 1| Tiper =t — 1]
(3.29)
Note that the value of E[(Rxy1 — Rx)Txs1 | T = t] is the same as that

of IE[(Rk - Rk+1)Tk71 + RgRyg — Rgy1Ryiq ’ T = t] with the opposite
sign.

Finally, replacing egs. (3.28) and (3.29) into egs. (3.26) and (3.27),
respectively, and after a few basic algebra operations to simplify the
expressions, the result is:

P(Rx=1) = P(Rgy1 =1)
k(k+ 1)

S-§ = E[Ti—1+ 1| Tiper =t —1]

(3.30)
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O]

Theorem 3.5. A sequence of retrieved elements ordered by decreasing rele-
vance probability (ie. P(R; = 1) > P(R]- =1),1 <i < j < N)maximizes
the expected value of the Average Precision.

Proof. Let’s consider two sequences of relevance variables Ry, ..., Ry
and R},..., R}, and an arbitrary position, 1 < k < N, such that
Ry = Ri,1, Riy1 = Ry, and R; = R}, Vi & {k, k+ 1} (that is, the two
sequences are equal except that elements at positions k and k + 1 have
been swapped).

Following egs. (3.22) and (3.23), the expected value of the AP for
the first and the second sequences are, respectively:

7”5’(0 (3.31)

where S(t) = S(Ry,..., Ry | T=t)and S'(t) = S(R},..., Ry | T' =1).

Using the fact that T = T’ (since the two sequences contain the
same elements, just with a different order the total number of relevant
elements is the same in both cases), he difference of the two expected
values results in:

AP — AP = i p(Tt:t)(s(t) —S'(t)) (3.32)

t=1

Taking into account lemma 3.4, the previous equation is equiva-
lent to:

AP — AP =
TP IE[Tk 1+1’Tk,k<§-/r t—l]
(P(Rc =1) = P(Rg1 = 1)) t; k1)
(3.33)

Observe that the sum is strictly greater than 0, since the expecta-
tion includes a +1 and the rest of variables have values > 0. Thus, its
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value does not alter the sign of the difference AP — ﬁl, which results
in:

>0 P(Ry=1)>P(Rgyq =1)
AP-AP ={=0 P(Ry=1)=P(Ry;=1) (3.34)
<0 P(Rk = 1) < P(Rk+1 = 1)

Equation (3.34) implies that, for any sequence of results, if we
swap any element at position k with its next neighbor (position k + 1),
the expected value of the AP will increase if, and only if, the rele-
vance probability of k is lower than that of k + 1. Thus, if we sort the
sequence of N results by their decreasing relevance probability, we
guarantee that the expected value of the AP is the maximum. O

3.2.4 DISCOUNTED CUMULATIVE GAIN

Definition 3.5. The Discounted Cumulative Gain (DCG) of a sequence
of elements with relevance R; € {0,1} is defined as:

def N 2Ri 1

DCG(Ry,...,Ry) &y = —° (3.35)
(Ry N) ;10g2(1+1)

Now, let’s compute the expected value of the DCG with respect
to P(R; = 1). Again, the following expressions assume that the rele-
vance of the elements are independent.

1
N 21P(R;=1)+2'P(R;=0)—1 _
; log,(i+1) o
. PR =1)
= log,(i+1)

(3.36)



3.2.4. DISCOUNTED CUMULATIVE GAIN 57

Theorem 3.6. A sequence of elements ordered by decreasing relevance prob-
ability (ie. P(R; = 1) > P(R]- =1),1 <i < j < N) maximizes the
expected value of the Discounted Cumulative Gain.

Proof. Let’s consider two sequences of relevance variables R, ..., Ry
and Rj,..., R}, such that Ry = Rk+1' Riy1 = Rj, and R; = R,
Vi ¢ {k,k + 1} (that is, the two sequences are equal except that ele-
ments at positions k and k 4 1 have been swapped). The expected
value of the DCG for each sequence of variables is:

P(Ri=1) Y P(R=1)
DCG = Zm ; DCG = Zm (3.37)

Since the elements at any position i ¢ {k,k + 1} are identical in
both sequences, and Ry = R;_; and Ry = Ry, the difference of the
two expected values is:

DCG — DCG' =
P(Rg=1) | P(Rgy1=1) PRep1=1)  P(Re=1) _
log,(k+1)  log,(k+2) log,(k+1)  log,(k+2)
1 1
(P(Ri =1) = P(Res1 =1)) (logz(k+ 1) log,(k+2)) ~
k+2) —log,(k+1)
log, (2k + 3)

(P(R, = 1) — P(Ryyy = 1)) 282 (3.39)

Observe that the second term in the multiplication is always greater
than 0. Hence, this element does not affect the sign of the difference
of the expected values, resulting in:

>0 P(Rk21)>P(Rk+1:1>
DCG-DCG {=0 P(R¢=1)=P(Rei1=1) (3.39)
<0 P(Rk:1)<P(Rk+1:1)

This implies that, if the retrieved objects are not ordered by de-
creasing relevance probability (i.e. 3k : P(Ry = 1) < P(Rg1 = 1)),
we can increase the expected value of the DCG by swapping these
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two elements. We can repeat this operation as long as the sequence of
probabilities is not ordered. Once all the elements are completely or-
dered by decreasing relevance, we cannot longer increase its expected
value, proving the theorem. O

3.2.5 NORMALIZED DISCOUNTED CUMULATIVE GAIN

Notice that the DCG is not upper bounded, and thus sequences of
different number of elements cannot be relatively compared. In or-
der to solve this issue, the Normalized Discounted Cumulative Gain
(NDCG) was defined.

Definition 3.6. The Normalized Discounted Cumulative Gain (NDCG)
of a sequence of retrieved elements is equal to the value of its DCG

divided by the maximum DCG achieved by any possible ordering of
the sequence, MDCG(Rj, ..., RN).

DCG(R,...,R
NDCG(Ry,...,Ry) = MDCé(;{l g}i) (3.40)

Corollary 3.6.1. The expected value of the Normalized Discounted Cumu-
lative Gain for a sequence of elements ordered by decreasing relevance proba-
bility (i.e. P(R; = 1) > P(R]- =1),1<i<j< N)isequal to1, which is
the maximum.

Proof.

E[NDCG(Ry, ..., Ry)] =

g [ DCG(Ry,...,Ry) ] _
MDCG(R1,...,Rn)|

/oo PMDCG = 1) g5 | MDCG = m]dm (3.41)
0

m

Notice that theorem 3.6 states that ordering the retrieved objects
by decreasing relevance probability maximizes the expected value of
the DCG. Thus, if the maximum DCG (i.e. MDCG) is equal to m, then
for such a sequence of elements, E[DCG | MDCG = m] = m.
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E[NDCG(R;,...,Ry)] =

/oo PMDCG=m)

0 m

/ P(MDCG = m)dm = 1 (3.42)
0

The fact that this is the maximum value comes from the definition
of NDCQG itself. O

3.3 Global and mean measures

In the Keyword Spotting literature (and also in many other applica-
tions of Information Retrieval), performance measures of ranking sys-
tems can be divided into global and mean measures'. Global measures,
consider the retrieved elements of all queries used to evaluate the sys-
tem at the same time, while mean measures evaluate each query in iso-
lation and later average the results.

As an example, consider table 3.1. A (global) ranking of retrieved
elements for different queries (v; and v7) is shown, with their rele-
vance and the score (not necessarily a probability) used to order the
ranking list>. As the example shows, depending on the value of the
relevance variable of each element, the global and mean average pre-
cision can be quite different.

Finally, observe that in section 3.2 we did not make any assump-
tion on the queries that originated each element in the ranked list.
Thus, it is fairly easy to prove that the PRP is optimal for both the
global and mean versions of the measures in the previous section (see
theorem 3.7 below).

Theorem 3.7. The Probability Ranking Principle is optimal with respect to
the Global and the Mean versions of the measures in section 3.2, assuming
that the queries are independent.

1In the literature, these two types of measures have been sometimes referred to
as micro and macro measures, respectively [Perronnin et al., 2009, Tsoumakas et al.,
2010].

2The values of the scores are irrelevant for this particular example.
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Table 3.1. Example illustrating the calculation of the Global and Mean Average Pre-
cision (AP). The elements of the ranking list are pairs of (keyword, region), sorted
by their decreasing score. R; and R/ show two hypothetical values of the relevance
variable of each element in the ranked list.

In the first case, the Global AP is equal to % + % + % = %, while the Mean AP is
equal to 1 (since the AP of each individual keyword is 1).

In the second case, the Global AP is equal to % + % + % = %, while the Mean AP is

equal to % (% + 1) = % (since the AP of v; is equal to % and that of v, is equal to 1).

(a) Ranking (b) Performance with R;

Element R; R! Score Global AP 3 ~ 0.81

(v2,x1) 1 1 3.9 Mean AP % (1+1)=1
(v,x3) 0 1 28
(v1,x1) 1 0 1.7 (c¢) Performance with R;
, 1 0 0.4 —
Ezl 3 0 0 -02 Global AP 2 ~0.83
(vi,x3) 0 1 -11 Mean AP 1(1 4+1)=7Z~058

Proof sketch. When we proved the optimality of the ranking principle
for all the previous performance measures, we did not make any as-
sumption on the query that originated each element in the ranked
list.

Thus, if the ranking is globally ordered (considering all retrieved
elements of all queries), it will be optimal with respect the global mea-
sure of interest (e.g. the Global Average Precision).

In addition, if the ranked list is globally ordered, it is also locally or-
dered for the elements corresponding to each individual query. Thus,
the ranking will be optimal for each individual query.

Finally, since the mean measure is just the average of the measure
of each individual query, and each of these are the optimal values,
the mean measure of interest (e.g. the Mean Average Precision) is
also optimal.

Thus, the probability ranking principle is optimal for both the
global and mean versions of the measures. O



Probabilistic Models for
Handwritten Text

In chapter 2, we saw that the relevance probability needed to tackle
the problem of Keyword Spotting (in a principled way) involves, es-
sentially, the conditional probability over the transcript of the docu-
ment images.

Later, in chapter 3, we used these relevance probabilities to opti-
mally rank a set of elements, with respect to different quality measures
widely used in the Information Retrieval and Keyword Spotting liter-
ature. However, the reader should remember that the proofs of opti-
mality only hold under a few assumptions.

One of these assumptions requires that the distributions used to
obtain the relevance probabilities must be the true ones that describe
the data. Of course, these distributions are unknown in any real sce-
nario, and reasonable good models have to be estimated from data.

In this chapter, two families of models used to represent the text
(and its alignment) written in images are reviewed: Hidden Markov
Models and Recurrent Neural Networks. Both models have been
widely and successfully used, for Keyword Spotting and Handwrit-
ten Text Recognition applications (as well as other applications).

4.1 Image preprocessing

Before we introduce these probabilistic models used, we must explain
how the scanned page images are first processed in order to extract
meaningful regions containing text and to reduce the variability of
these text regions that is not useful to “read” their content. As we
shall see later, some methods for modeling the transcription of im-
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ages are more robust (i.e. Artificial Neural Networks) than others (i.e.
Hidden Markov Models) and require less of these steps.

4.1.1 TEXT SEGMENTATION

First the different text regions in the document are localized. Text re-
gions are typically formed by several text lines with a meaningful (se-
quential) reading order. This problem is, by itself, quite challenging
in real applications, mainly due to the ambiguity of the concept “text
region”. [Mao et al., 2003] offers a survey on traditional approaches
tackling the structure analysis of text documents. Also, as in many
other key aspects of text documents processing, methods based on
Artificial Neural Networks have become the state-of-the-art in recent
years [Bukhari et al., 2012, Chen et al., 2015,Chen et al., 2017, He et al.,
2017].

Other preprocessing steps that are carried at page level are the re-
moval of bleed-through and other ink noise, the correction of rotated
pages or contrast normalization. Some of these steps play a less signif-
icant role under controlled environments, but they are very important
if the page images were not obtained using good scanning equipment
(e.g. they were obtained using a cell phone).

Next, individual text lines are isolated, which may be an even
more difficult task and is considered an open research problem, as
shown by recent competitions [Diem et al., 2017]. Common prob-
lems are the presence of diacritics, ascenders and descenders non-
horizontal lines, overlapping lines, etc. [Likforman-Sulem et al., 2007,
Louloudis et al., 2009] report a comparison on different approaches
to tackle line segmentation, and recent relevant works include [Garz
et al., 2012, Saabni et al., 2014, Cruz and Terrades, 2018]. Text line seg-
mentation is considered a critical step in the processing of historical
handwritten images, since virtually all approaches to model the text
in these images assume that text lines have been (more or less) accu-
rately segmented, including the models presented in this chapter.

Figure 4.1 shows three examples from different data sets used in
text recognition and keyword spotting research. The easiest scenario,
represented by the IAM data set depicted in fig. 4.1a, already senses
some ambiguity: one could just separate the handwritten zones from
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(c) Passau

Figure 4.1. Page images from different collections used for handwritten text recog-
nition and keyword spotting experiments. (a) shows a page from the IAM data set,
with a quite easy structure since all pages in the collection are formed by two main
text regions: printed and handwritten text; (b) shows a page from the “Inquisicién”
data set, where annotations are interleaved with the main text of the page; and (c)
shows a page from the Passau collection, which contains many tables and records
with a particular structure.
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the printed text areas, but one could also argue that the printed areas
are separated in three regions: header, description and footer. Never-
theless, text line segmentation is quite straightforward in this collec-
tion, since text lines are well separated by blank regions.

On the contrary, fig. 4.1b and fig. 4.1c show two data sets where
text region localization and line segmentation are considerably more
challenging, since the main text body is filled with annotations (see
fig. 4.1b), and there are dozens of close-by text regions (one for each
cell in fig. 4.1c) with few text lines in each.

4.1.2 TEXT LINE NORMALIZATION

Once the page images have been segmented into individual text lines,
several normalization steps are applied to reduce the variability in
the handwriting, as discussed above.

Text lines do not follow a strict horizontal (or vertical) orientation,
especially in handwritten documents written without constraints. Plus,
quite often, handwritten characters tend to be inclined towards the
left or the right, producing the italic effect. The first distortion is
known as the skew of the line, whereas the latter is known as the slant.

To correct the skew of a text line, some methods estimate a single
angle for the whole text line. For instance, a popular approach is
based on the horizontal projection profile of the text line [Senior and
Robinson, 1998, Vinciarelli and Luettin, 2001]. A survey can be found
in [Hull, 1998]. Other authors detect several regions within the text
line to apply different skewing corrections in each segment [Toselli
et al., 2004, Vinciarelli et al., 2004, Pesch et al., 2012].

Regarding the slant correction, virtually all methods find the an-
gle between the vertical axis of the text line and the strokes of text in
the image. Then, an affine (shear) transformation is applied to cor-
rect the angle. For instance [Vinciarelli and Luettin, 2001, Pastor et al.,
2004] try a range of slant angles and choose the one that maximizes
the variance of the histogram of the pixel intensities.

Finally, the size of the writing is also normalized since it may vary
significantly between different writers and/or documents. This nor-
malization usually includes the height of the text, as well as its thick-
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ness. A common solution (that we have used in most experiments)
is to scale all text line images to a fixed height, preserving the aspect
ratio. This works well when the height of the text line is proportional
to the height of the characters, but when the lines have not been accu-
rately segmented, this approach may be troublesome.

it result in a damaging loss of information. Another approach that
has been proposed more recently is to use the first and second order
moments over a sliding window, to re-position the center of gravity
in each window at the center of the image and re-scale the size so that
the second order moments are constant [Kozielski et al., 2012].

Figure 4.2 depicts two examples of skewed and slanted text lines

and the normalized images after using the normalization software

that most of our experiments usel.
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(c) (d)
Figure 4.2. Figure (a) shows a portion of a text page which includes skewed (and

also slanted) text lines. Figure (b) shows a heavily slanted text. Figures (c) and (d)
show the text lines of each segment after normalization.

4.1.3 FEATURE EXTRACTION

Traditionally, statistical models could not model accurately the tran-
script (and alignment) distributions using directly raw images (not

Ihttps://github.com/mauvilsa/textfeats
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even images after normalization), and a sequence of handcrafted fea-
ture vectors needed to be extracted from the raw pixels. Although this
is no longer the case with modern methods based on Artificial Neural
Networks (this will be discussed in section 4.3), feature extraction is
still needed to operate with traditional Hidden Markov Models.

An enormous set of alternatives exists to extract features from the
raw pixels. Here we describe some of the popular techniques used in
the past. It is extremely important to notice that, very often, the fea-
tures employed are highly correlated with the image processing steps
carried before, meaning that if one processes the images in a different
way than the proposed by the author of the feature extraction tech-
nique, the overall performance may be poor (e.g. some features need
the images to be binarized).

Many of the early techniques relied on counting the black and/or
white pixels (after binarization) in the image. [Marti and Bunke, 2000,
Marti and Bunke, 2001b, Bertolami and Bunke, 2008] use the num-
ber of black pixels in each column of the image; [Marti and Bunke,
2000, Bertolami and Bunke, 2008] also count the number of transi-
tions between black and white pixels; and [Toselli et al., 2010, Espana-
Boquera et al., 2011] use the average intensity of the pixels in rectan-
gular cells of the image.

In addition to these simple features, higher-level features have
also been used in the literature. For instance, [Toselli et al., 2010,
Espana-Boquera et al., 2011] use the derivative of the pixel intensi-
ties in each dimension in rectangular cells of the image; and common
features in the Computer Vision community such as Speeded Up Ro-
bust Features (SURF) [Bay et al., 2006] and Scale-Invariant Feature
Transform (SIFT) [Lowe, 1999], have also been used in the context of
handwritten text modeling [Wang et al., 2012, Rothacker et al., 2012].

4.2 Hidden Markov Models

4.2.1 DESCRIPTION

A Hidden Markov Model (HMM) describes a stochastic process in-
volving two random variables: the random variable representing the
sequence of observed values, denoted by X, and the random variable
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representing the sequence of states that produced such values, de-
noted by S. In particular, Hidden Markov Models are probabilistic
graphical models of the joint likelihood of the two variables p(X,S).

Hidden Markov Models are typically defined using the following
elements:

e A set of emitting states S = {s1,...,sn}, and a special (non-
emitting) final state sr.

e A probability distribution over initial states: P(S; = s), Vs € S*.

e A probability distribution describing the transition model be-
tween states: P(S;.1 =5 | St =5),Vs € S,Vs' € SU{sr}.

¢ And a probability mass or density function describing the likeli-
hood of the an observed value according to each non-final state:
p(Xy=x|S=5s),VseS.

Figure 4.3 shows an example of an ergodic HMM with three emit-
ting states, depicting the previous elements. The name ergodic sim-
ply denotes that any possible transition between two states has a non-
zero probability mass.

We will refer to a particular sequence of observed values with the
notation x1.7 = x1,...,xr. Notice that a sequence of observed values
of length T is emitted by a sequence of states of length T + 1, since all
valid sequences of states must end at the non-emitting final state, sr.
Thus, a particular sequence of states of length T + 1 is represented by

$1.7+1 — S1,---,8T,SF.

Since X and S are both variables over sequences of arbitrary length,
instead we could interpret each of them as a sequence of random vari-
ables: X = Xj,...,Xrand S = Sy, ..., 57, ST41, denoting the random
variables involved in a sequence of length T. Yet, it is important to
emphasize that, in general, the model does not restrict in any way the
length of the sequences, i.e. T € [1,00).

*It is possible to include the final state sr in the set of possible initial states, in
order to allow sequences of length 0, but this is not the norm.
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P(s1 | s2)

1
Ly

>

Figure 4.3. An example of a Hidden Markov Model with all the involved probabil-
ity functions. Each state 51,5y, s3,5F, is represented by a circle, with the name and
the initial state probability written in it (observe that the final state does not have
an initial probability). Solid arcs represent the values of the transition probability
P(St11 = sj | St = s;) between pairs of states (s;,s;). Dashed arcs represent the
density distribution p(X; | Sy = s;) of each emitting state, s;.

For sequences of observed values of length T, HMMs make two
assumptions:

1. The sequence of states is described by a first-order Markov pro-
cess (remember that st = sp).

T
P(S = s1r+1) =P(S1 =351) [ [P(Sts1 = st21 | St =s1)  (4.1)
=1

2. The value of the observation at time t only depends on the value
of the state at that time.

T
p(X=xir|S=sir) =[[p(Xe=x [ Si=5) (42
=1
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Realize that the probability and density distributions do not de-
pend on any particular value of t, only on the state. That is:

Vi t',x sy =sp =
P(X;=x|S =s) = P(X, = x| Sy =sp)
Vt, t',s s =spy =
P(Sii1=5|St=st) =P(Sps1=5]|Sy =sy) (4.3)

Under these assumptions, p(X = x1.1, S = s1.74+1) is equal to:

p(X =x1.1,S = 51.741) =

p(X = X1.T ’ S= Sl:T-i-l)P(S = 515T+1> =

T T
(Ep(xt | 5t)> <P<51)11P(5t+1 | 5t>> (4.4)

Sometimes, researchers refer to HMMs as generative models, since
they model the likelihood of observed values, and examples of can be
generated sampling from: it.

4.2.2 TRAINING
4.2.2.1 Generative training

Traditionally, HMMSs have been trained using the Maximum Likeli-
hood Estimation (MLE) criterion on the observed values of the train-
ing data. Thus, we try to find the optimal set of parameters 6* that
maximizes the probability density of the feature vectors of the train-
ing data, given the reference transcripts. The set of parameters to
optimize includes both the emission and transition parameters. In
general, this procedure can be described by the following optimiza-
tion problem:

0" =argmaxp(X'={x;: 1 <i<m} | W={w;:1<i<m};0)
0

(4.5)
where p(X’' | W’;0) is the joint likelihood of all the training feature
vectors given all the training reference transcripts, according to a par-
ticular model parameterized by 6.
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When one assumes that each of the training examples is sampled
independently, an equivalent expression can obtained:

logp(X=x; | W=w;0) =

m
*
0" = arg max
0 =1

1

m
argmaleog Z p(X=x;,S =s1.r41 | W=w;0) =
0

i=1 S1:T+1

(4.6)

m
argmaleog Z p(X=x;|S=s51.741;,0)P(S = s1.741 | W = w;; 0)
0 i=1 S1.T+1

(4.7)

The previous equation maximizes the logarithm of the density of
the feature vectors given the transcript, instead of the density itself.
However, the two are equivalent since the logarithm is a monotoni-
cally increasing function.

The sum over s;.741 in eq. (4.6) is due to the marginalization of
the density among all sequences of states of the composite model of
HMMs, which is one of the hidden variables of the model.

Because closed-form solutions to the previous optimization prob-
lem cannot be found for complex probabilistic models with hidden
variables (such as HMMs and GMMs), the Expectation-Maximization
algorithm [Dempster et al., 1977] (in particular, the Baum-Welch algo-
rithm [Baum and Eagon, 1967, Baum et al., 1970] for HMM) is used to
find a local optimum of the parameters. The algorithm starts with an ar-
bitrary set of parameters and these are iteratively modified to increase
log-density until convergence. All popular HMM-based toolkits for
speech recognition and handwritten text recognition implement these
algorithms, or variations of them (such as the Viterbi training for
HMMs) [Young et al., 2002, Povey et al., 2011].

4.2.2.2 Discriminative training

Notice that the previous approach finds a set of parameters for our
probabilistic models that (locally) maximizes the density of the fea-
ture vectors given the reference transcript of the image.
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However, in reality we are usually in the opposite scenario, since
the transcript of the images is unknown. Then, we typically want to
find the transcript with the maximum probability given the sequence
of feature vectors. Once the HMMs and GMMs are trained, we can
solve the latter problem using the Bayes theorem, but when training
our models in a generative way, we are solving a different problem
than the original (find a probabilistic model that accurately represents
the transcript of a given image).

There exists a wide variety of estimation criteria in the context
of Hidden Markov Models in order to train these models to have a
better discriminative performance. The general idea is to try to find a
model that maximizes the probability of the reference transcript given
the feature vectors, although slightly different variations of this idea
have also been widely used.

For instance, the Maximum Mutual Information (MMI) criterion
[Bahl et al., 1986] maximizes the mutual information between the se-
quences of feature vectors and the corresponding transcripts; the Min-
imum Classification Error Rate (MCE) criterion [Juang et al., 1997]
tries to find a set of parameters that minimizes the expected number
of wrongly transcribed samples; the Minimum Word and Phone Error
Rate (respectively, MWE and MPE) [Povey and Woodland, 2002] try
to optimize the parameters of the model so that the expected number
of wrongly transcribed words (or phones in the case of speech signals)
is minimized.

In this thesis, we have generally used the more traditional gener-
ative training (using the Baum-Welch algorithm) in order to estimate
the parameters of our HMMs (and GMMs). However, in some cases
we have also used the Minimum Character Error Rate (i.e. analogous
to the MPE in speech) to have better probabilistic models (see sec-
tion 8.12).

4.2.3 HIDDEN MARKOV MODELS FOR HANDWRITTEN TEXT

In order to reduce the number of free parameters of the model (and
thus, reduce the chances of overfitting), some structural decisions are
made in practice for modeling handwritten text.
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Typically, HMMs adopt a left-to-right topology, as depicted in
fig. 4.4. In a left-to-right topology, each emitting state has two tran-
sitions: a self-loop and a transition to the next state. Some authors
add skip transitions so that samples shorter than the number of emit-
ting states can be processed by the HMM (otherwise, these sequences
would have a null likelihood) [El-Yacoubi et al., 1999, Tay et al., 2001].

0.7 0.4 04 0.6

0.3 /O\ 0.6 fo\ 0.6 0.4

Figure 4.4. Example of the alignment produced by a character HMM modeling the
letter “a”. The HMM is composed of four states in a left-to-right topology. The proba-
bilities in the arcs represent the transition probabilities of the HMM, i.e. P(S;41 | S¢),
and the final state also includes the final probability.

As depicted in fig. 4.4, most works that need to model handwrit-
ten text choose to use an individual HMM to represent each character
in the alphabet. There are some works that represent full words by a
single HMM, however this becomes problematic when dealing with
vocabularies of a large number of words, since the number of param-
eters required to estimate grows significantly. Notice that the number
of characters of the Latin and other western alphabets is typically in
the 10-100s, while the number of words that one typically encounters
in large collections of texts is in the 10000-100 000s. This is very sim-
ilar to the works in speech recognition, where they typically use an
individual HMM to represent a phoneme (or a tri-phoneme), since
this is the fundamental unit of speech.
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The number of states in each HMM can be fixed (i.e. all characters
have the same number of states), or can be variable, since the length
of each character is expected to be different from one class to the other.
For instance characters like ”i” or “1” are typically much shorter (hor-

izontally) than characters like “m* or “n”.

Finally, regarding the emitting states, we will use Gaussian Mix-
ture Models (GMM) with diagonal covariance matrices as the proba-
bility density functions used to model p(X; = x; | S; = s¢). Although
this is the common choice in the handwritten text and speech com-
munity, the reader should be aware that it is not the only option, and
models for sequences of discrete observed values have also been used
in the past [Huang et al., 1993,Digalakis et al., 2000,Giménez and Juan,
2009]. Equation (4.8) shows the density of a diagonal GMM:

K

p(Xe=x ]S =s)E Y ws ) N (x| pisy i, diag (o2 ;) (4.8)
1

where w;, k is the component weight, and p,, , and diag(o‘szt ;) are the
mean and diagonal covariance matrix of the k-th multivariate Gaus-
sian corresponding to the state s;.

[Giinter and Bunke, 2004] offers a very good analysis of different
methods to optimize the topology of HMMs for modeling handwrit-
ten text, including the number of states and the number of compo-
nents in the GMM.

4.3 Artificial Neural Networks

4.3.1 DESCRIPTION

During the last decade, Artificial Neural Networks (or NNs) have be-
come predominant in many Pattern Recognition applications. In par-
ticular, Convolutional and Recurrent Neural Networks have become
the de facto standard to model handwritten text.

The fundamental components of a NN are the (artificial) neurons,
also known as units. An artificial neuron, in a similar way to real
neurons present in living organisms, is connected to other neurons
and produces an output given the inputs from the connected cells,
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using an activation function . The first definition of an artificial NN
appeared in the work of [McCulloch and Pitts, 1943], and the first al-
gorithm to adjust the weights of the neurons was described in [Rosen-
blatt, 1958]. Figure 4.5a shows the mathematical model of the neuron
introduced by [McCulloch and Pitts, 1943].

In order to solve challenging problems, the neurons are grouped
together into several layers of neurons, so that the neurons from one
layer are connected to the neurons of the next layer?. The layers of
neurons which are neither the input nor the output are called hidden
layers. Figure 4.5b shows an illustration of a multilayer artificial neu-
ral networks with two hidden layers. This type of network is also
known as a fully connected multilayer network, since each neuron is
connected to all the units from the previous layer, as shown in the
figure.

(a) (b)

Figure 4.5. Diagram of the mathematical model of an artificial neuron (fig. 4.5a) and
an illustration of a multilayer neural network with two hidden layers (fig. 4.5b), with
three input and two output neurons.

It has been proven that, for several families of activation functions,
a multilayer neural network is a universal approximator. This means
that, although composed by rather simple units, NNs are powerful
models able to approximate any function arbitrary well. This result
was first proved for the sigmoid activation function [Cybenko, 1989]

2Typically, neurons also have a constant input called the bias, but we will omit it
from the notation for simplicity.
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defined as: .

Nevertheless, due to the characteristics of the algorithm used to
adjust the parameters of the model, other activation functions have
been proposed that perform better in practice: the hyperbolic tangent
(denoted by tanh), the rectifier linear unit (also known as ReLU, and
denoted by R) [Hahnloser et al., 2000], and the leaky ReLU (denoted
by L,, typically with a = 0.01) [Maas et al., 2013] are a few examples.
The following equations describe each of these activation functions.

_ exp(x) —exp(—x)
tanh(x) = exp(x) F exp(—7) (4.10)
R(x) = max{0, x} (4.11)
X x>0
La(x) = {a -x otherwise (412)

In classification problems, the output of the neural network typ-
ically represents the posterior probability of a label given the input
data [Bourlard and Wellekens, 1990]. Thus, the output units must
have their value in the range [0, 1] and the sum of all of their outputs
must be equal to 1. For that, the softmax function [Bridle, 1990] is
typically used:

= oplu) (4.13)

B = 0 ) = P ()

where y; is the i-th output neuron of the NN.

4.3.2 CONVOLUTIONAL LAYERS

Fully connected layers present two problems in practice. First, since
all neurons from one layer are connected to all neurons of the next
layer, and each connection has its own parameter, this means that the
number of neurons in each layer has to be limited (since we need the
number of parameters of the model to be finite, for training purposes).
Thus, for instance, if we needed to process images with our NN, we
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first would need to get a fixed-size representation of our images (e.g.
by re-scaling them to a fixed size).

The second problem arises when the input data is high dimen-
sional, but presents strong local patterns between neighbor input units.
For instance, consider a rather small squared input image of 100 pix-
els height and width. Since each unit in a fully connected layer would
be connected to all input pixels, we would need 10* parameters for
each unit in the layer. However, the correlation between the pixel in-
tensities of far away coordinates is low. This makes fully connected
layers very slow when processing images with a medium or large
size, and highly overparameterized, which may create or aggravate the
problem of overfitting®.

Convolutional layers [Fukushima and Miyake, 1982, LeCun et al.,
1989] are one solution to the aforementioned problems. They are sim-
ilar to fully connected layers, but each neuron of a Convolution layer
is only connected to the neighbor units from the previous layer. In
addition, all units share the same parameters. Thus, the number of
parameters does not depend on the size of the input data, but only
on the receptive field (i.e. the size of the neighborhood around each
unit). For instance, fig. 4.6 shows a diagram of a convolution layer
operating on a input image of width and height of 4 pixels, with a
receptive field of 3 squared pixels. Each output pixel is the product of
each neighboring input pixel weighted by the parameters.

For multichannel images (e.g. RGB), for each output channel the
convolution operation typically weights all input channels from all
neighboring pixels. Let X be the input image represented as a tensor*
of size (W, H,C) where W is the width, H is the height and C is the
number of input channels. Then, if X is convolved with a receptive
field of size (¢;, 9;) and K output channels, the result will be an image

30verfitting happens when a model is highly accurate for training data but
highly inaccurate for new data coming from the same distribution.

“Tensors are a generalization of matrices for an arbitrary number of dimensions.
For instance, vectors are one-dimensional tensors, matrices are two-dimensional ten-
sors and multichannel images can be represented as three-dimensional tensors.
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Figure 4.6. Diagram of a two dimensional convolution operation. The input image
X is convolved with the weight matrix W to produce the output image Y. The value
of each output pixel is the weighted sum of the neighboring input pixels, weighted
by the corresponding parameter in W.

of size (W, H, K) described by the following equation®:

8-19-1 ¢
M = X Whse = 5 5 51K o5, W

i'=0 j'=0 c=1
(4.14)
Here, the operator |- | denotes the floor operator. Very often, a padding
value is defined (usually 0) for pixels laying outside of the input im-
ages (e.g. the blue regions outside the input matrix in fig. 4.6).

Finally, the reader should be aware that, although convolutional
layers were first popularized to process images [LeCun et al., 1989],
they have also been used to process one-dimensional sequences [Hu
et al., 2014], videos [Ji et al., 2013], or even sparse graphs [Defferrard
etal., 2016].

4.3.3 RECURRENT LAYERS

Recurrent layers [Elman, 1990] (RNNs) are a type of neural network
layer with an internal state for each unit. These were originally de-
signed to process sequences of vectors instead of a single vectors, as
fully connected neural networks. At each time-step, the output of

5 Typically, as in the case of fully connected layers, each neuron has an input bias,
but we omitted this from the notation for simplicity.
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of layer depends on the current input and the previous state. In its
simplest form, the state of each neuron in a recurrent layer is just its
output. Thus, for a sequence of T elements of m-dimensional (row)
vectors, x1, ..., xt, the output of a simple RNN, parameterized by the
matrices W € R"™*" and R € R"*", is a sequence of n-dimensional
vectors, y1, . . ., Y1, given by the equation®:

yt,j =0 (Z Xt,j[W]i/]' =+ Z ytfl,i’ [R]i’,j> (415)
i=1

i'=1

where y; ; is the j-th component of the output vector at time ¢ (i.e. y:)
and x;; is the i-th component of the input vector at time ¢ (i.e. x;). Typ-
ically, att = 1 the recurrent connection is ignored, which is equivalent
to assume that the state at t = 0 is yp = 0.

The previous equation can be simplified using vectorial notation
to describe all units in the recurrent layer.

Y = O'(th =+ yt—lR) (416)

where the non-linear function ¢ is applied to all components of the
vector.

RNNSs can be visualized as regular fully connected layers if one un-
rolls the sequence of input and output vectors, as depicted in fig. 4.7.

Very often, the sequence is processed from left-to-right and right-
to-left directions. This architecture is known as a bidirectional layer
(BRNN) [Schuster and Paliwal, 1997]. After the sequence has been
processed in the two directions, the two output vectors at each time-
step are combined into a single one by summing, averaging or con-
catenating them (among other combination strategies). Then, the com-
bined output is fed into the next layer.

4.3.3.1 Long Short-Term Memory layers

Simple RNN are conceptually powerful models. In fact, it has been
argued that they are Turing-complete machines [Siegelmann, 1995],

6Recurrent units typically have a bias input too, but this has been omitted for
simplicity.
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Figure 4.7. Compact and unrolled representation of a simple recurrent layer. The
connections in the left figure are replicated at each time-step and the resulting neural
network is equivalent to a (very deep) fully connected network with several layers,
as shown in the right figure.

although in practice this theoretical capability is quite limited by sev-
eral reasons. Among other reasons, the algorithms typically used
to learn the parameters of our network have some issues with the
simplest RNN architectures. In particular, they are prone to the van-
ishing and exploding gradient problem, which prevents the network
to learn dependencies in a large time context, and makes the train-
ing very unstable. In order to address these issues, Long Short-Term
Memory (LSTM) units were proposed [Hochreiter and Schmidhuber,
1997]. These specially-designed units, control the flow of information
between the units at different time-steps using a set of gates. The orig-
inal LSTMs were later improved with forget gates [Gers et al., 2000],
which can be used to “reset” the internal state of the units. Figure 4.8
shows the details of the simple recurrent units and the LSTM units
(with forget gates).

Given a input sequence of T elements of m-dimensional vectors,
x1,...,xr, the output sequence of n-dimensional vectors yy,...,yr
provided by an LSTM layer is described by the following set of (vec-
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Yt

Xt
(a) Simple recurrent unit (b) LSTM unit

Figure 4.8. Detailed diagram of the units of a simple recurrent layer (left) and a LSTM
layer (right). The LSTM unit has two gates (input and forget gates) that control the
input to the unit’s state (s;), and an output gate that controls the output of the unit,
at each time-step.

torial) equations’.
a; = tanh(x;W, +y:_1R,) (4.17)
iy = oc(x:W; + y:-1R;) (4.18)
o = o(x;W, + y:—1R,) (4.19)
ft =0(x:Wr +y1-1Ry) (4.20)
st=1iOar+ fi ©siq (4.21)
y: = 0; © tanh(s;) (4.22)

where all the W parameter matrices are in R"*" and the recurrent pa-
rameter matrices, R, are in R"*". The operator ©® denotes the Hadamard
(or element-wise) product of vectors. As the simplest recurrent units
do, most implementations of LSTMs assume that yp = sgp = 0.

7Once more, we have omitted the bias inputs in the first four equations to sim-
plify the notation.
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Long Short-Term Memory layers are in the core of almost all state-
of-the-art solutions to countless applications such as handwritten text
recognition [Graves and Schmidhuber, 2009, Voigtlaender et al., 2016,
Puigcerver et al., 2017], speech recognition [Graves et al., 2013b,Graves
et al., 2013a], machine translation [Bahdanau et al., 2014, Cho et al.,
2014], language modeling [Sundermeyer et al., ,Sutskever et al., 2014],
image captioning [You et al., 2016, Vinyals et al., 2017], etc.

4.3.4 TRAINING

Artificial Neural Networks used to model the transcript of a handwrit-
ten image are typically discriminative, and directly model the poste-
rior distribution of the transcript given the image. Typically, the (log-
)posterior probability of the reference transcript is maximized during
training. It is easy to prove that this is equivalent to minimizing the
Kullback-Leibler divergence between a Dirac delta distribution rep-
resenting the reference text, and the probability distribution modeled
by the neural network (assuming that the samples are independent).

argmin Dgp [P(W | X) || P(W | X;0)] =
0

argmaxlogP(W =0 | X = x;0) (4.23)
0

4.3.4.1 Connectionist Temporal Classification

In order to model P(W | X) employing neural networks, the key idea
is to transform the input image into a sequence of d-dimensional fea-
ture vectors, each of which represents the characteristics of the partic-
ular label in that position of the sequence.

If we assume that the label in each position is independent from
the other position, given the corresponding feature vector, then we
can easily write down the probability of a given sequence of labels,
ai,...,ar:

T
P(A=m,...,ar | X=nx1,...,x7) =[[P(Ar = a; | X = x) (4.24)
t=1
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This model, assigns (in a stochastic manner) a label to each feature
vector of the sequence, in a similar way that HMMs assume that each
feature vector is generated by some state.

Notice that we used the term label in the previous description, not
character or word. Thus, the remaining question is, how can we de-
fine a distribution over transcripts (sequences of characters) from the
distribution over labels?

In order to define a distribution over transcripts of different lengths,
the Connectionist Temporal Classification (CTC) [Graves et al., 2006]
method is used. This assumes that the set of labels is equal to the set
of characters, plus an additional auxiliary label, typically called the
“CTC-blank” or “no-symbol” label, which is typically denoted by the
symbol @. Precisely, the “CTC-blank” is needed to allow transcripts
shorter than the number of feature vectors and to differentiate two

consecutive and equal characters in the transcript, from the sequence
of labels.

Given this, the sequence of labels is mapped into a sequence of
characters in a deterministic way, using a simple function, which we
refer to as the CTC function, denoted by F:

1. Remove all contiguous repetitions of labels from the sequence
(eg. {9,9,a,a,b,8,b,b,a,a} = {,a,b,0,b,a}).

2. Remove all CTC-blank symbols from the sequence
(e.g. {@,a,b,2,b,a} = {a,b,b,a}).

While we are train the neural network, we need to compute (the
logarithm of) P(W = @ | X = x;0), given the given reference tran-
script, @, and the sequence of T feature vectors, x. In order to de-
fine this value as a function of the distribution over the labels, we use



4.3.4. TRAINING 83

marginalization:

PW=o|X=x0)=
Y PW=w,A=a|X=x0)=
a

Y PA=a|X=x0PW==0|A=0X=1x0) =

a

Y P(A=a|X=x0) (4.25)
(a)=w

The last equality is due to the fact that, since F is a function (a deter-
ministic process), P(W =@ | A = a, X = x;0) is simply a Dirac delta
function, whose value is 1 for the sequences of labels that generate
the reference transcript, and 0 for the rest.

Figure 4.9 shows an example of the probabilistic interpretation
that the CTC makes of the output of a neural network. Notice that
the posterior distribution can be represented as a weighted automa-
ton with T + 1 states (recall, T is the number of feature vectors). The
automaton has such a simple form because of the conditional inde-
pendence assumption made by the CTC algorithm. Moreover, the
sum of the probabilities of all label sequences that produce the given
reference sequence of characters can be computed efficiently thanks
to this independence assumption.

4.3.4.2 Learning through gradient descent

We now have a way of computing (in a efficient way), the probability
P(W = o | X = x), which we would like to maximize, adjusting the
parameters (or weights) of the artificial neural network.

In order to do so, gradient-based algorithms are typically used.
Since all the components of the NN based on convolutional and re-
current layers are differentiable, one can compute the gradient of the
loss function (i.e. —logP(W = @ | X = x)) with respect to each of
these parameters, and update them in the opposite direction of the
gradient in order to (iteratively) minimize the objective loss function.
The classical algorithm to perform these iterative updates is Stochas-
tic Gradient Descent (SGD) [Robbins and Monro, 1951], but different
alternatives are used very often, such as Adagrad [Duchi et al., 2011],
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(a) Input image.
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(b) Output sequence of vectors produced by the neural network.
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(c) Probability distribution of the output labels represented as a weighted
automaton (softmax outputs).

Figure 4.9. Example of the probabilistic interpretation that the CTC makes of the
output of a neural network, applied to a text image. The probability of a given se-
quence of characters is equal to the sum of all sequences of labels that produce such
characters.

Adam [Kingma and Ba, 2014], RMSProp [Tieleman and Hinton, 2012],
and many others.

The gradient of the loss function with respect to each parameter
of the neural network can be computed efficiently thanks to the Back-
propagation (BP) algorithm [Werbos, 1974, Rumelhart et al., 1986]. A
version of this algorithm also exists for recurrent neural networks
[Werbos, 1990], known as Backpropagation Through Time (BPTT).

In the early days of neural networks, BP was unable to effectively
train the parameters of large neural networks with many stacked lay-
ers. Similarly, BPTT also had problems learning with long sequences
for tasks that required long time dependencies between its outputs.
However, better initialization of strategies [Glorot and Bengio, 2010],
activation functions, types of layers (LSTMs vs. simple RNNs) [Hochre-
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iter and Schmidhuber, 1997,Hahnloser et al., 2000], and gradient-based
algorithms have alleviated this issue significantly. Nowadays, it is

possible to train neural networks with dozens of stacked layers, over

sequences of hundreds of elements.

4.3.5 NEURAL NETWORKS FOR HANDWRITTEN TEXT

During many years recurrent artificial neural networks based on Mul-
tidimensional Long-Short Term Memories dominated the state-of-the-
art solutions to model handwritten text [Graves and Schmidhuber,
2009,B. et al., 2014, Voigtlaender et al., 2016]. Multidimensional recur-
rent layers are a variant of recurrent units designed to process signals
of an arbitrary size and an arbitrary number of dimensions. Observe
that, for both simple RNNs and LSTMs described before, the output
at a given time-step depends on the current input and the state of the
layer at the previous time-step. However, it is not clear what “the
previous time-step” means with signals spanning across more than
one axis. For instance, if we process an image (a two-dimensional in-
put) from the left-top to the right-bottom corner, what would be the
“previous” pixel? Multidimensional RNNs, and particularly Multidi-
mensional LSTMs (MDLSTMs), are designed so that at each coordi-
nate, the output depends on the input at the same coordinate and the
outputs at the coordinates with a delay equal to 1 in each dimension,
as illustrated in fig. 4.10. In addition, similarly to bidirectional RNNs
described earlier, multidimensional RNNs can process the input sig-
nal in different directions (2P different directions, for a signal with D
coordinate axes).

Despite its wide adoption and success for handwritten text appli-
cations, in [Puigcerver, 2017] we argued that these powerful architec-
tures were likely unnecessary to accurately model handwritten text.
There are two main observations behind this hypothesis.

First, notice that human languages have an intrinsic sequential na-
ture. Long before humans developed handwriting we communicated
only using sounds, which are continuous vibrations of the air (or
other mediums) through time. In order to allow for non-direct com-
munication, humans later developed handwriting and represented
the different phonemes of their language using combinations of a set
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Figure 4.10. Coordinates in one-dimensional (left) and two-dimensional (right) input
signals of a multidimensional recurrent layer. In the one-dimensional image (e.g. a
sequence) there is a single “previous” element when processing the sequence, for
instance, from left-to-right. However, in the two-dimensional signal (e.g. an image)
there are two “previous” elements when processing the image from the top-left to
the bottom-right corner.

of graphemes (such as characters) to be able to communicate using
two-dimensional surfaces (such as paper sheets, stones, seeds, etc.).
Thus, although two-dimensional information can be useful to model
individual symbols (or a small group of symbols) in a given handwrit-
ten alphabet, it should not be necessary to model the language itself,
since the latter has a sequential foundation.

Indeed, when one compares the output of a 2D-LSTM layer (a
MDLSTM designed for processing images) trained for a handwritten
text recognition task, with that of a comparable convolutional layer,
the results are very similar, as shown in fig. 4.11. The figure suggests
that the features learned by a 2D-LSTM layer use only a quite small
2D context, which can be mimicked with a simple convolutional layer
with a small receptive field (3 x 3).

In fig. 4.11, the outputs of the 2D-LSTM show some “volumetric”
effects that cannot be replicated with the small receptive field used
by the convolutional layer. However, as shown in [Puigcerver, 2017],
this limitation does not hinder the capability of the model to achieve
the same accuracy as MDLSTMs.
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Figure 4.11. Comparison of the outputs of a 2D-LSTM layer trained for a handwrit-
ten text recognition task (top), with that of a comparable convolutional layer (bot-
tom).

Given these facts, we use an architecture composed of a stack of
convolutional (and pooling) layers followed by a stack of one-dimensional
bidirectional LSTM layers (BLSTMs), as shown in fig. 4.12. Pooling
layers (in particular, Maximum pooling) are used very often to sum-
marize the output of neighboring pixels and, thus, reducing the size
of the images as they are processed by several layers of the neural
network [Riesenhuber and Poggio, 1999]. The BLSTMs layers in our
architecture process the images column-wise (i.e. all channels of all
pixels of a column form a single vector). A similar architecture to
this was first used in [Shi et al., 2017] and other variants have also
been used more recently in different HTR applications [Bluche and
Messina, 2017]. We call this Convolutional and Recurrent Neural Net-
work architecture a CRNN.

4.4 Key differences between HMMs and NNs with CTC

As we described in section 4.3.4.1, when the CTC algorithm is used
on top of a neural network, we can interpret the output of the neural
network in a probabilistic fashion. In particular, recall that the output
at each time-step is a posterior probability distribution over a set of
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Figure 4.12. Diagram of the architecture of the artificial neural network used to
model the transcripts of a handwritten text line. This model contains two convolu-
tional blocks, followed by two BLSTM layers, and a final linear layer. Convolutional
layers (“Conv”) also include the ReLU activation function. If a large number of con-
volutional blocks is used, not all of them include the pooling layer (“Maxpool”) to
avoid discarding too much information. The concatenation layer (“Concat”) after
the last convolutional block concatenates all channels from all pixels of an individ-
ual column into a single vector. The other concatenation layers append the outputs
of a BLSTM layer in each direction.

labels, given a feature vector. We argued before, that the output la-
bels are similar to the states in HMMs, and can account for different
alignment hypotheses of the transcript of a given image.

If one focuses only on the probabilistic models, observe that the
CTC makes a very naive assumption with respect to a given sequence
of labels: it assumes that the probability of the label at time ¢t depends
only on the corresponding feature vector, and not on the other vectors
or labels. HMMs have a slightly weaker independence assumption:
the density of a feature vector only depends on the state that emitted
it, but the sequence of states follows a first-order Markov process (i.e.
the probability of each state depends on the state before).

One might think that, since the probabilistic model of the CTC
makes stronger assumptions than that of the HMMs, the latter could
perform better when these assumptions do not hold. Yet, in reality,
models trained with CTC typically perform better than HMM-based
models for recognition tasks. How can this be explained?
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Before, we mentioned the difference in the probabilistic models.
However, when the CTC is used on top of deep and recurrent neural
networks, the parameters of this neural network are adjusted to pro-
duce a sequence of feature vectors that helps the CTC probabilistic
model to represent the transcript of the image accurately, even with its
naive assumptions. On the other hand, the feature vectors in HMM-
based solutions are fixed during training, and the free parameters of
the probabilistic model are adjusted to maximize the likelihood of the
fixed feature vectors (or the posterior of the reference transcript, if
discriminative training is employed).

In his thesis, Théodore Bluche highlights the similarities between
the CTC algorithm used during training and the Forward-Backward
algorithm applied to hybrid models of HMMs and neural networks:
essentially, CTC training is equivalent to Forward-Backward training
on a special HMM model with a single state per character and an op-
tional state between characters (the “CTC-blank”), and no transition
probabilities betwen states (see chapter 7.3 in [Bluche, 2015]).

Although the independence assumption made by the CTC may
not be critical for achieving a decent recognition accuracy, combining
the output of the neural network with an external language model
can improve the recognition results. For KWS applications, the inde-
pendence assumption can be very hurtful since we are not only inter-
ested in obtaining the one-best transcription hypothesis, regardless of
its particular posterior probability. But, we need to have an accurate
model for the complete posterior probability distribution.

This is illustrated by fig. 4.13. The figure shows three probability
distributions over five possible transcripts. The reference distribution
assigns all the probability mass to a single event: the reference tran-
script. The two models assign different probabilities to different hy-
potheses, but in all cases the order of the hypotheses is the same as in
the original distribution. Thus, the recognition accuracy achieved by
the two models will be the same (100% accuracy), but the Kullback—
Leibler divergence of the second model is much larger than the first
one.



90 CHAPTER 4. PROBABILISTIC MODELS FOR HANDWRITTEN TEXT

11 — 0 Reference ||
00 Model 1

08 | |— 10 Model 2 ||
=

I 06 )
S

= 04] .
&

02| H |

| B el el el el

T T T T

1 2 3 4 5
W

Figure 4.13. Example illustrating that achieving a good recognition accuracy does
not necessary imply having a good representation of the target probability distribu-
tion. The two models will achieve a perfect recognition accuracy, but the first model
is a better approximation to the reference distribution (has a lower Kullback-Leibler
divergence).

4.5 N-gram Language Models

The effects of the independence assumption made by the CTC algo-
rithm can be mitigated by combining the output distribution of the
NN with an additional language model. A language model is just a
prior distribution over all (meaningful) sequences of words (or char-
acters) of a given language, or collection of documents.

In the case of generative models such as HMMs, using a prior dis-
tribution over the transcripts is mandatory, if one follows Bayesian
Decision Theory. Given that HMMs (with GMMs) model the condi-
tional density, one can use Bayes rule to obtain the transcript poste-
rior:

PW=w|X=x = PW=wX=2)
p(X =x)
p(X=x|W=w)P(W=w)
T p(X = x| W =) P(W = w)

(4.26)
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where P(W) is modeled by our language model.

One of the most popular choices to model this prior distribution
is the n-gram, which was first used by Shannon to model the English
language [Shannon, 1951]. An n-gram language model assumes that
each symbol (word or character) in a given sequence only depends on
the previous n — 1 symbols. Thus, using the chain rule on the prior
probability, one obtains:

P(W: w) = P(W: wl;L) =

L
P(Wl) HP(wl | w1, .. '/wi—l) =
i=2
L
P(wl) Hp(wl | wi*ﬂ«kl/ oo /wifl) (427)
i=2

N-grams are typically estimated using the Maximum Likelihood
Estimation criterion, on a given training set of strings. The MLE cri-
terion yields to the following expression to estimate the conditional
probability P(w; | w;_p41,. .., wi—1).

Clwi, wi—1, ..., Wi—p41)
Plw; | w_,41,...,Wi—1) = 4.28
(@i | Wiz i-1) Yo C(W, Wizt ..., Win1) (4.25)
where C(-) represents the number of times that the given sequence of
symbols appeared in the training set of strings.

Plain MLE presents a serious issue when the context (1) grows
and the amount of training data is kept constant. Observe that if the
number of symbols in the alphabet is |X|, there are |Z|" = 27108 %
possible different contexts. For instance, the modern English language
is made of more than 170000 words. Using a modest 3-gram model
gives roughly 5 - 10'° different contexts, thus the likelihood of missing
some n-grams increases exponentially with n.

The simplest technique to address this issue is additive smoothing,
which consists in adding a small value to all counts, although more so-
phisticated (and preferred) methods exists, such as discounting, back-
off and interpolation with lower-order n-grams. [Chen and Goodman,
1999] offer an excellent overview and empirical comparison of vari-
ous smoothing techniques. In particular, in our experiments we have
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used the modified Kneser-Ney [Kneser and Ney, 1995] or Witten—
Bell [Witten and Bell, 1991] smoothing and interpolation.

N-grams have been widely used in speech recognition [Jelinek,
1976, Katz, 1987], HTR [Marti and Bunke, 2001b, Marti and Bunke,
2001a], machine translation [Brown et al., 1990, Brown and Frederk-
ing, 1995], and many other pattern recognition applications, includ-
ing Keyword Spotting [Fischer et al., 2013, Toselli et al., 2015].

4.5.1 COMBINING THE OUTPUT OF A NEURAL NETWORK WITH A
n-GRAM

We mentioned before that n-gram language models are very often
combined with neural networks trained with CTC. In principle, this
would not be necessary because networks trained with CTC already
model the posterior probability distribution of the text given the input
image. Thus, in theory, the underlying prior distribution (which is
explicitly modeled by the language model), should be taken into ac-
count implicitly by the neural network.

However, it has been observed that this is not always the case and
combining (in a probabilistic manner) the output of neural network
with an additional n-gram language model improves the recognition
accuracy [Puigcerver, 2017], as well as the keyword spotting perfor-
mance (see experiments in section 8.3). There are two reasons that
explain this seemingly counter-intuitive fact.

Firstly, notice that the underlying independence assumptions of
the CTC algorithm are very different than those made by n-grams,
especially when a large context is considered.

Secondly, and most importantly, very often we have access to ad-
ditional text-only data, which can not be used to train the recurrent
neural network. In such case, a language model trained with the ad-
ditional text may represent a richer prior than the captured by the
neural network.

In order to combine the two models in a Bayesian manner, we
need to obtain a density distribution p(X | A) from the output of the
neural network P(A | X). Recall that A is the random variable over
the sequence of labels of the CTC algorithm. Applying Bayes rule to
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the latter distribution we get:

pX=x|A=m,...,ay) =
p(A=ay,...,a0,, X = x)
P(A=ay,...,a,)
P(A=ay,...,ay | X =x)p(X =x) o
P(A=wm,...,a,)
P(A=ay,...,ay | X =x)
P(A=ay,...,a,)

(4.29)

In practice, we use the following approximations to the density
p(X=x|A=ua,...,a,) and the label prior P(A = ay,...,a,):

P(A=a,...,0, | X=1x)
P(A=ay,...,a,)P

(4.30)

=
>
I
=
S
I
E
5
2

M
Y P(A=ay,...,a, | X =x") (431)

where {x(’”) : 1 < m < M} is the set of training examples, and the
hyperparameter® B is tuned to maximize the performance on the cor-
responding task.

Then, we simply combine this (through WFST composition) with
HMMs, (sometimes) a word lexicon and n-gram language models.
This approach has been widely used in the past in many HTR works
[Doetsch et al., 2014, Voigtlaender et al., 2016, Puigcerver, 2017, Bluche
and Messina, 2017].

4.6 Weighted Finite State Transducers

Finite State Transducers (FST) represent a “mapping” between strings
of two languages, and are an extension to Finite State Automatons
(FSA) [Hopcroft et al., 2006]. Here, we use the formal definition of
language: a set of sequences of symbols (strings) of a given alphabet.

8We use the term hyperparameter to refer to adjustable variables of a particular
approach that are not the parameters of the statistical model itself.
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Transducers were first introduced in [Shannon, 1948], although the
current formal definition of FSTs is not completely compatible with
that of Shannon’s (which did not formalize them). Finite State Au-
tomatons are a representation of regular (or rational) languages, while
Finite State Transducers are the formal representation of rational rela-
tions [Eilenberg, 1974].

Hidden Markov Models, n-grams, the CTC probabilistic model of
aneural network, and many others can all be represented as Weighted
Finite State Transducers (WFSTs), and most of the algorithms needed
to estimate them, or make inferences once the models have been trained,
can be formulated as algorithms operating on WFSTs [Mohri et al.,
2008]. The term weighted simply means that each element of the rela-
tion represented by the FST has some weight value associated.

In fact, we have already used Weighted Finite State Transducers
(or Automatons) through this dissertation, without properly defining
them, since they are very intuitive tools to represent, for instance, the
set of hypothetical transcripts of a given text image. WFSTs will play a
crucial role in the next chapter, where the algorithms needed to build
probabilistic indexes from text images are explained. Thus, it is very
important that the reader understands the fundamentals of WFSTs.

4.6.1 DESCRIPTION
There are multiple ways of defining a WFST, in particular we will
define a WFST, T, over a semiring K, as a 6-tuple T = (£,T,V, E,sp,p)
where:

e X is the finite input alphabet.

e ['is the finite output alphabet.

e V is the finite set of states.

e EC VX (XU{e}) x (TU{e}) x K x V is the finite set of transi-
tions (also known as arcs or edges). € is an special symbol indi-
cating that no (input or output) symbol was consumed during
the transition.

e 59 € V is the initial state.
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e p:V — Kis the final weight function.

Notice that a Weighted Finite State Automatons (WFSA), is just a
WEST where the input and output labels of each transition are identi-

cal. Thus, we can define a WFSA, A, over a semiring K, as a 5-tuple
A= (%,V,E,spp).

A semiring K is an algebraic structure with operations © and ®
(called addition and multiplication), with the following properties:

e (K, ®,0)is acommutative monoid with identity element 0. That
is:(a®b)@c=ad(b®c),00a=ad0=a,anda®b=bDa,
Va,b,c € K.

e (K,®,1) is a monoid with identity element 1. (4 ®b) @ ¢ =
1@ (b®c),and1®@a=a®1=a,Va,b,cecK

e The multiplication (®) distributes over the addition (). That
issa®(bdc) = (a®b)® (a® c) (left-distributivity) and (a &
by@c= (a®c)® (b c) (right-distributivity), Va, b, c € K.

e The multiplication by 0 annihilates K. Thatis: 0®a =a®0 =0,
Va € K

In addition, in some semirings a division operation can be defined.
A semiring is called left divisible, right divisible or divisible when:

e Leftdivisible, iff Va € K — {0}, 3b € Ksuch thatb®a =1, and
b is unique (b is called the left-inverse of a).

e Right divisible, iff Va € K — {0}, 3¢ € K such thata®c = 1,
and c is unique (c is called the right-inverse of a).

e Divisible, iff it is both left and right divisible and the left- and
right-inverses are equal, Va € K — {0}.

In a divisible semiring (left, right or both), we can define a cor-
responding inverse operation to the multiplication, the division, rep-
resented by the operator ©@. Common semirings used in WEFST are
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shown in table 4.1. The Tropical and Log semirings are are widely
used in the field of speech recognition and HTR (and are used in
the following chapter), since they allow to define different operations
and algorithms using a small set of operations on WEST. For instance,
marginalization and the Viterbi decoding are equivalent to solving
the shortest distance and the shortest-path problems on a WFST in
the log and the tropical-semiring, respectively [Mohri, 2002].

Table 4.1. Common semirings used in Weighted Finite State Transducers.

Semiring K 0 1 adb a®b aQb
Real R 0 1 a+b a-b b

Tropical RU{c0} oo 0 min{a, b} a+b a—>
Log RU{} o 0 —logle™+e?) a+b a—b

As we already saw multiple times in the previous chapters, WFST
have a very intuitive graphical representation. For example, fig. 4.14
represents a WFST with input alphabet > = {4,b,c} and output al-
phabet I' = {X,Y, Z}, five states V. = {sp,s1, 52, 53,54}, with initial
state sy and two final states (a state s is final iff p(s) # 0) with p(s3) =1
and p(s4) = 0. The set of transitions is represented by the labeled arcs
in the figure. For instance the transition (so,a,X,2,s1) € E is repre-
sented by the arc connecting states sy and s; labeled with a : X /2.

b:7Z/1

b:72/2

Figure 4.14. An example of a Weighted Finite State Transducer.
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Usually, the transitions and final weights which are equal to 1 (i.e.
0 in the log or tropical semirings, as in the example) are omitted in
the graphical representation. For instance, in fig. 4.14, notice that the
final state s4 and the transition between states s3 and s4 do not show
any weight.

For convenience, given an edge e¢ € E, in our algorithms we typ-
ically use p|e] to refer to the origin (or source, or previous) state, n|e]
to refer to the destination (or next) state, wle] to refer to its weight,
and [;[e] and I,[e] to refer to its input and output symbols (or labels),
respectively (in the case of a WFSA, we simply use [e], since ;[e] =

Lo[e]).

A path T = ey,...,e is an element of E* with consecutive transi-
tions: nle;| = pleiv1],1 <i<k.

The weight of a path w(rn] is the ®-product of the weights of the
constituent transitions: w(rr| = wle1] ® wlez] @ - - - @ wleg]. Similarly,
the total weight of path, &[], is equal to the weight of the path and the
final weight of the destination state of the last transition in the path:
@[r] = wle)] @ wlea] @ - - @ wle] @ p(nfex])-

For instance, the weight of the path 7w = (sp,4, X, 2,51), (s1,4, X, 3,53),
in fig. 4.14, is equal to w[rr] = 2® 3 = 24 3 = 5 and its total weight
is@®[n] =2®3®1=24+3+1=6.

Any path that starts at the initial (or start) state (i.e. p[e1] = so)
and has a total weight different than 0 is a complete path. Equivalently,
a complete path is a path that starts in the initial state and ends in any
final state. Sometimes, when we want to emphasize that a path is not
complete, we will say that it is a subpath.

An important distinction between WFST is whether they are acyclic
or not. A WEST is acyclic if there is no possible path in it that traverses
the same state more than once. For instance, the WEST in fig. 4.14 is
not acyclic, since the path (s1,4,X,3,s3), (s3,b,Z,2,s3) goes through
the state s3 twice. It turns out that many problems related to WEST
have efficient solutions for acyclic WFST, or some conditions are al-
ways met in such cases.
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The rational relation defined by a (weighted) FST is given by its
set of complete paths. For instance, fig. 4.14 transduces (relates) the
string a4, a, b into (to) X, X, Z with a weightequal to 2 ®3®2® 1 = 8.

In the previous example, there was a single path representing the
given relationship, but in general there may exist multiple complete
paths. Then, we say that the FST is ambiguous. In such case, the weight
of a given element of the relation (an input—-output sequence of sym-
bols) is the ®-sum of all complete paths representing that element.
Thus, if T'isa WFST and (x,y) € * x I'* is an element of the relation
represented by the WFST, its weight is defined as:

T(x,y) = ey ol (4.32)

ﬂ:li[ﬂ']:X/\lu[n]:y

Observe that the WFST in fig. 4.14 is actually unambiguous since
each complete path in the WFEST represents a different pair of input-
output strings.

Similarly to the previous definitions of ambiguity, we can define
equivalent properties only looking at the input or output language of
the WFST. For instance, we say that a WFST is unambiguous on its input
(output) if, and only if, for each input (output) sequence of symbols
there exists only a single path that accepts (produces) this string.

Another important distinction between WFSTs is whether they are
functional or not. A WEST is functional if each input string relates only
to a single output string (i.e. the relation that the WEST represents
is a function). For instance, the WFST in fig. 4.14 is not functional,
since the input sequence 4,4, b, c is related to both output sequences
X,X,2,Y and X, X,Z,Z (with weights 2+54+1+14+0 = 9 and
24342+ 0+ 0 =7, respectively).

4.6.2 OPERATIONS

Next, we will briefly describe some of the most relevant operations
on WFSTs which will be used in the following section to implement
the algorithms developed in this thesis.
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4.6.2.1 Composition

Composition is one of the fundamental operations to create complex
WEST from simpler ones. This operation is used very often when
different probabilistic models have to be combined.

Let K be a commutative semiring (i.e. a semiring with the prop-
erty thata®@b = b®a,Va, b € K). Let Ty = (£,Q, V3, Eq,50,01) and
T, = (O, T, V5, Ey, 51, p2) be two WESTs defined over KK, such that the
output alphabet of T; is equal to the input alphabet of T, and assume
that the sum @, - T1(x, z) ® Ta(z,y) is well-defined and in K for all
pairs of strings (x,y) € L* x I'*. Then, the result of the composition
of Ty and T; is a WFST, denoted by T; o T,, defined by:

[Ty 0 2] (x,y) = P Ti(x,2) ® Ta(z,y) (4.33)

zeO)*

Each state in the WFST T3 = Tj o T; is represented by a pair of
states from T; and T,. Without taking into account transitions with
input or output € symbols (which require an special treatment), then:

(s1,a,b,w,s2) € Ey A (s},b,c,w',s5) € Ep
=
((s1,81),a,c,w® W, (s2,85)) € E3 (4.34)

Thankfully, an efficient algorithm to perform the composition of
arbitrary WFSTs exists [Mohri et al., 1996, Mohri et al., 2008], which
is a generalization of the classical state—pair construction for the inter-
section of FSA [Hopcroft et al., 2006]. This algorithm has an asymp-
totic cost which is essentially’ O(|V;]|Va|D1M;), where |V;| is the
number of states, D; is the maximum output degree (maximum num-
ber of output edges from any state), and M; is the maximum output
multiplicity (maximum number of output edges with the same label)
of the i-th WFST in the composition.

Figure 4.15 shows one of the many uses of the composition oper-
ation when handwritten text is modeled as the combination of differ-
ent probabilistic models. In the figure, a lexicon model, which maps

9Depending on the implementation, the cost may be slightly different.
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bread / 0.36

oil /12
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(b) T, a langua

ge model

(c) Composition of Ty and T,

Figure 4.15. Example of the composition of two Weighted Finite State Transducers.

characters into words, is composed with a language model, which is
used to represent the set of possible sentences (and their respective
probabilities). This is, of course, a very simple example of the com-
position operation. In practice, the resulting WEST would be further
composed with others, representing other distributions of the com-
posite model.

4.6.2.2  Shortest path and distance

The shortest path problem has been deeply studied in Computer Sci-
ence. Generally speaking, given a graph with several nodes the goal
is to obtain the path with the smallest total weight between a source
node and the rest of the nodes in the graph. The problem was first
tackled in [Dijkstra, 1959] for directed graphs with non-negative real
weights. Generally speaking, we say that the total weight of the short-
est path from node s to node s’ is the shortest distance from s to s'.

The shortest path problem arises very often in speech and hand-
written text recognition applications. Particularly, the Viterbi algo-
rithm [Viterbi, 1967] finds the sequence of states in a probabilistic
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model (e.g. a HMM or a combination of these) that maximizes the con-
ditional density of the observed data. Thus, if we are able to express a
probabilistic model as a WFST, we can then apply the generic shortest
path algorithm to solve the same problem as the Viterbi algorithm, by
minimizing the negated (logarithm of the) likelihoods [Mohri et al.,
2008].

Take for instance the transducer represented in fig. 4.16 and as-
sume that its weights are in the tropical semiring (i.e. a® b = min{a, b},
a®b = a+b). Then, there are two paths with a total weight corre-
sponding to the smallest: the path 711 = (so,4,X,1,s1), with a total
weight of 1 ® 1 = 2; and the path 7 = (s9,4,X,1,51), (51,6, 2Z,1,51),
with a total weight of 1®1®1=14+0+1=2.

b:Y/2

Figure 4.16. Example of a cyclic WEFST which admits a shortest distance algorithm
in the tropical and log semirings.

The single shortest path algorithm can be extended to obtain the
n-shortest paths, and we actually use this algorithm in several of our
probabilistic indexing algorithms. The asymptotic temporal cost of
the n-shortest paths algorithm is O(|V|log |V| + n|V| + n|E|).

The interesting particularity of WFSTs is that the shortest distance
problem is not defined in terms of finding the smallest total weight of
the path between two states, but in terms of computing the ®-sum of
the weights of all paths between the two:

d[s,s'] = . w|m] (4.35)

mp|n]=sAn[r]=s'

On the one hand, if we assume that the weights are in the tropi-
cal semiring, the @-sum defined above obtains the minimum weight
(recall that a @ b = min{a,b}). On the other hand, if we compute
the same sum in the log semiring, we obtain the “log-sum-exp” of the
weights (since a & b = —log(exp(—a) + exp(—b))). When transduc-
ers are acyclic the ©-sum from one state to the rest, can be computed
very efficiently in O(|V| + |E|).
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For instance, back to fig. 4.16 the shortest distance between state
so and s, in the tropical semiring is 1 ® 1 = 1, but the shortest distance
in the log semiring is equal to:

Me(102)d(1R202)6 - =

[ N—
P1e2w - 02 ~2232 (4.36)

Although we can loop indefinitely on the state s;, the total cost in the
log semiring finally converges.

This is very convenient in text and speech applications, since very
common algorithms such as the Forward and Backward [Baum and
Eagon, 1967, Baum et al., 1970], and the Viterbi algorithms have the
same implementation, but using different semirings.

Although further details of these operations are not required to
understand the algorithms presented in the next chapter, we recom-
mend the reader to review the works of [Mohri, 2002, Mohri and Ri-
ley, 2002, Mohri, 2004, Mohri et al., 2008], if additional information is
needed.

4.6.2.3 Determinization

We say that a FST is deterministic in its input (or its output) if there is
no node with two output transitions with the same input (or output)
label [Mohri, 2004]. This is analogous to the definition of determinis-
tic automaton [Hopcroft et al., 2006].

The determinization operation consists on finding a deterministic
and equivalent WEST to the given one. By equivalent, we mean that
it represents the same weighted rational relation (i.e. the same proba-
bility distribution, in the case of probabilistic models).

Unlike in the unweighted case, some weighted transducers (and
automata) are not determinizable (i.e. there is not any equivalent
WEFST which is deterministic). Luckily, we use the determinization
operation typically on lattices, which are acyclic WFST, and these are
always determinizable [Allauzen and Mohri, 2002].
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A deterministic WFST has very interesting properties. In particu-
lar, a deterministic WFST (or automaton) is also unambiguous (in its
input or output).

The determinization algorithm is an extension of the powerset
construction [Rabin and Scott, 1959], used to determinize finite state
automata. Thus, the worst case asymptotic cost is exponential with
the number of states in the WFST, i.e. O(exp(|V])). However, for
our purposes this worst case scenario is rarely reached in practice, as
we will see in the next chapter. In particular, we will use the deter-
minization algorithm to create the probabilistic indexes from lexicon-
free models (see section 5.3).

4.6.3 THE CTC ALGORITHM AS ELEMENTARY WEFST OPERATIONS

Earlier in this chapter, we described how HMM-based systems can
be implemented using WEST. It turns out that the CTC algorithm can
also be implemented as elementary operations on WEST.

In section 4.3.4.1 (particularly, fig. 4.9), we have already repre-
sented the output of the neural network using the CTC algorithm as
a WFST, over the set of sequences of labels.

Nevertheless, recall that labels are not the same as characters, since
a special CTC-blank symbol was added to account for the multiple
alignments of a sequence of characters. To map from labelings to se-
quences of characters, we presented a simple function that the CTC
uses.

In fact, this function can be represented as a WFST. Then, we can
apply this function to a given NN output by simply composing the
two WEST. If we want to obtain the set of labelings of a given refer-
ence transcript (in order to compute the sum of all their probabilities),
we can then simply compose the resulting WFST with a transducer
representing the reference transcript, as depicted in fig. 4.17.

Then, we can compute the (log of the) sum of all probabilities us-
ing the Forward or Backward algorithms. This, as we mentioned be-
fore, simply means to compute the shortest distance in the log semir-
ing.
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Figure 4.17. Example of the CTC algorithm implemented as the composition of sev-
eral Weighted Finite State Transducers.

In practice, the CTC algorithm is not implemented using these ele-
mentary WEST operations, because more efficient algorithms exist to
treat this special case. In any case, treating the output of the neural
network trained with the CTC as a WFST, allows us to obtain charac-
ter lattices from the network without the need of any language model.

4.6.4 LATTICES REPRESENTED AS WFST OR WEFSA

In the literature, there are multiple definitions of a lattice. Some au-
thors [Ljolje et al., 1999] simply define a lattice as a labeled, weighted,
directed acyclic graph containing the transcription hypotheses, and
their (log-)probabilities or (log-)densities (depending on whether they
represent P(W | X) or P(W, X)). Most of the seminal works are ap-
plied to speech recognition, where it is sometimes useful to represent
the “time” at which a certain word was uttered [Ortmanns et al., 1997].
In the traditional HTK toolkit, lattices can contain character and/or
word “time” alignment information, as well as HMM or state-level
alignment information [Young et al., 2002].
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In our algorithms, we use the definition of lattices adopted in
[Povey et al., 2012]. In this definition, lattices are defined as WFSTs
where the output symbols are the words (or characters, in lexicon-
free models), and the input symbols represent the most fine-grained
hidden variable of our probabilistic model. For instance, if we use a
HMM-based approach, each symbol in the input alphabet represents
an individual state!?. If we use a CTC-based approach, then the input
alphabet represents labels, as we showed in fig. 4.17d.

Just as the aforementioned figure shows, e-symbols are used at
the output to cope with the fact the the number of output symbols (e.g.
words) is typically smaller than the number of state transitions/labels.
Epsilon symbols are not allowed at the input.

Given this definition, all paths leading to a given state have the
same number of input symbols. Thus, we can easily associate a “time”
(in speech) or “column” (in text) to each state. For instance, in fig. 4.17d,
the WEST has a left-to-right order of the states. The “time” or “col-
umn” associated to the first (initial) state would be t = 0, the next
two states would have a time t = 1, the next three states t = 2 and
the last two (final) states would have a time t = 3, which is equal to
the number of input feature vectors.

In most cases, the state/label symbols in the input of the transi-
tions are only needed to determine the time-position of the states.
Thus, we can represent the lattices in a more compact form (using less
states and arcs). For the sake of brevity in our algorithms, we define a
compact lattice as a WESA representing only the possible sequences of
words (or characters) of the transcription, and an associated function
T that contains the time of each state.

Figure 4.18 represents the lattice from fig. 4.17d and its equivalent
compact lattice. Notice that the alignment information about the in-
put symbols (CTC labels) is lost, but the time-alignment information
is kept (7 is represented by the numbers inside each state).

Our definition of a compact lattice is not exactly as implemented,
but we decided to avoid unnecessary details about the implementa-

10 Actually, a transition between two states, for convenience.
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Figure 4.18. Example of a lattice, represented as a WFST (fig. 4.18a), and an equiva-
lent compact lattice, represented as a WFSA (fig. 4.18b).

tion, for the sake of clarity in our algorithms. There is an efficient
algorithm that converts an arbitrary lattice into its compact form.



Indexing for Fast Keyword
Spotting

In chapter 2 we presented the framework of Probabilistic Keyword
Spotting, which introduced theory-grounded principles to rank a set
of results given a user’s query. Essentially, the distinct flavors of rele-
vance probabilities need a way of representing the posterior distribu-
tion over the transcripts, w, of a text image, x. That is, a model of the
distribution P(W | X).

In chapter 4, and particularly in section 4.6, we saw that this dis-
tribution, for a given text image, can be efficiently represented using
Weighted Finite State Transducers (WFST).

In principle, for each query, we could first build the representation
of P(W | X) as a WFST and then computethe P(R =1 | X =,V =
v,...) using standard operations on WFST (composition and shortest
distance).

However, notice that P(W | X) is independent of the particular
query that a user might be interested in, and thus can be precomputed.
In addition, if we want to build very fast applications that can be used
in practical scenarios, we need to be able to compute, or approximate,
P(R=1|X=1xV =v,...) really fast.

Actually, we could even try to precompute this relevance proba-
bility in advance, for all keywords that are likely to be present in each
of the documents of our collection. Then, we can simply store this
information in a (probabilistic) search index, and let the users query
this index directly.

In this chapter, we will introduce different algorithms to build
such indexes, for each of the flavors of the relevance probability in-
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troduced in chapter 2. These algorithms are all based on standard
WEST algorithms, thus it is vital to understand the operations and al-
gorithms described in section 4.6. If the reader has skimmed through
the thesis, we highly suggest to go back and review the previous sec-
tion.

5.1 Indexing lexicon-based lattices

5.1.1 POSITION-INDEPENDENT RELEVANCE

Here, we are interested in building an index that contains whole-
region relevance probabilities, for each of the possible words written
in the image. Essentially, we need an algorithm to compute, for all
possible words v in a particular vocabulary X, the following probabil-
ity (recall eq. (2.7)):

PR=1|X=xV=0v)= ) PW=w|X=x)
weL(v)

Using basic WFST operations, this can be done quite easily and
efficiently. First, we need to obtain the set of paths from the WFST
that contain the label v in any of its arcs (we will assume that the tran-
script is represented by present the output language of the WFST).
In order to do so, we can compute the composition between the in-
put WEST and a deterministic automaton representing the language
L(v) = X* v X*, which we will refer to as Q. Figure 5.1 represents the
minimal deterministic! automaton for such language.

The result of this composition will be a new WEFST containing all
paths from the original WEST that contain at least one arc with the
label v in its output. Then, we just need to compute the total sum of
weights of all its paths (using the Backward algorithm, for instance).

In order to build an index for a given WFST, we can repeat this pro-
cedure for all the word labels in any of the edges of the input WFST.
Algorithm 5.1 describes this procedure.

!t is crucial that Q is deterministic in order to avoid duplicated paths in the
resulting WFST. However, it’s not required that the automaton is minimal.
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L —{v} b3

Figure 5.1. Minimal Deterministic Automaton accepting all sequences containing
the symbol v, that is the language ¥* v ©*. When a FST representing the set of hy-
potheses of a text image is composed with this automaton, the resulting FST includes
all the original hypotheses (and their costs) that include at least one instance of the
symbol v.

Algorithm 5.1 Compute a word index for whole text regions based
on word compact lattices.

Require: A = (X,V,E,sy,p) is a compact lattice.
1: procedure LATTICEWORDINDEX(A)
2: B <~ BACKWARD(A) »Backward likelihood vector of each state

3: S <~ LABELSET(A) >Set of all labels in A
4: [+ @
5: forallv € Sdo
6: Let Q, be the automaton represented in fig. 5.1.
7: C<+ Ao(Qy >Composition
8: B’ < BACKWARD(C)
9: Let s(, be the initial state of C.
10: SETINSERT(I, (0, B, @ Bs;)) ~ »Normalize to get probability

return [

5.1.1.1 Asymptotic cost of algorithm 5.1

Observe that the cost of steps 2 and 3 is O(|V| + |E|), where |V| is the
number of states and | E| the number of arcs in the WFSA. The cost of
the composition operation in line 7 is also O(|V| + |E|), if special la-
bels are used to represent the X-arcs in fig. 5.1, and a special matching
algorithm is used during composition (i.e. p-composition).

In addition, if a WFST is trim (i.e. all states are accessible), then
|E| > |V| —1. Thus, the asymptotic cost of the entire algorithm is
O(|S| - |[E]). Finally, since |S| < |E|, then we can simplify this expres-
sion as O(|E|?).
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5.1.2 LEXICON-BASED SEGMENT RELEVANCE

In section 2.2.2 we outlined the case that sometimes is required to
highlight the location where a keyword’s instance was found within
a text region. In this scenario, we cannot use algorithm 5.1, since we
need an algorithm that generates an index of the relevance probabil-
ities given by eq. (2.16), for all possible keywords and keyword in-
stances alignments.

In order to efficiently do this, we will use the lattices generated
from a text line image, and build an index from them. Since we need
information about the alignment of each word instance within the im-
age, we will assume that, in addition to the WFST, we have a vector T
denoting the image column aligned to each state of the WEST (i.e. the
lattice), as explained at the end of the previous chapter.

Recall from eq. (2.16), for a given word v and segment between
the columns (co, ¢1), we need to simply sum the posterior of all tran-
scripts and alignments that contain an instance of that keyword in
that precise location:

P(R:l | X:x/V:'U,La: (CO/Cl)) -
Z Z P(W = wl:n/A = C1:n+1 | X = x)

wl%ei*zsﬂk: ”l:n+l€Nn+lf
k Ap=CoN\aj41=C1

The algorithm that computes this relevance probability, for all word
present in the lattice, is depicted in algorithm 5.2. Since each arc is
associated to a particular word and alignment (c¢ is the column as-
sociated the arc’s origin state, and c; is the one associated the arc’s
destination), the algorithm simply traverses all the arcs in the lattice
and accumulates the likelihood of all paths through the arc, and fi-
nally normalizes the joint likelihoods into posteriors.

5.1.2.1 Asymptotic cost of algorithm 5.2

The asymptotic cost of algorithm 5.2 is clearly linear in the number of
states and arcs of the input weighted automaton (i.e. lattice). First, ob-
serve that both the forward and backward algorithms have an asymp-
totic cost of O(|V| + |E|), for acyclic weighted automata. Then, the
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Algorithm 5.2 Compute a word index for text segments based on
word compact lattices.

Require: A = (X,V,E,sp,p) is a compact lattice, T is the associated
function determining the frame aligned to each state in V.

1: procedure LATTICEWORDINDEXSEGMENT(A, T)
2 « < FORWARD(A) >Forward vector of each state
3 B <~ BACKWARD(A) >Backward vector of each state
4: Uu+o >Unnormalized index
5: foralle € E do
6 v 4 l[e] >Word associated to the arc
7 i+ p[e] >Source state of the arc
8 ] — n[e] >Destination state of the arc
9: w < wle] >Weight (likelihood) of the arc
10: 4w w- ,Bj >Total likelihood through the arc
11: MAPINSERTORSUM(U, (v, T[i], T[]j]), t)
12: [+ ©
13: forall ((v, 75, ), w) € U do
14: MAPINSERT(], (v, T5, Te), w @ Bs,) >Segment relevance
return [

loop in step 5 of the algorithm traverses all the arcs in the WFSA again
and performs different operations which are all done in constant time,
and inserts (or updates) an element to a map structure (which can be
done in O(1) if using hash tables, for instance). Finally, the loop in
step 13 just normalizes the scores computed in the previous step to
obtain posterior probabilities. Observe that the number of elements
in the map U (the unnormalized index), will be at most |E|. Thus, the
total cost of the algorithm is O(|V| + |E|).

Again, notice that the number of arcs is generally larger than the
number of states in the WFSA. Thus, we can approximate the total
asymptotic cost of algorithm 5.2 using a single variable as O(|E|).

5.1.2.2 Relevance conditioned on individual columns

In section 2.2.1, a relevance probability conditioned on individual
columns was also presented. More precisely, eq. (2.13) was intro-
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duced to compute it:

PR=1|X=xV =1L =c)=
Z Z P(W:wlzn/A = Clin+1 | X:x)

101:”63*,%: a1.y41 ENIHL:
Wk=Y  ge<c<agq

Computing this relevance probability can be done using an algo-
rithm very similar to algorithm 5.2, and has been deeply studied in
the literature [Hazen et al., 2009, Toselli et al., 2013, Toselli et al., 2016b].
The difference is that once a given arc is traversed, we need an addi-
tional loop to increase the accumulator corresponding to each of the
columns in that arc’s segment.

5.1.3 LEXICON-BASED TRANSCRIPT POSITION RELEVANCE

A relevance probability of a transcript position was presented in sec-
tion 2.2.3. Here, the relevance of a word position relative to the num-
ber of words in the transcript is presented. This relevance probability
is very interesting since it allows to consider the relevance of word
instances regardless of their multiple alignment hypotheses.

In addition, as we will see later, this relevance probabilities enable
us to build probabilistic positional indexes, very similar to the ones
used in traditional search engines, which enable the system to operate
with phrase queries (i.e. searching for sequences of words).

5.1.3.1 Disambiguating word position associated to states

Lattices are WFSA for which all arcs entering a given state are aligned
to the same column of the text line image. That is, all the words that
enter a particular state end at the same physical position.

However, in general, the different arcs entering a state could be
part of paths whose number of words is different, as in the example
shown in fig. 5.2.

Algorithm 5.3 takes an input lattice, whose arcs represent words
in the set of transcript hypotheses, and produces an equivalent WFSA
such that all input paths to each state have the same number of words.
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In short, the algorithm does that by decoupling the states where there
are input paths with different lengths.

she / 0.3 @ is/ 1.0 @

she’s /0.7

Figure 5.2. Example of the disambiguation of the word position associated to the
states of a lattice. In he first lattice the only restriction is that each state is associated
to the last column of the alignment of the input words to that state. In the second
lattice, all paths entering each state have the same number of words. This way, we
can associate a word position to each state (and arc) of the WFSA.

Notice that, because the arcs in the lattice represent full words, we
just need to keep track of a counter which is incremented each time
that a non-epsilon arc is traversed (see lines 12-15). When we reach
a state with a different count than the previously observed, we add
that pair of state and count to the queue of pending output states
(lines 16-18).

Finally, observe that each state in the input WFSA will be added,
at most, K; times to the queue, where K; is the maximum word count
input degree (i.e. the maximum number of different path lengths ar-
riving to any state). Thus the running time of the algorithm is O(K; -

(IVI+ |E])).
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Algorithm 5.3 Disambiguate word lattice states to ensure that all
paths entering a state have the same word count.

Require: A = (X, V,E,so,p) is a compact lattice.
1: procedure LATTICEWORDDISAMBIGUATEWORDCOUNT(A)

2: V'« {(s0,0)} >States of the output WFSA
3 E<«+© >Arcs of the output WFSA
4: Q < {(50,0)} >Pending output states
5: while Q # @ do
6: (i,k) < QUEUEPOP(Q)
7: p'[(i, k)] « p[i] >Final weight for state (i, k)
8 foralle € E: ple] =i do
9: v < I[e] >Word associated to the arc
10: j < nle] >Destination state of the arc
11: W $— w[e] >Weight (likelihood) of the arc
12: if v = € then
13: k'« k >Do not increase the word position
14: else
15: K +—k+1 >Increase the word position
16: if (j, k') ¢ V then
17: QUEUEPUSH(Q, (j, k)
18: Vi~V U{(,K)} >Add the new state
19: E' < E'U{((i,k),(j k), v,w)} >Add new arc
20 return A’ = (X, V', E/, (50,0),0)

5.1.3.2 Position index construction

Algorithm 5.4 describes the procedure used to obtain the word po-
sitional index from word lattices. The first step in the algorithm is
to use algorithm 5.3 in order to disambiguate the input length of the
paths arriving to each state. Once this step is complete, the remaining
is quite trivial: we simply traverse all arcs of the resulting WFSA and
add the word and positions associated to the arc to the unnormalized
index. The last step in the algorithms traverses the index to normalize
the likelihoods (or other unnormalized scores) in it. The total likeli-
hood arriving to and leaving from each state is computed using the
Forward and Backward algorithms, respectively.



5.1.3. LEXICON-BASED TRANSCRIPT POSITION RELEVANCE 115

Algorithm 5.4 Compute a positional index based on word compact
lattices.

Require: A = (X, V,E,sp,p) is a compact lattice.
1: procedure LATTICEWORDINDEXPOSITION(A)
2: A’ < LATTICEWORDDISAMBIGUATEWORDCOUNT(A)

3: Let A'be A’ = (X, V', E/, (s0,0),0).

4 B < BACKWARD(A')

5: U+

6: foralle € E' do

7 v 4~ l[e] >Word associated to the arc
8: if v # € then

9: (i, k) < ple] >Origin state of the arc
10: (j, k') < nle] >Destination state of the arc
11: w + wle] >Weight (likelihood of the arc
12: t < Ay - W - :B(j,k/) >Total likelihood through the arc
13: MAPINSERTORSUM(U, (v, k), t)

14: [+ O

15 forall ((v,k),w) € Udo

16: MAPINSERT(], (v, k), w @ Bs,) >Word position relevance
17: return |

5.1.3.3 Asymptotic cost of algorithm 5.4

As we discussed earlier, the cost of the first step is O(K; - (|V| + |E|)),
which is the same as the Backward algorithm, and traversing all edges,
with respect to the original size. Thus, this is the worst case asymptotic
cost of algorithm 5.4.

We could simplify this expression with further assumptions. Ob-
serve that K; can be upper bounded with D; < |E|, where D; is the
maximum input degree (i.e. the maximum number of arcs arriving to
a state). This is the case, for instance, when one state has inputs from
all other states, each of which would have a different word position
associated to it. Thus, the worst asymptotic cost can be (conserva-
tively) upper bounded by O(|E|?). In practice, the algorithm is much
faster since D; < |E]|.
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5.2 The out-of-vocabulary problem

In the previous section, we described a set of algorithms that can
be employed to compute each one of the relevance probabilities that
were introduced in chapter 2. However, as we already mentioned, all
these algorithms assume that a word lattice representing the set of hy-
pothetical transcripts of a text region was given. In order to obtain
such lattices, researchers typically use a closed word lexicon and a
word n-gram language model, as described in sections 4.5 and 4.6.

Nonetheless, this assumption carries an important restriction, which
may be prohibitive in practical applications: the need to know which
words can be written in our collection of documents. The only way
to ensure that all words (including names, dates, numbers, etc) are
present in the lexicon is to “read” the entire collection before indexing
it. Of course, “reading” it is part of the problem we are trying to solve,
thus we face a chicken and egg situation with this approach. In prac-
tice, many systems are restricted to work with a (typically very large)
subset of words from the collection, usually extracted from the set of
training samples, which have been manually transcribed to train the
statistical models described in chapter 4.

Notice that when we restrict our statistical models to a small sub-
set of words, by definition the rest of the words have a prior probabil-
ity equal to zero, and thus will never be “recognized” or “spotted” by
our text recognition or word spotting system.

On the contrary, if we use an excessively large lexicon, we may
increase the chances that our system makes avoidable mistakes (since
we are introducing noise to our statistical model) and, most impor-
tantly, the system can be excessively slow.

This problem has been widely studied in the fields of Speech Recog-
nition and Text Recognition [Asadi et al., 1991, Young, 1994, Wood-
land et al., 2000, Bazzi, 2002], and it is a fundamental flaw of lexicon-
based systems, which affects other domains such as Statistical Ma-
chine Translation, Spoken Dialog Systems, Image Captioning, etc. Some
authors have proposed using a combination of word and character-
based models, in order to avoid the issue [Yazgan and Saraclar, 2004,
Szoke et al., 2008, Kozielski et al., 2013]. In the context of keyword
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spotting, apart from using lexicon-free approaches, we have tried in
the past to smooth the word indexes (produced by the methods de-
scribed in the previous section) to account for potential out-of-vocabulary
queries [Puigcerver et al., 2014b, Puigcerver et al., 2014a, Puigcerver

et al., 2015a, Puigcerver et al., 2017].

In the following section we propose a different and more straight-
forward approach, based on the two following requirements:

1. We wish to build word-based indexes, since these allow for very
fast searches on large collections of documents (i.e. constant
with respect to the number of indexed documents).

2. We need to account for any potential word written in the collec-
tion, including proper names, foreign language words, etc.

Hence, the next solutions will employ character lattices obtained
from lexicon-free statistical models (i.e. no closed lexicon is assumed),
but will manipulate them to extract pseudo-words (and build an index
for them). These algorithms assume that a word is any sequence
of characters in-between some special delimiter characters such as
whitespace, punctuation marks, etc.

This could be considered a serious limitation. For example, in
early manuscripts it was very common to write several words, or
even complete lines, without lifting up the quill from the paper (thereby
resulting in text without any kind of optical word-separating clues).

However, it is important to emphasize that this does not mean
that we expect word delimiters to actually appear in the images. For-
tunately, lexical and/or language models help solving this problem
very adequately. If training transcripts include these separators, (re-
gardless whether they are actually rendered or not in the associated
training images), the trained models generally provide significant prob-
ability to the required word separators on the right context, even if
they do not appear at all in the test images.

In most languages, words can be decomposed as a sequence of
characters. Generally speaking, the number of characters in a given
alphabet, is much lower than the number of words that can be formed
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in any of its languages, which one may argue that is not even bounded.
Thus, when training statistical models of handwritten text, one may
expect to have an instance of all interesting characters, but one may
not assume that all possible words were observed during the training
of the model. In this sense, lexicon-free models solve the problem of
out-of-vocabulary words.

5.3 Indexing lexicon-free lattices

Unfortunately, lexicon-free (i.e. character) lattices prevent us from
using the algorithms presented in the previous sections to build word
indexes for fast user searches. This is because the arcs in the WFSA
no longer represent words, but individual characters.

Recall that the goal of the algorithms in this section is to pro-
duce a “pseudo-word” index from character lattices. Ideally, pseudo-
words should be sequences of characters that form “real” words, and
the probabilistic indexes should assign a large probability to pseudo-
words written in the image.

5.3.1 FROM CHARACTER TO WORD LATTICES

We first designed an algorithm that converts a character lattice (a lat-
tice whose arcs represent individual characters of a transcript) into a
word lattice (whose arcs represent full words). Typically, the delimiter
character that we use to separate the words is the whitespace symbol
(i.e. a word is anything written between two whitespaces).

More formally, given a function A : X — C that assigns a class
to each label (i.e. character) of the alphabet X, algorithm 5.5 takes a
WESA and produces an equivalent WESA such that each arc in the
output WFSA is a subpath of the input formed by arcs with the same
label class. The function A is essentially used to determine whether
or not a given character is a delimiter.

The two automata are equivalent, in the sense that all (and only)
complete paths in the original WFSA are present in the output WFSA
with exactly the same total weight. The equivalence is fundamental
in order to preserve the distribution over transcript hypotheses.
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Algorithm 5.5 Expansion of subpaths formed by labels of the same
class in a WFSA. The algorithm obtains an equivalent WFSA such
that the arcs represent subpaths in the input WFSA formed by labels
of the same class.

Require: A = (X,V,E,so,p) is compact lattice, A is a function that
assigns a class to each label (i.e. character).

1: procedure LATTICEEXPANDSUBPATHS(A, A)
2 Ce + Ale] >Class of the epsilon label
3 Y0 >Alphabet of the output WFSA
4: V'« {(s0,ce)} pStates of the output WFSA
5: E+© >Arcs of the output WFSA
6 X<+—0 >Origin arcs of subpaths, to avoid repetitions
7 S« {(So, Ce, S0, Ce, 1, e) } >Stack of pending subpaths
8 while S # @ do
9: i,¢i,j,Cj,w,x < STACKPOP(S)
10: z+0 >Whether the subpath may end in state (j, c;)
11: foralle € E: ple] = j do >For all output arcs from state j
12: a<+1 [e] >Label (character) of the arc
13: k < nle] >Destination state of the arc
14: V 4— w[e] >Weight (likelihood) of the arc
15: if a = € then
16: Ck < Cj >Class of the arc is that of the predecessor
17: else
18: cx < Ala] >Class of the arc is given by A
19: if cj = ce V¢p = ¢ then >Keep expanding subpath
20: STACKPUSH(S, (i,¢;, k, ¢y, w @ v, xa))
21: else
22: z<+1 >Subpath ends in state (j, c;)
23: if (j,cj,e) ¢ X then
24: >New subpath from (j, ¢;) through arc e
25: STACKPUSH(S, (j, c;, k, cx, v, a))
- R
' rCj
28: ifi ZjA(p(j) #0Vz=1)then  >Subpathendsin (j,c;)
2. V' V' U{(j, )}
30: E' < E'U{((i,ci), (j,cj), x,w)}
31: Y X U{x}
32:  forall (s,c) € V' do
33: p’((s, C)) — p(S) >Set final weight of the output states

34: return F' = (V', E’, (o, ¢e), 0)
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Each state in the output WFSA will be identified by the state of
the input WFSA and the class of the subpaths that arrive to that state.
Hence, the initial state of the output FST is the pair formed by the
initial state of the input automaton and the class of the epsilon label
(see lines 1-2), which is the class of the paths that do not contain any
symbol (in the case that the automaton is not epsilon-free). An initial
empty subpath is added to a stack that will process all the pending
subpaths that are formed in the WFSA (see line 5).

While there are subpaths in the stack, the top one is extracted and
the arcs leaving from the last state in the path are considered. If the
considered arc has a label which is of the same class as the current
subpath, it is extended with such arc and it is added to the stack (see
lines 16-17). On the contrary, if the arc is from a different class, it
means that a new subpath will start from the current state through
that arc. The new subpath is added to the stack, and the pair formed
by the output state and the traversed arc are added to the set X to
avoid expanding subpaths through the same arc in the future (lines
20-25).

At the end of each iteration, if the last state of the current subpath
is final or had an outgoing arc of a different class, it means that the
subpath ends in the current state and, hence, an arc is added in the
output WFSA to represent the current subpath (lines 26-28).

Finally, once the stack has been emptied, all the states from the
output automaton are traversed and the final weight of each state is
set to that of the corresponding state in the input WFSA.

5.3.1.1 Example of algorithm 5.5

In order to better illustrate how algorithm 5.5 operates, fig. 5.3 shows
an example of the output produced by this algorithm on a small char-
acter lattice.

Notice that the third and last states in the original automaton (de-
picted in fig. 5.3a) are duplicated in the output (see fig. 5.3b) because
they have input arcs with the two classes of characters (regular char-
acters and the delimiter).



5.3.1. FROM CHARACTER TO WORD LATTICES 121

As we explained in the description of the algorithm, the two WFSA
are equivalent, in the sense that they represent the same sequences
of characters. In the original WFSA there are 12 accepted sequences
(each of the complete paths in the automaton). In the output, WESA
the same sequences of characters are accepted with the same weights.

For instance, the sequence “b a b a” in the original WFSA is also
represented in the output with total weight equal to 0.072, but there is
a single arc in the output automaton to represent the whole sequence,
since it is formed exclusively by “regular” symbols.

In contrast, the sequence of characters “b @ b a”, represented by
four arcs in the input (with total weight equal to 0.072), is represented
by three arcs in the output WFSA: the arc “b” (with weight 0.6), the
arc “@” (with weight 0.5), and the arc “b a” (with weight 0.24).

5.3.1.2 Asymptotic cost of algorithm 5.5

Since algorithm 5.5 expands subpaths in the original WEFSA, it is clear
that the worst case could have an exponential cost with the size of
the graph. However, in practice, it behaves very well because the
complete paths in the input automaton are not fully expanded, thanks
to the delimiter symbols.

A single state in the input WFSA may be “replicated” in the out-
put WESA, depending on the class of the input arcs arriving to that
state. For instance, if C; distinct classes arrive to the state i, there will
be C; replicas of that in the output WESA. Thus, the number of states
in the output automaton is, at most, C; - |V|.

Now, suppose that the maximum output degree of the input automa-
ton is D,, and the maximum length (in arcs) of a subpath is L. Then,
since each state in the output WFSA is the origin of a subpath, there
will be, at most, D! arcs leaving each of the output states. Then, the
output WFSA will have at most C; - |V| - D} arcs.

Consequently, the worst asymptotic cost is essentially O(C; - |V| - DE).
Nevertheless, in practice we typically consider only two classes: de-
limiter characters (i.e. white spaces, punctuation symbols, ...) and
regular characters (i.e. letters, numbers, ...). Therefore, the cost can be
(approximately) expressed as O(|V| - DL) = O(exp(Llog D, + log |V])).
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(b)

Figure 5.3. Example of algorithm 5.5. Figure 5.3a shows the original character WFSA,
where the symbol “@” represents the character that separates words and symbols “a”
and “b” represent regular characters. The output of the algorithm is the automaton
depicted in fig. 5.3b. Observe that the 12 complete paths present in the original
WESA are exactly the same complete paths that the output WFSA accepts, with the
same weights. However, the arcs in the output WFSA are formed by subpaths of the

input instead of individual characters, formed by symbols of the same class.
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The resulting WFSA can be used with any of the lexicon-based
algorithms presented in section 5.1. However, explicitly expanding
the subpaths of the lattice can generate some very big lattices in some
cases. Thus, it would be preferable if could use some algorithm that
avoids this expansion.

5.3.2 LEXICON-FREE SEGMENT RELEVANCE

The algorithm essentially consists of four steps, two of which are well
studied algorithms available in any software packaged designed to
manipulate WFST: First, it is disentangled so that all arcs arriving to a
given state are part of the same class, in a similar way to algorithm 5.3
with some ingredients from algorithm 5.5. Next, the lattice is trans-
formed so that the initial state is connected to every node which is
the start of a path corresponding to the non-delimiter class, and each
state which is the final of such path is connected to the final state.
Then, an equivalent deterministic lattice is obtained, which sums mul-
tiple equivalent alignments of the same word, and finally the n-best
word segments are obtained from the resulting lattice.

5.3.2.1 Encode character alignment

We need an initial step to encode the alignment of each character as
part of the label of the arc. In particular, we choose to represent the
alignment information using a transducer, but other options would
also be equivalent. Algorithm 5.6 takes a lattice represented by an
acyclic WFSA and the function mapping each state to its aligned col-
umn, and outputs an equivalent WFST which encodes the alignment
information at the output labels of its arcs.

5.3.2.2 Disambiguating the input class associated to states

The first step consists of disambiguating the input class associated to
each state in the original lattice, so that all arcs arriving to a particular
state are of the same label class (given by A, as seen in algorithm 5.5).
Algorithm 5.7 describes such disambiguation algorithm.

We start traversing the input WFST from the initial state (whose
class is the class of the epsilon label) and add a new output state each
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Algorithm 5.6 Encode the alignment of each arc in a lattice as part of
the output labels of a WFST. The original label is given by the input
label of the arc, and the alignment is given by a tuple in the output
label.

Require: A = (X,V,E,so,p) is a compact lattice, T associates a frame
to each statein V.

1: procedure LATTICEENCODEALIGNMENT(A, T)
2 E'+ @
3 <o
4 foralle € E do
5: S; p[e] >Source of the arc
6: §j < n[e] >Destination of the arc
7 a <+ l[e] >Label (character) of the arc
8 w + wle] >Weight (likelihood) of the arc
0 E' E'U{(si,5;a, (tli], 7[j]), @)}
10: I« Tu{(t[i],t}j])} >Output arc
11: returnT = (X,T,V,E/, 50,0) >The output is a WFST

time we arrive to an input state with a different class (according to
the label of the output alphabet), continuing the expansion from that
state. The asymptotic cost is O(C; - (|V| + |E|)), where |V|, |E| and
C; are the number of states, arcs and the maximum number of differ-
ent input classes to an state, respectively. The C; factor is due to the
fact that each input state is added this number of times to the queue,
and we add copies of all of its arcs each time it is extracted from the
queue. Figure 5.4 shows the result of algorithm 5.7 applied on a small
weighted automaton.

5.3.2.3 From subpaths to complete paths

In this step, we transform the lattice so that the initial state is con-
nected to every node which is the start of a path corresponding to
the non-delimiter class, and each state which is the final of such path
is connected to the final state. More generally, we transform the lat-
tice so that each subpath of a particular class in the lattice becomes a
complete path in the modified lattice. When we do so, the complete
paths in the lattice no longer represent transcript hypotheses of the
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Algorithm 5.7 Disambiguate the input symbols of the states in a
WEST. The algorithm obtains an equivalent WFST such that all labels
in the input arcs of each state are of the same class. The algorithm
disambiguates with respect to the input alphabet of the WFST.

Require: T = (X,T,V,E, s, p) is an acyclic WEST, A is a function that
assigns a class to each label (i.e. character).

1: procedure LATTICEDISAMBIGUATEINPUTCLASS(T, A)

2: ce < A(€) >Class of the epsilon label

3 V'« {(s0,ce)} >States of the output WFST

4: E+© >Arcs of the output WEST

5: Q <+ {(so,ce)}

6: while Q # @ do

7

8

9

(si, ¢;) < QUEUEPOP(Q) >Process output state (s;, ¢;)
0/ ((si,ci)) < p(si) >Final weight for output state (s;, ¢;)
foralle € E: ple] = s; do >Arcs leaving state s;
10: sj < nle] >Destination state of the arc
11: a<+ I [e] >Input symbol (character)
12: b+ I[e] >Output symbol
13: W — w[e] >Weight (likelihood) of the arc
14: if a = € then
15: Cj <€ >Class of the arc is that of s;
16: else
17: Cj A(a) >Class of the arc is given by A
18: if (sj,c;) ¢ V' then >Add output state (s;, cj)
19: V'« V/U{(sj,cj)}
20: QUEUEPUSH(Q, (s, ¢;))
21: E' «+ E'U{((si,ci), (Sj, Cj),a, b,w)} >Add output arc

22: return T’ = (X, T, V', E/, (so,ce), 0)
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(a) (b)

Figure 5.4. Example showing the result of algorithm 5.7 on a small WEST. On the left,
the input WFST (actually, a weighted automaton). On the right, the output of the
algorithm. Observe that the two WEFST are equivalent, but the states in the output
WEST ensure that all input arcs have labels of the same class (in the example, “@”
denotes the delimiter, and “a” and “b” are non-delimiter characters.

full image, but hypotheses of individual segments (corresponding to
a specific class). In addition, the weight (likelihood) of the complete
path is equal to the sum of all complete paths which shared that sub-
path. Algorithm 5.8 describes such algorithm.

The worst asymptotic cost of the algorithm is O(|V| + |E|), where
|V| and |E| are number of states and arcs, respectively, of the input
lattice. The forward and backward calculation and the while loop
share this cost.

Figure 5.5 shows an example of the output produced by algo-
rithm 5.8 on a small WESA. Observe that all complete paths in the
output automaton correspond to some subpath in the input, and the
weight of a complete path in the output is equal to the sum of all
paths containing that subpath in the input. Hence, we can obtain the
probability of a segmentation hypothesis as the total weight of a path.

5.3.2.4 From character to word alignments

Recall from algorithm 5.6 that we encoded the alignment information
of each character (i.e. each label in the input lattice) as the output
label of a WFST.
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Algorithm 5.8 Convert subpaths of the same class in a character lat-
tice to complete paths.

Require: T = (X,T,V,E, (so,¢e),p) is an acyclic WFST, output of al-

gorithm 5.7.

1: procedure LATTICECONVERTSUBTOCOMPLETEPATH(T)

e e S G = S =

NN
=

NONN

N
S

—_
= 2

—_
2 ©

&« <— FORWARD(T)
B <~ BACKWARD(T)

E+© >Arcs of the output WFSA
X {(s0,ce)}
Q < {(s0,ce)} >Pending states
while Q # @ do
(i,¢;) + QUEUEPOP(Q) pInitialize final weight
o'[(G ci)] = pl(i, ci)]
foralle € E: ple] = (i,¢;) do >Traverse arcs from (i, ¢;)
a < li[e] >Input label (character)
b <+ l,e] >Output label (alignment)
(j,cj) < nle] >Destination state
w < wle] >Weight (likelihood) of the arc
if c; # ce Aci # cj then >States with different classes

>Add arc from initial to (j, c;)
E' « E'U{((s0,¢¢), (j,cj),a,b,aic) ® w}
>Update (i, ¢;) final weight
p'[(i,ci)] <= p'[(i,ci)] @ (w @ Bje;))
else
E' < E'U{e} >States with same class, copy arc
if (j,c;) ¢ X then
X XU{(j,c)}
QUEUEPUSH(Q, (j, ¢;))

return T’ = (X,T,V, E/, (sp,€),0)
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/0.6 /10 @/08 /05 A
O—CrsO——CO—CelD
/B 10/09 06/16 12/08 096/10 048/20 096/ 1.0
(a)

(b)

Figure 5.5. Example of algorithm 5.8 on a small WFSA. Figure 5.5a shows the original
WFSA, where the arcs labeled with “@” are considered word delimiters. The forward
and backward likelihoods of each state are shown below. Figure 5.5b shows the
output of the algorithm, observe that all complete paths in the output automaton
correspond to some subpath in the input, and the weight of a complete path in the
output is equal to the sum of all paths containing that subpath in the input.

Now, in order to make the algorithm comparable to algorithm 5.2,
we need to sum the likelihoods of all segments corresponding to the
same word alignment, regardless of the particular alignment of each
individual character in this word.

Before we can compute this sum, we need to extract the full word
alignment, instead of the individual character-level alignments. For
that, we use the fact that after algorithm 5.8, words start with arcs
leaving from the initial state and finish with arcs entering a final state.
Algorithm 5.9 uses this fact to remove the alignment information from
intermediate characters of a word, and keep only the initial frame of
the first character and final frame of the last character of the word.
This way, all paths with the same word alignment will have the same
sequence of input and output labels in the resulting WFST.

The running time of the algorithm is in O(|V| + |E|), with respect
to the size of its input transducer.

Figure 5.6 shows an example of the result of algorithm 5.9, on a
small WFST that would have been produced by algorithm 5.8. Notice
that algorithm 5.8 transforms the input lattice so that, all complete
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Algorithm 5.9 Keep only word alignments from a character lattice,
processed by algorithm 5.8. The algorithm simply uses the fact that
complete paths represent full words in the input lattice, so that we
can remove the alignment associated to any arc not leaving the initial
state or not entering a final state.

Require: T = (X,T,V,E,so,p) is an acyclic WFST, output of algo-
rithm 5.8.

1: procedure KEEPONLYWORDALIGNMENT(T)
2 ViV
3 E+©
4 foralle € E do
5: S; p[e] >Source state of the arc
6 §j < n[e] >Destination state of the arc
7 W — w[e] >Weight (likelihood) of the arc
8 a < lile] >Character represented by the arc
9: (1, T2) < Lole] >Alignment of the character
10: ifs; = sg A p[sj] # 0 then >Word with a single character
11: Vi V'U{(s;,5))} >New auxiliary state
12: E' < E'U{(s;, (si,s}),a,11,w)}
13: E' +— E'U{((si,5)),5;,€,12,1)}
14: else if s; = sy then >First character of the word
15: E' < E'U{(s;,s),a,11,w)}
16: else if p[sj] # 0 then >Last character of the word
17: E' < E'U{(s;,5,a,12,w)}
18: else >Intermediate character
19: E' < E'U{(s;,s5),a,€,w)}

20: return T = (X,IN, V', E/, 50, p)
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paths representing the same word with the same word-level align-
ment (i.e. the word starts and ends at the same columns) will be rep-
resented by the same sequence of input/output symbols in the WFST.
In particular, the sequence of input symbols represent the sequence of
characters and the sequence of output symbols denotes the first and
last columns of the image where the word is written.

5.3.2.5 Indexing words with alignment from character lattices

Finally, we are in the position to put all pieces together in order to de-
scribe the algorithm that extracts an index for word segments directly
from character lattices. Algorithm 5.10 describes such algorithm.

Algorithm 5.10 Compute a word index for text segments based on

character lattices.

Require: A = (X,V,E,sp,p) is a compact lattice, the function T gives
the frame associated to each state, and A assigns a class to each
label (i.e. character). The maximum number of words to index is
given by n.

1: procedure LATTICECHARACTERINDEXSEGMENT(T, T, A, 1)

2: B < BACKWARD(A)

3: T1 <+ LATTICEENCODEALIGNMENT(A, T)

4: T, <+ LATTICEDISAMBIGUATEINPUTCLASS(T7, A)

5: T3 < LATTICECONVERTSUBTOCOMPLETEPATH(T?)

6: T, < KEEPONLYWORDALIGNMENT(T3)

7: Ts < DETERMINIZEASWEFSA(Ty)

8: I+ O

9:  forall (x,y,w) € NBESTPATH(T5, 1) do
10: Let x = x1,x2, ..., xy be the input symbols in the path.
11: Lety = y1,Y2,...,ym be the output symbols in the path.
12: Let w be the total weight of the path.
13: MAPINSERT(I, (X, Y1, Ym), w @ Bs,)
14: return |

The backward algorithm, at line 2, has a cost of O(|V| + |E|), which
is the same as algorithm 5.6 (line 3). Recall that algorithm 5.7 (line 4)
has an asymptotic cost of O(C; - (|V| + |E|)). However because the
number of classes is usually two (delimiter and non-delimiter char-
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Figure 5.6. Example showing the result of algorithm 5.9. Figure 5.6a shows the input
WEST. Symbols of the input alphabet represent characters and symbols of the output
alphabet represent the alignment of the character with the corresponding image (i.e.
first and last column where the character is written). Figure 5.6b shows the output
WEST. Observe that the input symbols in a path represent the characters of the word,
and the first and last output symbols in a path denote the first and last columns of
the word. Two sequences with alternative character-level alignment, but the same
word-level alignment will have the same sequence of input and output symbols.
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acters), the cost can be expressed as O(|V| + |E|). This is, again, the
cost of algorithm 5.8 (line 5), and algorithm 5.9 (line 6).

The “determinization as WFSA” (line 7) step simply means that
we treat the pair of input-output symbols in each arc as an individ-
ual symbol (i.e. the alphabet of the equivalent WESA is X x I'). Since
lattices are acyclic, the determinization is always possible. It is im-
portant to highlight that the determinization has to be done in the
log or real semiring, in order to obtain the sum of the likelihoods (or
log-sum-exp of the log-likelihoods).

Notice that any finite set of strings with associated weights can be
represented, in the worst case, with a weighted prefix tree. If L is the
length of the longest string, |X x I'| is the number of symbols in the al-
phabet of the WFSA, and D, is the maximum output degree, then the
number of states (and arcs) in the prefix tree will be, approximately,
O(exp(LlogD,)), which is very similar to that of algorithm 5.5.

Finally, extracting the n-best paths of a WFST has a time com-
plexity of O(|V|log|V|+ n|V|+n|E|). Since the number of states
and arcs as the result of the determinization is upper bounded in
O(exp(LlogD,)), the worst case asymptotic cost of algorithm 5.10
can be expressed as O((Llog D, + n) exp(Llog D,)). In practice, the
cost is much smaller than this, and the exponential worst case is rarely
seen. As the results of the experiments in section 8.2 show, we are able
to generate a word-segment index for a whole data set (229 pages) in
less than 6 seconds.

5.3.3 LEXICON-FREE TRANSCRIPT POSITION RELEVANCE

In order to build a so-called positional index, similar to the ones used
by traditional search engines, from character lattices, we will make
use of algorithms very similar to the described before.

First, we need a procedure to determine where the words are within
the transcript, given a sequence of characters. For that, we employ the
notion of delimiter characters (e.g. the whitespace). In addition, we
needed to sum the likelihoods of all paths corresponding to the same
word alignment, in order to build the index of word positions.
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5.3.3.1 Disambiguating the word position associated to states

First, we need to disambiguate the word position associated to a state.
However, the problem is more difficult now, since the arcs represent
individual characters instead of words, and we cannot simply count
the number of arcs in the paths arriving to a given state.

In contrast, as we explained earlier, words are defined by a se-
quence of characters between two delimiter characters. Thus, we
need to keep track of the number of times that we switch from a
delimiter to a non-delimiter symbol in the paths that enter a given
state, and we need to decouple the states of the input WFSA so that
we produce an equivalent output WFSA with a constant number of
transitions from non-delimiter to delimiter characters in all entering
paths.

Algorithm 5.11 performs this operation, assuming that the input
WEFSA is the output of algorithm 5.7. In addition, this algorithm takes
a function A : C — {0,1}, which maps the class of a label/state to a
binary value that denotes whether or not the transition to the given
class should increase the word count. For instance, take a path with
symbols “‘my@cat@is@black”, where the symbol “@” denotes
the delimiter character. When we transition from any character to
“@”, we must increase the word count, but when we transition from
“@” to any other character we must not. Thus, given the previous
path the word count at each position of the sequence would be “11 1
222233344444,

The asymptotic cost of the algorithm is O(K; - (|V| + |E|)), where
K; is the maximum position input degree, and |V| and |E| are the
number of states and arcs of the input WFST. Notice that, because
the input WEST to this algorithm has to be pre-processed with algo-
rithm 5.7, the total asymptotic cost of the two is O(C; - K; - (|V| + |E|))
where C; is the maximum class input degree. The maximum position
and class input degrees are the maximum number of distinct classes
and word positions entering a state.
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Algorithm 5.11 Disambiguate character lattice states to ensure that all
paths entering any state have the same word count. The algorithm is
designed to operate after algorithm 5.7.

Require: T = (X,T,V,E,(sp,ce),p) is a an acyclic WEST, output of
algorithm 5.7, such that that all input arcs to any state are of the
same class. A is a binary function that determines whether or not
the transition into a given label class increases the word count.

1: procedure LATTICECHARDISAMBIGUATEWORDCOUNT(T, A)

2: V'« {(s0,¢¢,0)} >Output states

3 E+ @ >Output arcs

4: Q + {(s0,¢ce,0)}

5: while Q # @ do

6

7

8

9

(si, ci, ki) < QUEUEPOP(Q)
foralle € E : ple] = (s, ¢;) do >Arcs leaving state (s;, ¢;)

(Sj, C]-) <« nle] >Destination state

: a<+1I; [e] >Input label
10: b < I,[e] >Output label
11: w < wle] >Weight of the arc
12 if ¢; # ¢j A Alcj] = 1then
13: ki< ki+1 >Increase word count
14: else
15: ki < ki >Keep word count
16: E' < E'U{((si,ci ki), (sj,cj, ki), a,b,w)} >Add arc
17: if (s;,cj, k;) ¢ V' then
18: V'« V'u {(S]‘, Ci, k])} >Add state
19: QUEUEPUSH(Q, (s, ¢;, k;))
20: for all (Si, Ci, ki) e V' do
21: 0'[(si,ci, ki)] < pl(si,ci)] >Set final weight

22 return T = (X,T, V', E/, (so,ce,0),0")
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5.3.3.2 Encode word counts

Similarly to what we did in algorithm 5.6, where we encoded the
alignment of the characters as labels of the WFST, here we will encode
the word count of each character (i.e. the position of the word that the
given character belongs to). The cost of this algorithm is linear with
the size of the input transducer.

Algorithm 5.12 Encode the word count of each arc in a lattice as the
output labels of a WFST. The input label of the WEST is preserved.
This algorithm operates on the output of algorithm 5.11.

Require: T = (X,T,V,E,(so,ce0),p) is an acyclic WEST, output of
algorithm 5.11, such that all paths entering a state have the same
word count.

1: procedure LATTICEENCODEWORDCOUNT(T)

2 E'+

3 foralle € E do

4: (si,ci ki) < ple] >Source state
5: (Sj, Cjs kj) <« nle] >Destination state
6 a < li[e] >Label (character)
7 w w[e] >Weight (likelihood)
8 E' + E'U{((s;, ci, ki), (S]-, Cj, k]-),a, k]-,w)} >Output arc
9 return 7' = (X,IN, V, E/, (sp, ¢¢,0),p)

5.3.3.3 Indexing words with positions from character lattices

Finally, we can put all the pieces together to build the positional in-
dex of words. Algorithm 5.13 describes such procedure, which shares
many steps in common with algorithm 5.10.

First, the lattice states are disambiguated so that all labels enter-
ing a given state are of the same class. Then, the states are also dis-
entangled so that all paths entering any state have the same num-
ber of words (i.e. groups of sequences of characters between delim-
iters). Afterwards, the word count (i.e. word position) is encoded
as part of the labels of a WFST. Later, the subpaths corresponding to
(pseudo)words are isolated, so that a complete path in the resulting
WEST represents a word, in a particular transcript position. Then, the
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Algorithm 5.13 Compute a word index for transcript positions based
on character lattices.

Require: A = (X,V,E,sp,p) is a compact lattice. A assigns a class to
each label (i.e. character) in the alphabet. A is a function telling
for each label class whether or not it should increase the word
position. The maximum number of words to index is given by #.

1: procedure LATTICECHARACTERINDEXPOSITION(A, A, A, 1)
2 B <~ BACKWARD(A)

3 T1 < LATTICEDISAMBIGUATEINPUTCLASS(A, A)

4: T, < LATTICEDISAMBIGUATEWORDCOUNT(T7, A)

5: T3 + LATTICEENCODEWORDCOUNT(T?)

6 Ty < LATTICECONVERTSUBTOCOMPLETEPATH(T3)

7 Ts < DETERMINIZEASWFSA(Ty)

8

9

[+ ©
: for all (x,y, w) € SHORTESTPATHS(T5, 1) do
10: Let x = x1, x2, ..., x; be the input symbols in the path.
11: Lety = y1,v2,...,ym be the output symbols in the path.
12: Let w be the total weight of the path.
13: MAPINSERT(I, (x,y1),w @ Bs,)
14: return |

resulting WEST is determinized, so that the likelihoods of the equiv-
alent pairs of word—position are summed. And finally, the n-shortest
paths (i.e. pairs of word—position) are indexed.

The total cost is essentially the same as the one of algorithm 5.10,
thatis O((Llog D, 4 n) exp(Llog D,)). Asin the case of algorithm 5.10,
the cost of this algorithm does not have an exponential behavior in the
typical cases. Our implementation of the algorithm, also extracts the
best alignment for each pair word—position, thus the cost is usually
larger than that of algorithm 5.10. As the results of the experiments
in section 8.2 show, we are able to generate a word—position index for
a whole data set (229 pages) in less than 12 seconds.



Probabilistic Interpretation of
Traditional Approaches

6.1 HMM-filler method

One of the traditional methods with great success for query-by-string
KWS was the so-called HMM-filler approach [Fischer et al., 2012]. This
approach models the handwritten text using HMMs with diagonal
GMM as the emitting probability density function in the states (see
section 4.2). Earlier variants of this method were applied on speech
utterances [Rohlicek et al., 1989, Rose and Paul, 1990, Rose, 1995].

Each character is represented by an individual HMM and com-
posite models are used to build: a) a generic (or garbage) model,
known as “filler HMM” or “garbage HMM”, and b) a specific “key-
word HMM” for the query keyword that needs to be spotted. Fig-
ure 6.1 depicts these two composite models. Each circular node rep-
resents the HMM model (with several states and transitions) of an
individual character in the alphabet (including the whitespace sym-
bol). The rectangular nodes represent copies of the garbage model.
Observe that the generative model represented by the filler can pro-
duce any character sequence, while the keyword-specific model can
only accept sequences that contain at least one instance of “word”.

[Fischer et al., 2012] suggested to use the following score to ex-
press how likely is that the query keyword, v, is written in a seg-
mented text line image x.

def MaXyex+ log p(w, x ; My,) — maxyex-log p(w', x ; My)
Sfiller(vl x) = |U"Y

(6.1)
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O @006@ O

(a) Filler HMM : M ¢ (b) Keyword HMM : M

Figure 6.1. Representation of the models used in the HMM-filler approach. The two
automata represent: (a) the “filler HMM”, M fr and (b) “keyword HMM”, M, built
for the keyword v = “word”. Circular nodes represent full HMM models (including
several states and transitions) of each character, and the rectangular nodes represent
copies of the garbage model. Observe that the filler can accept any character se-
quence, while the keyword-specific model can only accept sequences that contain at
least one instance of “word”.

First, observe that, on the one hand, log p(w’,x ; My) depends
only on the image x, and does not depend on the specific query key-
word. On the other hand, log p(w, x ; My, ) will (hopefully) have high
values when the text line contains the keyword v written at some lo-
cation, while it will have very low values when it does not. Thus,
by comparing how large is the likelihood provided by the keyword-
specific model with respect to the keyword-agnostic (i.e. garbage)
model, we can get a sense of how likely is that the word is written
somewhere in the image.

The denominator in the score served to normalize the scores with
respect to the length of the query keyword. In general, models based
on HMMs tend to give larger likelihoods to shorter sequences of ob-
servations. So, without the denominator in eq. (6.1), long keywords
used to have much lower scores than short keywords, which dam-
aged the Global AP (see section 3.3). Sometimes |v| refers to the
length (number of characters) of the keyword, while others use the
number o frames aligned with the keyword. In most cases, the value
of the hyperparameter 7 is set to 1, like in the original HMM-filler
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publication, but other authors decided to tune it on a validation set to
improve the performance of the system [Toselli et al., 2016a].

In [Toselli and Vidal, 2013], they showed that the HMM-filler score
can be efficiently approximated by means of a character lattice. They
first obtain a lattice from the text line using the HMM-filler model,
and then compare the score of the best path (highest likelihood) in
this lattice containing the query keyword against the score of the best
path in this lattice (which would be equivalent to the right-hand part
of the subtraction in eq. (6.1). Both approaches produce virtually the
same results, but the lattice approach was much faster (2 orders of
magnitude) serving queries.

Later, in [Toselli et al., 2015, Toselli et al., 2016a], instead of using
the simple HMM-filler model, regular n-gram language models were
used to obtain the character lattices. It was shown that, as one in-
creases the order of the n-gram language model, the results improve.
Actually, one can also observe that if one adjusts the parameter -y in
eq. (6.1) using validation data, its value gets closer to 0 as one in-
creases the order of the language model (see the results in section 8.9).
This suggests, that the denominator was only needed in the first place
because extremely naive language models were used (actually, the
original HMM-filler assumes that all characters in a sequence are in-
dependent).

In addition, in [Puigcerver et al., 2015¢] it was later shown that the
HMM-filler score can actually be interpreted as an approximation to
the probability defined in eq. (2.7), which directly relates this classical
method to the probabilistic framework described in this work.

As stated before, the denominator in the original formulation is
unnecessary when a large context is used to model the prior infor-
mation of the language. Thus, ignoring this term and applying the
exponent function to both sides of eq. (6.1) results in:

maxyez+ p(w, x; My,)

6.2
maxgex- p(w', x; Mf) ¢

exp Stiller =

Observe that all the character strings with a likelihood greater
than 0 in the keyword HMM model of v (i.e. My, ), contain at least
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one instance of this keyword. Thus, in the numerator, the maximum
over all character strings in X* is equivalent to the maximum over all
character strings in L(v), which is the set of all character strings that
contain the keyword v, as explained in section 2.1.

maXyer (o) P(w, % ; My,)
maxyex: p(w', x; My)

exp Sfiller = (63)

Now, let’s rewrite eq. (2.7) in terms of the joint likelihood of the
image and the transcript, instead of the posterior. We will also drop
the name of the random variables, since it is clear to which random
variable each value corresponds to:

PR=1|X=xV=0) =
Y PW=w|X=x)=
weL(v)
YweL(o) P(w,x)
p(x)
YweL(v) P(W, x)
Zw’e):* p(w// x)

(6.4)

Notice that there are two main differences between eq. (6.3) and
eq. (6.4):

1. The HMM-filler score replaces the summation in with a max-
imum operation. This approximation is sometimes called the
“Viterbi approximation to the sum”.

2. The HMM-filler approach uses two different models for the joint
likelihood: M, and M 7. However, our formulation is not
based on any particular model. In addition, [Toselli and Vidal,
2013] showed that one can simply use the same model in both
cases, as we mentioned earlier.

Hence, the original HMM-filler score and subsequent improve-
ments are approximations to the relevance probability, presented in
this thesis. Moreover, it is no surprise that when the probabilistic
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models improve, the traditional Keyword Spotting performance mea-
sures (e.g. Global and Mean AP) also improve, since ranking ac-
cording to the relevance probability results in the optimal ranking, as
proven in chapter 3.

6.2 BLSTM-CTC method

One of the methods that showed an excellent performance for line-
level Keyword Spotting, was the presented in [Frinken et al., 2012].
This method, also lexicon-free, was one of the first ones to use Bidi-
rectional Long Short-Term Memories, a form of Recurrent Neural Net-
works (see section 4.3) to tackle Keyword Spotting.

Their method is in fact a modification of the classical CTC algo-
rithm [Graves et al., 2006], typically used to train models for speech
and handwritten text using RNNSs.

The traditional CTC algorithm is used to compute the posterior
probability of a sequence of characters, given the output of the neural
network (whose parameters will be tuned to improve the posterior
probability of the reference text, during training). The total posterior
probability of a sequence of characters is computed by summing all
alignments of that particular sequence of characters, using dynamic
programming.

Instead of summing all alignments, the algorithm described in
[Frinken et al., 2012] keeps track of the alignment with the maximum
posterior. In addition, because we are not interested in the best align-
ment of the full text line image, but only to know whether or not that
image contains the given keyword, they introduce an special symbol
(i.e. %), that can be optionally matched against any character at the
start and at the end of the desired keyword. Thus, if v = v1,vy,..., v,
is the keyword (represented by its sequence of characters), the follow-
ing sequence is aligned using their algorithm:

/
(% :*/~101102/~~~/Un/~/*

“" o

where “_" represents the whitespace symbol, which is added here to
ensure that only isolated words are spotted, and not subwords. A
fixed “probability” equal to 1 for any position is assigned to this spe-
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cial symbol, so that anything before or after the keyword does not
affect its score. Then, using the CTC algorithm substituting the sum
with max operations, and adding the artificial x at all positions with
“probability” equal to 1, actually computes the probability of the sub-
path with the highest probability containing the given query (i.e. the
sum of all paths going through that maximal subpath).

This equivalence is due to the fact that the CTC algorithm assumes
that the labels at each position are independent. As we explained in
section 4.3.4, the output of the neural network can be represented us-
ing an automaton similar to the one depicted in fig. 6.2 (without the *
transitions). Thus, the sum of all paths entering an state is always 1.0,
which is the equivalent to transitioning through the x transitions. Re-
call that the transitions in the CTC automaton do not represent charac-
ters, but labels, and a sequence of labels is transformed into a sequence
of characters according to the CTC decoding rules.

@/07 @ /0.1 @ /0.1 /02 /0.1

Figure 6.2. Example of the automaton implicitly used by the BLSTM-CTC method
for Keyword Spotting. The method uses the same neural network output as used
by the regular CTC algorithm, but adds an special label x with probability 1.0 in
any position. This allows to align any frame of the image with this label without
decreasing the probability, and then the probability of the best alignment for the
sequence of characters x, ., v1,...,0y, -, x is found, where vy, ..., v, is the character
sequence corresponding to the keyword v.

We can express the probability computed by the algorithm pro-
posed in [Frinken et al., 2012] as:

def

"F(U): rr]1ax Z Z P(ll,...,li_l,li,...,l]',l]'+1,...,lM|x) (65)

NI VAR ARy
i:j)_v

As we just mentioned, the previous equation computes the maxi-
mum probability of a subpath that is an alignment of the query key-
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word. Now, observe that if we substitute the max operation with a
sum, the previous equation can be rewritten as:

Z Z E P(ll,...,li_l,li,...,lj,lj+1,...,lM‘x):

L ot i
‘C(li:j):z]
Z P(ll,...,lM\x):
l:p
L(ll;M)GL(U)
Z ZP(W:ZU,L:ZLM’XIX):
wEL(v) l.m

Z PW=w|X=x)=

weL(v)

PR=1|X=xV=0) (6.6)

Thus, the only difference between the score devised [Frinken et al.,
2012] and the relevance probability defined in eq. (2.7) is that the for-
mer does not sum the probability of all alignments containing the
query keyword, but only considers the maximum subpath containing
it.

Finally, due to (essentially) the same reasons as in the HMM-filler,
[Frinken et al., 2012] introduce the following heuristic to mitigate the
fact that long keywords tend to produce much lower scores than short
ones:

det log ¥ (v)

Scre = T (6.7)

Realize that the CTC model assumes that the label at position ¢ is
independent of the other labels (given the feature vector at position t).
Now, suppose that a given keyword has 10 characters. Thus, it needs
tobe aligned at least to 10 frames. If the probability of the correct label
at each frame is 0.9, then the probability of the subpath corresponding
to the keyword drops to 0.9'° ~ 0.35.

Again, this is only due to the independence assumptions of the
CTC model, and the use of n-gram language models in addition to
RNNs (or HMMs) removes the need for such heuristic.
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6.3 Distance-based methods

Many traditional approaches, predominantly in the Query-by-Example
paradigm, interpret Keyword Spotting as finding similar images to
the given query. In most cases, a fixed-size feature vector is extracted
from word images (which have been previously segmented manu-
ally, by automatic means or using a sliding window approach), and
then compare (using a distance or other dissimilarity measure) this
feature vector with the vector obtained from the query image (e.g. [Al-
mazan et al., 2012, Retsinas et al., 2016,Sfikas et al., 2016]). Sometimes,
the word images are represented as a sequence of feature vectors,
and then distances over sequences are used to “compare” the two se-
quences (e.g. [Rath et al., 2004, Rodriguez-Serrano et al., 2009, Mondal
et al., 2016, Mondal et al., 2018]).

This point-of-view of KWS is predominant among the researchers
with a Computer Vision background, perhaps because this approach
is also predominant in other related applications such as Content-
based Image Retrieval [Toshikazu et al., 1991, Bird et al., 1996, Smeul-
ders et al., 2000]. Many of these researchers consider that their meth-
ods are “recognition-free”, and some of them have the advantage that
are based on purely unsupervised methods and well-designed heuris-
tics. This is clearly evidenced in the following excerpt from a recently
published comprehensive survey on KWS [Giotis et al., 2017]:

...] recognition-free retrieval, which is also known in the litera-
ture as word spotting or keyword spotting, is the main subject of this
study. The goal here is to retrieve all instances of user queries in a set
of document images which may be segmented at text lines or words.
Actually, the user formulates a query and the system evaluates its sim-
ilarity with the stored documents and returns as output a ranked list
of results which are most similar to the query.

This formulation of KWS presents some problems: First, one needs
to establish how to measure this similarity (i.e. which vector space and
which measure should be used). Secondly, and most importantly, the
fact that two images are “similar” or “dissimilar” does not necessary
imply that one is relevant or irrelevant given the other as query. In
addition, it is true that these methods do not perform explicit “word
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recognition”, but they are still indirectly solving a classification prob-
lem, as we show below. Yet, they are not solving the right classifica-
tion problem.

6.3.1 DISTANCE-BASED DENSITY ESTIMATION

The link between distance measures (or, more generally, dissimilarity
measures) and density functions is well know and studied from the
origins of Patter Recognition. Any properly defined dissimilarity (not
strictly necessary a metric), d(-,-), can be used to estimate a density
function p(Y = y) over a vector space [Silverman, 1986, Duda et al.,
2000, Biau and Devroye, 2015].

Here we adopt perhaps the most basic and simple approach, namely
kernel-based Parzen windows:
d
( (’;’ ) ) (6.8)

1
p(Y=y) = D Y. K
where X is a set of prototype samples, n = |X|, K is a kernel function
(a non-negative real-valued integrable function which integrates to
1), D is the number of dimensions of our data, and b is a smoothing
parameter called the window bandwidth.

Many traditional parametric density families have non-parametric
kernel-based counterparts. For instance, if we use the (squared of)
the euclidean distance and a Gaussian kernel, we obtain a mixture of
multivariate normal distributions with the identity as the covariance
matrix.

Likewise, we can define conditional densities on some class.

y /C( x“y)> 6.9)

xc€Xc

p(Y=y|C=c)=

bD

where X_ is the subset of prototypes of class c and n, = |X,|.

Now, following the classical formulation of Keyword Spotting,
suppose that we have some query keyword, represented by its fea-
ture vector y, and we have a collection of candidate images {x;}, for
1 <i < n that we want to rank by “similarity”.



14@€HAPTER 6. PROBABILISTIC INTERPRETATION OF TRADITIONAL APPROACHES

We can take the density estimation using Parzen windows to the
limit and suppose that there are as many classes as candidate images
(ie. C=[1,...,N]), and we have a single prototype for each class (i.e.
the candidate image). This results in the conditional density:

p(Y=y|C=i) 1 (d(xi,y)) (6.10)

b

The previous equation uses the proportionality symbol () instead
of the equality symbol because the density is ill-defined in this ex-
treme case. Nevertheless, we can still rank our candidate images us-
ing this pseudo-density (and we can define proper class posteriors, as
we shall see soon).

We can devise a generative model of the queries that would in-
clude this density function: we assume that the query image has been
generated from the distribution defined by one of the candidates (i.e.
it is a copy of one of the candidates distorted by some stochastic pro-
cess). Figure 6.3 shows a representation of this generative model.

Observe that, if we use a function K which monotonically de-
creases as the distance (or divergence) increases, either sorting the
candidate images in descending order of the pseudo-likelihood, or
sorting them according to increasing distances will produce exactly
the same ranking, with respect to a given query.

This approach, (implicitly) widely adopted among the Keyword
Spotting community, presents two fundamental problems, that we
coined the “multi-variance” and “multi-mode” problems.

6.3.1.1 The multi-variance problem

The first problem is caused due to simply using the raw distances (or
some monotonic equivalent function, like the pseudo-likelihood de-
scribed above) in order to rank the candidate images. Observe that
some candidate images (for instance, corresponding to some particu-
lar word) may have much larger variances than others. This becomes
very problematic when, instead of considering a single query, one
considers a set of such queries, as global measures of the retrieval per-
formance do (such as the Global Average Precision). Notice that some
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Figure 6.3. Probabilistic graphical model assumed by traditional distance-based
approaches. The value of the random variable Y, representing a particular query y,
is generated from a mixture of n distributions, where each of them parameterized by
one the n candidate images x1,...,x;,...,x;. The value of the random variable C is
used to select the i-th component of the mixture (i.e. the candidate) from which y is
generated, based on the prior probability 7;.

“dissimilar” pairs will be ranked on top of other “similar” pairs just
because the class of the similar pairs happens to have a large variance.
Thus, we refer to this issue as the “multi-variance problem”.

Figure 6.4 shows an illustrative instance of the issue. The example
includes samples from two classes (which are unknown by the KWS
system). Candidate images are represented by dots labeled as x, and
queries as y. Notice that the class “red-square” has a much larger vari-
ance than the class “blue-circle”, hence the Euclidean distances tend
to be larger for the query y, than for y;. Therefore, for the raw nega-
tive distances, the pair (x2,y;) is better ranked than (x2, ), resulting
in a noticeable drop in the Global AP (gAP).

Instead of directly using the negative distance (or equivalently, the
density represented in eq. (6.10)), we can compute the posterior of the
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Figure 6.4. An instance of the multi-variance problem of traditional distance-based
KWS. The color and shape of each point represents its true class, x represent candi-
date images and y represent image queries.

The the negative Euclidean distance scores are:

—d(xl, yl) =-1, —d(xz, yl) =-2, —d(xz, yz) =—4, —d(xl, yz) =-5.

On the other hand, eq. (6.12) (with s = 1) yields to:

P(C=2]1y) =0991, P(C =1 1] y;) = 0952, P(C =2 | y;) = 09526,
P(C=1]y,)=0.0009.

The gAP for raw distances is 83%, while the candidate posteriors achieve 100% gAP.
The mAP is identical in both cases because the two are monotonically related.

candidate given the query image:

.. P(lY=y|C=iP(C=i)
P(C—l’Y—y)—Zi,p(|y:y\C:i’)P(C:i/)

(6.11)

Now, let’s assume that the prior among candidates is uniform,
and define K(u) = exp(—su?), where s is simply a smoothing con-
stant tuned on validation to maximize performance. Then, the previ-
ous equation becomes:

vy exp(=sd*(xi,y))
PC=1Y =9 = & o=, ) 612

Since the denominator is independent of the i-th candidate, for a
fixed query v, eq. (6.12) is proportional to exp(—sd?(x;,y)), and there-
fore monotonous with —d(x;,y). Consequently, for a set of queries,
the Mean AP (mAP) obtained using traditional distance-based ap-
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proaches and that of eq. (6.12) will be identical. However, the nor-
malization of eq. (6.12) provides a probabilistically sound KWS score,
which is bounded in [0, 1] and therefore uniformly comparable across
different queries. As illustrated in fig. 6.4 and the experiments in
section 8.10, this normalization entails significant gAP improvements
with respect to using the raw negative distance KWS score.

As we already mentioned, there are countless types of kernels.
The reader should know that, as our experiments suggest, the choice
of the kernel is not critical (as long as it has the required properties)
in order to achieve decent results (see experiments in section 8.10).

Finally, the reader may believe that normalizing the feature vec-
tors would mitigate the multi-variance problem. For instance, many
authors use unit vectors as features (e.g. [Aldavert et al., 2015, Sfikas
et al., 2016]). This limits the maximum distance between two vec-
tors on the unit hypersphere (i.e. for any norm, the distance between
two unit vectors is always < 2), but the multi-variance effect can also
be present, as shown in fig. 6.5. One can also see from the figure
that other popular measures for unit-normed spaces, such as the co-
sine similarity, will also present exactly the same problem. Thus, the
multi-variance problem is not due to a particular feature space or dis-
similarity measure.

We could try to come up with some feature representation and
dissimilarity measure that does not present this problem. However,
it is not clear that such requirement can be easily guaranteed across
different data sets (languages, scripts, ages, etc.), especially using un-
supervised methods for feature extraction, which is the usual case in
traditional query-by-example KWS publications.

On the other hand, using the generative model presented earlier
and the posterior of the candidate image given the query, solves the
problem of multi-variance.

6.3.1.2  The multi-mode problem

In any case, we still may face an additional problem, caused by the
naive generative model presented earlier (and implicitly assumed by
most traditional KWS methods). Observe that the posterior in eq. (6.12)
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Figure 6.5. An instance of the multi-variance problem in a unit norm space. Sim-
ilarly to the example depicted in fig. 6.4, the class “red-square” has a much larger
variance than the class “blue-circle” and the Euclidean distances tend to be larger
for the former class than the latter. Therefore, the pair of candidate-query samples
(x2,y1) is ranked higher than (xp, ), resulting in a drop in the Global AP (gAP).

is not equivalent at all to the (optimal) relevance probability derived
in eq. (2.23) (review section 2.4).

Using the former candidate posterior probability (or the raw dis-
tances) to rank the candidate images may present the so-called “multi-
mode problem”. Observe that in reality we (usually) don’t have as
many classes as candidate images, but several candidate images are
part of the same class (i.e. we have multiple instances of the same
word). When one (or several) of the density functions conditioned
on a class are multi-modal, a given query will be “close” to the can-
didates of the same mode, but may be arbitrarily “far away” from
samples of other modes of the same class. This may happen, for in-
stance, if one is considering a collection of documents with multiple
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writers: it is reasonable to think that the density p(image | word) will
have several modes (one for each writer).

In the example depicted in fig. 6.6, there are two classes (words),
labeled as “blue-circle” and “red-square”. The collection of candidate
images are x1,xp,x3 and we consider only two queries, y1,y2, both
from the “blue-circle” class. In addition, we have a set of labeled
training samples zj, z5, z3 in order to estimate the class (i.e. word)
posteriors using a distance-based approach.

Observe that the class-conditional density p(x | “blue-circle”) is
bi-modal. Therefore, as we just mentioned, a query such as y; is only
close to images from the same mode (e.g. x1), while collection images
of the same class but a different mode (e.g. x2) may be farther away
than those from other classes, like x3. In this situation, the traditional
distance-based KWS approach only achieves 83% mAP and the same
gAP. Using eq. (6.12) does not alleviate the trouble either, yielding the
same poor gAP and mAP.

However, if we follow the definition of the relevance probability,
given candidate image x and query y (as we explained in section 2.3),
we get:

PR=1|X=xY=y)=) PW=0|X=x)P(V=0|Y=y)
vEY

(6.13)

Recall, this simply means that the relevance probability, given a
query y and a candidate x, is equal to the sum over all possible key-
words of the product of the word-posterior given x and the word-
posterior given y.

Given that we have a few training samples, we are able to estimate
P(W = v | X = x) (respectively P(V = v | Y = y)) using the
traditional k-nearest neighbor classifier. Let .4 (k,x) and .4 (k,y) be
the sets of k training images which are nearest neighbors of x and
y, respectively, according to the given distance d(-,-). Let A4 (k, x,v)
and ¥ (k, y,v) be, respectively, the subsets of images in ./ (k, x) and
A (k,y) labeled with the word v and let ky, ky» be the sizes of these
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Figure 6.6. An instance of the multi-mode problem of traditional distance-based
KWS (sample colors and shapes as in fig. 6.4).

Negative Euclidean distance scores:

—d(x1,y1) = —d(x,y2) = —1, —d(x3,31) = —d(x3,92) = —V5 —d(x1, 1) =
—d(x2,y1)=—3.

Posterior probabilities given by eq. (6.12) (with s = 1):

P(C=1|y1) = P(C=2]|yy) = 09817, P(C=3|y;) = P(C=3]y) = 0.0180,
P(C=1|y2) = P(C=2]|y;) = 0.0003.

Relevance probabilities given by egs. (6.13) and (6.15) (with k = 3,s = 1):
P(R|x1,y1) = P(R|x2,y2) = P(R|x1,2) = P(R[x2,91) = 09721, P(R|x3,51) =
P(R | X3, yz) = 0.0155.

Ranking according to —d(x,y) or P(C | y) yields the same poor mAP and gAP, but
using P(R | x,y) does provide perfect results.

sets. Then:

kyo
P(W:vyxzx):k"k”, PW=0v|Y=y)= z

(6.14)

However, to achieve best performance in real, finite cases, a smoothed
version of eq. (6.14) is generally adopted to take into account not only
the number of neighbors, but also the actual distances involved. To
this end, we use the same Gaussian kernel than before, leading to:

—sd? ,
P(WIZ) ’ X) _ ZZEL/V(k,x,v) exp(_ s . (Z, X))
Yo (kx) €XP(—s d*(Z/,x))
Zzeﬂ(kyv) exp<_s dz(z/ Y))
P(V=v = At 6.15)
V=Y =5, oy en(sdzy)
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This way, we are able to give a well-principled probabilistic ap-
proach to the problem of query-by-example KWS, even with the orig-
inal distances that were employed originally in an heuristic manner.

As a result of using the well-principled probabilistic framework
for Keyword Spotting, proposed in this thesis, we are able to over-
come both the multi-variance and multi-mode problems presented
here, that traditional distance-based approaches to Keyword Spotting
may suffer. As we shall see in section 8.10, these problems are not
mutually exclusive: a method can suffer from both problems simulta-
neously.

The candidate posteriors that we proposed in eq. (6.12) can miti-
gate the multi-variance problem, but not the multi-mode. However,
assuming that the class posteriors are properly estimated, the frame-
work presented in this thesis solves both issues.

6.4 PHOC-based methods

A Pyramid of Histograms of Characters (PHOC) [Almazén et al., 2014]
is a hierarchical set of character string “binary histograms”, where a
histogram bin is “1” if the character is present in the (sub)string and
“0” if not. Here we prefer not to abuse the language and refer to it
as a bit vector representation of the set of characters which appear in
the string, or CS for short. So the CS of the string “acbbab” is {a,b,c}
and that of the string “a” is {a}.

Let v be a word and v, its character spelling. The first PHOC level
is the (single) CS of v.. At the I-th level, v, is split in [ disjoint sub-
strings, and a CS is produced for each substring. Typically I < 5.
Thus, if v. = “KOOKY”, for example, its PHOC encompasses the CSs
shown in table 6.1.

For any word v shorter than 6 characters, its highest PHOC level
is a sequence of CSs containing at most one character each. So, the
PHOC of v is just v, accompanied by superfluous spelling informa-
tion in the lower levels. For longer words, the intrinsic redundancy of
spelling in natural languages also results in last-level CSs which typi-
cally represent unique words. In any case, the lower-level CSs contain
superfluous information. Figure 6.7 shows that such an (almost) strict



154€HAPTER 6. PROBABILISTIC INTERPRETATION OF TRADITIONAL APPROACHES

Table 6.1. PHOC representation of the word “kooky” using a 5-level pyramid of
binary histograms (i.e. character sets). Notice that at the last level, because the length
of the word is equal than the number of character sets, each set contains at most one
character, thus the sequence of sets is equivalent to the spelling of the word.

Level (splits) Character sets (CSs)

1 {K,0,Y%}
{K,0}{X,0,Y}
{K,0}{0}1{X,Y}
{K} {0} {K,0}{Y}
{k} {0} {0} {K} {Y}

Q= LN

uniqueness of PHOC word representations actually happens in two
of the most commonly used data sets in KWS research (i.e. IAM and
George Washington databases).

6.4.1 PHOCNET

Originally, Support Vector Machines (SVM) were adopted to predict
(0/1) PHOC components from Fisher feature vectors extracted from
word-cropped images, in [Almazan et al., 2014]. SVM outputs were
then calibrated by means of elaborate ad-hoc methods and interpreted
as posterior probabilities. The results of [Almazan et al., 2014] were
later improved by the work presented in [Sudholt and Fink, 2016,Sud-
holt and Fink, 2017], using convolutional neural networks (CNN) to
both extract “deep” image features and predict the PHOC compo-
nents.

Let x be a a given word-cropped image, rendering a single un-
known word v. Let v, be the spelling of v and v;, the PHOC of v.. A
PHOCNet [Sudholt and Fink, 2016] tries to predict v;, from x. Clearly,
because of the one-to-one PHOC-word correspondence that we just
showed, PHOCNet is essentially only one more (among the many)
proposed character-based recognizers of isolated word images.

However, we hypothesize that since it needs to predict also the
superfluous information in (the lower levels of) v;,, PHOCNet may be
in disadvantage in terms of training demands with respect to other
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Figure 6.7. Percentage of words that share the PHOC representation with other
words in IAM and George Washington data sets. For GW, a perfect one-to-one map-
ping is produced with only 3-level PHOCs. For IAM, a perfect mapping would re-
quire 7 levels, but with 4-level PHOCs only 0.16% of the words share their PHOC
representation. The exact number of words sharing their PHOCs is shown above
each bar.

less intricate, conventional text recognizers, which predict a sequen-
tial representation of v, namely v..

PHOCNet is trained by minimizing the Binary Cross Entropy loss
function, assuming each PHOC component is independent of the oth-
ers [Sudholt and Fink, 2016]. This assumption is obviously false; in
particular the low-level histograms are obviously correlated with the
upper levels. Yet, the method still works very well in practice.

For a given input image z a trained PHOCNet produces estimates
of the posterior probabilities P(H; =1 | z), 1 <i < D, where H; is a
binary random variable associated to the i-th component of a PHOC.
Let /1;(z) be the i-th estimate and /1(z) a vector composed of all the D
estimates. For QbE KWS, i(x) is obtained for each collection image
x. Then, for a given query image, y, fi(y) is similarly produced and
the collection images are ranked according to the Bray-Curtis [Sud-
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holt and Fink, 2016], or the cosine dissimilarities between h(x) and
h(y) [Sudholt and Fink, 2017].

Even if the PHOCNet approach could quite naturally be consid-
ered “recognition-based”, it still overlooks standard optimal-decision
principles of Pattern Recognition and sticks to the most traditional
KWS view of just heuristically relying on image representation dis-
similarities. Below we will explain how the PHOCNet posterior es-
timates can be properly used in the optimal QbE KWS framework
introduced in section 2.3.

6.4.2 PROBABILISTIC PHOCNET

We can apply a similar marginalization approach that lead to egs. (2.23)
and (6.13), in order to use PHOCNet posterior estimates. Observe that

here we do not have an estimate of P(W | X = x) and P(V | Y = y),

but P(H | X =x)and P(H' | Y = y).

PR=1|X=xY=y)=
ZP(W:Z)‘X:x)P(V:v]Y:y):

veL*

). (ZP(W:U,H:MX x) (ZPV o,H'=H'|Y= y))

veX* \ h

) (ZPH h|X=x)P(W= v|X:x,H:h)>
(

veEX* h

(ZP(H':h'|X:y)P(V:v|Y:y,H’:h’)
h/

Observe that, in general, W and V can be assumed to be condi-
tionally independent of the image if the corresponding PHOC repre-
sentations (i.e. H and H') are given. This assumption implies that
P(W=v|X=x,H=h) = P(W=v|H=h) (and equivalently for the
probabilities involving the query image). In addition, if we assume
that there is a one-to-one correspondence between words and PHOC
representations, as we described earlier, the previous equation simpli-
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fies to:

P(R=1|X=xY=y) =Y P(H=h|X=x)P(H'=h|X=y) (6.17)
h

This equation implies that we can compute the relevance proba-
bility using the PHOCNet output of the query and the word images.

However, recall that h is a binary vector of D components (i.e. the
vector of elements /1;, 1 <i < D), and D must be very large to have a
one-to-one mapping between PHOC representations and words. Thus,
generally computing eq. (6.17) may be infeasible in practice.

However, as the PHOCNet method does during training, we can
assume that each of the D random variables is independent from the
others when the image is given, resulting in:

P(H:h | X:x) ;ﬁP(Hz:hl | X:x) = lg_[flj(X)hi(l — fli(X))l_hi

i=1 i=1
(6.18)
) D .
P(H' =h| X=y) 2] [ P(H=h| Y =y) = [T huly)" (1 = hi(y))* "
i=1 i=1
(6.19)

where f1;(x) is the i-th output of the PHOCNet when x is given as its
input (i.e. hi(x) = P(H; = 1 | X = x)), and equivalently for the
probabilities involving the query image.

Finally, given this independence assumption and using the PHOC-

Net to model the probabilities, we can approximate the relevance
probability as:

D
P(R=1|X=xY=y) =) [ [(hi(x)hi(y))" (1= hi(x))(1 = h(y)))' ™"
]
(6.20)
This sum can be efficiently computed using a dynamic program-
ming algorithm in O(D), which is the same asymptotic cost as the

Bray-Curtis or the cosine dissimilarities used in papers using the PHOC-
Net approach [Sudholt and Fink, 2016, Sudholt and Fink, 2017].
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To summarize this section, we have derived an efficient way (same
complexity as the Bray—Curtis dissimilarity and cosine similarity) of
computing a probabilistically sound measure (i.e. the relevance prob-
ability presented in section 2.3.1.1), which can be used to rank pairs
of images, for word-segmented query-by-example scenarios, based
on the PHOC representation of words.



Beyond Traditional Keyword
Spotting

7.1 Multi-word spotting in handwritten documents

During this thesis we framed Keyword Spotting as a particular in-
stance of an Information Retrieval application (see section 1.3 and
chapter 2). In section 2.3 we explained how the probabilistic frame-
work employed can cope with both query-by-string and query-by-
example scenarios, seamlessly. However, we always assumed the
query to be an individual keyword, which is the traditional scenario
in KWS publications.

Nevertheless, the same probabilistic framework can be used as
well to tackle more complex types of queries. Since we represent the
probability distribution of transcripts of a text image as a Weighted
Finite State Transducer, we can easily compute the relevance proba-
bilities described in chapter 2 using simple WFST operations, if we
manage to represent the query as a WFST as well.

The complexity of the WEST equivalent to our query will vary
depending on whether we work with a lexicon-free or lexicon-based
model, whether the query is presented as a string or an image, etc.

In any case, the important remark is that in our approach the
query is simply another FST (possibly weighted) that is composed with
the WEST of a particular text image (or any other stochastic source of
information).

Given that FSTs are a generalization of Finite State Automatons,
and the latter are equivalent to regular languages, we can use any
type of query that can be represented as a (weighted) regular lan-
guage or, equivalently, a regular expression. This is illustrated in
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fig. 7.1, where the relevance probability of a stochastic document is
computed for a query expressed as the regular expression (great
V neat) A —("not great" V "not neat").Here, we compute the
relevance probability defined in section 2.1. That is, a given document
is relevant for the query if the content of the document is in the regu-
lar language represented by the query.

great / 0.7
. neat / 0.2 O
>/ not
(@) Ty: WEST of the document x (b) T;: DFA of the query Q
great / 0.7

O this is /0.8 ‘@Q

(c) Ty o T,: Possible transcripts of the document that are rele-
vant to the query

Figure 7.1. Example of the computation of the relevance probability for a given regu-
lar expression. The content of the stochastic document x (e.g. a text line image) is rep-
resented as a WFST. The regular expression query, Q, (great V neat) A —("not
great" V "not neat") is represented as a DFA. ¥'-transitions denote all labels in
not present in the other state’s transitions. The relevance probability, is the total prob-
ability mass in the WFST result of the composition of the two previous transducers.
PR=1|X=xQ=9)=072

Despite the fact that our approach can handle such a rich set of
queries, it does not mean that it is worthy to implement this full sup-
port in practice. After all, there is a reason why most popular web
search engines (e.g. Bing, Google, Yahoo!, etc.) do not support generic
regular expressions as queries.

In order to support fast searches that scale well with the number
of indexed documents, word-based search indexes have to be built.
When we do so, we are essentially able to serve the results of the
users requests in a time which does not depend on the number of doc-
uments indexed in our database. Yet, in order to support all types
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of regular expressions we would need to store the lattice for each of
the documents in our collection, and then compute this composition
at query time, which would become impractical once the number of
documents (and users) reaches the thousands.

Although we cannot compute the exact relevance probability with-
out the lattices, we can compute good approximations to it using
probabilistic word indexes obtained from the algorithms (described
in chapter 5) and the use of Fréchet bounds (see section 2.5.1). In par-
ticular, in order to allow for the so-called phrase queries, we build a
positional probabilistic word index using the algorithms described in
section 5.1.3 (if we use lexicon-based lattices) or section 5.3.3 (if we
use lexicon-free lattice).

Instead of providing bounds of the relevance probability, we typi-
cally give a single value to the user by using the min operation in the
conjunction, and the max operation in the disjunction (the upper and
lower Fréchet bounds of each operation, respectively). This is a very
natural way of combining single probabilities and we used it effec-
tively in [Toselli et al., 2018b] (see experiments in section 8.12). Also,
notice that the phrase queries (such as "not neat" or "not great")
can be interpreted as the conjunction of the multiple words with the
additional restriction that their text positions are contiguous.

In particular, our large scale demonstrations allow for multi-word
queries with support of Boolean expressions and phrase queries at
word level. At query time, we use the parsing tree of the query to
perform intersection (conjunction operation) and union (disjunction)
of partial results and use the Fréchet approximations to the relevance
probability. Although it would be possible in theory, our current im-
plementation does not support prefix or suffix searches, and other
more advanced regular expression operations. Yet, we believe that
Boolean expressions and phrase queries cover the vast majority of
the queries that typical users need.

Table 7.1 shows an example where we use a positional probabilis-
tic index of the example depicted in fig. 7.1, in order to compute an
approximation to the relevance probability (and its bounds). In sec-
tion 2.2.3 we explained how this positional index is computed from a
word lattice. For instance, the probability of the pair of word—position
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(this, 1) is equal to 1.0, because all paths in the word lattice contain
this word in that position. On the contrary, the probability of the pair
(not, 3) is 0.2, since only one path (whose posterior probability is 0.2)
includes that word in that position.

Table 7.1. Example computing the relevance probability of a multi-word query. The
ultimate goal is to compute an approximation to the relevance probability of the
query Q depicted in fig. 7.1. For that, we use the Fréchet bounds and the probabilistic
positional index in table 7.1a.

(a) Probabilistic positional index

Term Pos. Prob.

this 1 1.0

is 2 1.0

not 3 0.2

great 3 0.56

neat 3 0.16

bad 3 0.08

great 4 0.14

neat 4 0.04

bad 4 0.02

(b) Relevance probabilities of different queries
Relevance probability

Query Exact Approx.  Bounds
not 0.2 0.2 [0.2,0.2]
great 0.7 0.56 [0.56,0.7]
neat 0.2 0.16 [0.16,0.2]
great V neat 0.9 0.56 [0.56,0.9]
"not great" 0.14 0.14  [0,0.14]
"not neat" 0.04 0.04 [0,0.04]
"not great" V "not neat" 0.18 0.14 [0,0.2]
—("not great" V "not neat")  0.82 0.86 [0.8,1]
Q 0.72 0.56 [0.36,0.9]

Following the Fréchet bounds we can compute an approximated
value of each query using the probabilistic index, as table 7.1a shows.
For example, there are two entries associated to the word "great"
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(since there is one path with that word at position 3, with posterior
0.56, and another at position 4, with posterior 0.14). The exact rele-
vance probability, computed directly from the lattice, is equal to 0.7,
which in this case is the sum of the two. The exact probability will
be in the range [max{0.56,0.14}, min{1,0.56 + 0.14}] = [0.56,0.7], ac-
cording to the Fréchet bounds. Notice that, in general, this probability
is not equal to the sum of all entries. For example, if the same word
is repeated multiple times within the same transcript hypothesis, the
relevance probability is not the sum of all the index entries. In our im-
plementation, we usually keep only the lower bound of this interval,
for OR (and single word) queries, that is 0.56, which is shown in the
“Approx.” column of the table 7.1b.

Similarly, we can also use the Fréchet bounds to approximate the
value of AND (and phrase) queries. Take for instance the query "not
great". Its exact relevance probability is 0.14, since there is only one
path in the lattice containing this sequence of words, with this poste-
rior probability. There is one entry for the word “not” in the index, at
position 3, with probability 0.2, thus we need to take into account the
entry of the word “great” at position 4, with probability 0.14. Thus,
the Fréchet bounds for the relevance probability of the phrase query
are [max{0,0.2+0.14 — 1}, min{0.2,0.14}] = [0,0.14]. In our imple-
mentation, we typically keep the upper bound for AND (and phrase)
queries, as shown in the “Approx.” column of the table 7.1b.

7.2 The future of Keyword Spotting with perfect transcripts

One of the main reasons that motivated the development of Keyword
Spotting, back in the 1990s, was to mitigate the problems of indexing
inaccurate transcripts provided by the handwritten text recognition
systems.

However, in the last ten years the recognition accuracy of different
HTR approaches have improved considerably and the character error
rate in most (academic) databases is below 5%.

Thus, the reader might wonder what the future of Keyword Spot-
ting (and this thesis) will be once the accuracy reaches a 0% error rate.
After all, once we achieve a reasonable low error rate, why don’t we
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simply automatically transcribe all the documents and use a typical
search engine to index them?

This apparently simple (but important) question hides two key
assumptions.

First, it assumes that the performance on academic benchmarks
is a good proxy of the performance of a technology in real scenar-
ios. Yet, it is well known that real collections of historical documents
are much “messier” than typical academic benchmarks. The docu-
ments are sometimes badly preserved, layout analysis is trickier, they
cannot be manually segmented into lines (much less into words), the
reading order is unclear (especially when dealing with multi-column
documents), etc. In addition, results shown in academic publications
are prone to underestimate the error rates since we (researchers) keep
using a few (rather small) data sets and improve the results on them
iteratively by looking at what worked best in previous publications.

Secondly, it assumes that the transcription of a text image is a
deterministic (non-stochastic) process. That is, we assume that there
is only one right transcript of the given image. However, in reality,
professional transcribers do not always agree on their transcripts, es-
pecially when ancient (and not well-preserved) documents, or docu-
ments with many abbreviations or difficult writing styles are consid-
ered.

Even if we assume that the transcription of a text image is actu-
ally a deterministic process, and that we can characterize it (i.e. given
a text line image we can obtain unequivocally its only possible tran-
script), still many other applications exist where this assumption is
obviously false. In all such cases, we could essentially use all the
methods described in this thesis.

For instance, in order to illustrate such scenario, we will consider
the so-called Image Captioning problem, where the goal is to obtain
a textual description of a given image. Under this perspective, we
can interpret the process of transcribing a text image as an instance of
Image Captioning, where the set of images is restricted to handwrit-
ten images containing text, and the “description” (or caption) of the
image is just the transcript of this text.
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In practice, though, Image Captioning refers to describing “natu-
ral” images, such as landscapes or portraits captured with a digital
camera.

Clearly, for a given natural image, there are multiple possible de-
scriptions, and if we asked two persons to write down their descrip-
tion of such picture, these would hardly be identical. Even if the two
persons did interpret the same “meaning” of the image, the wording
(description) of such “meaning” would likely not be the same, given
the large amount of ambiguity present in natural languages.

In order to illustrate this phenomenon, let’s consider the Flickr-
30k data set, which is typically used in academic publications tackling
Image Captioning. This data set is composed of 31 783 natural images
(pictures from the Flickr! website) and five annotations for each of
them, provided by different persons. For instance, fig. 7.2 shows an
image from the data set and its five reference descriptions.

The example shows that although the general meaning of the pic-
ture is common for all five annotators, their description is indeed very
different, and there are some nuances that are only described by one

AT

annotator (e.g. “mature hikers”, “playing golf”, etc).

Given this, if a random person had to describe the content of
the image, we could assume that she would produce one of the five
descriptions with equal probability. This is equivalent to say that
PW=w; | X=x)=1%1<i<5.

Typically, in Image Captioning publications, they measure the BLEU
score between the system’s annotation and the reference one(s). How-
ever, since we want to tackle this problem as an Information Retrieval
application, we can imagine that we want to retrieve relevant im-
ages given the user queries in our web page (i.e. like in a traditional
Content-based Image Retrieval application). Thus, given a set of queries,
we can compute the Global and Mean Average Precision performance
measures.

In particular, we will compare two systems that use the true proba-
bility distribution P(W | X) for all images in the Flickr-30k collection.

http://www.flickr.com


http://www.flickr.com
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Figure 7.2. Example of an image from the Flickr-30k data set used in Image
Captioning publications. The reference transcripts for this image are:

w1 = "Two men wearing hats and holding canes are standing silhouetted
against a large body of water with sunlight reflecting off the water
and a tree to the side".

wy = "Two men wearing hats and using walking sticks are walking near a
body of water during sundown".

w3 = "Two men stand beneath a tree as they watch the sunset over the
ocean".

wg = "Two mature hikers take a break and admire the sunset over the
lake".

ws = "Two men playing golf near water while the sun is setting".

The first system uses a deterministic index on the output of a tra-
ditional Image Captioning solution, i.e. it obtains arg max,, P(W | X).
Then, it retrieves all images that contain the given query word. This
system, given that P(W | X) is the true distribution, gives the Bayes
optimal decision for the expected value of the 0-1 loss.

In the second case, an index is built using our probabilistic frame-
work. More precisely, P(R =1 | X = x,V = v), for each image x and
each word in the data set, as we described in section 5.1.1. Then, given
a query keyword, it retrieves all images in decreasing order of the
relevance probability. As we proved in chapter 3 (particularly in sec-
tions 3.2.3 and 3.3), given that we are using the true distribution, this
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system gives the Bayes optimal ranking that maximizes the expected
value of the Average Precision.

We use all the words in the data set as queries, excluding the stop-
words. This gives a total of 23 346 keyword queries. Given this set
of queries and the true distribution of the descriptions in the images,
we compute the expected value of the Global and Mean Average Preci-
sion. Notice that we need to compute an expected value because the
reference description of each image is an stochastic process.

Because the cost of computing the exact value of the expected Av-
erage Precision is very large, we compute an approximate value by
making repeated trials. In each trial, we pick the reference annotation
of the image randomly, and then we average the results over the mul-
tiple trials. In addition, we compute 95% bootstrapped confidence
intervals. Table 7.2 shows the results obtained in this illustrative ex-
periment.

Table 7.2. Global and Mean Average Precision on the Flickr-30k data set with a de-
terministic and probabilistic indexes, when the ground-truth (i.e. true) distribution
is known. BCa bootstrapped confidence intervals at 95% are shown.

Index gAP (%) mAP (%)
L 8.1 18.3
Deterministic (1-best)  [180-181] [18.2-18.3]
e 62.5 56.6
Probabilistic [62.5-62.5] [56.6-56.6]

As the table shows, using the probabilistic index which optimizes
the value that we are measuring, clearly improves the results that a
traditional solution would give. Not only that, given the proofs in
chapter 3 we can assert that no other system will perform better than
the one based in our probabilistic index (at least, if the expected Aver-
age Precision or other measures described in chapter 3 are used).

Thus, the reader can rest assured that the methods developed in
this thesis are worthy not only for traditional KWS applications, but
also for other related applications, with a large interest in current re-
search and industrial settings.






Experiments

In this chapter we will experimentally validate the probabilistic frame-
work, algorithms and claims, described through the previous chap-
ters. In particular, some of the questions that we aim to answer in this
chapter are:

1. How can the different relevance probabilities defined in chap-
ter 2 be used under a line-level KWS paradigm, given that some
are more efficient to index (see algorithms in chapter 5)? This
will be developed in section 8.2.

2. What effect has the language model in a KWS task? Are lexicon-
based or lexicon-free approaches preferable? These questions
are tackled in section 8.3.

3. How does the number of training samples affect the performance
of our probabilistic indexes? This is studied in section 8.4.

4. Given that both KWS and HTR use the same underlying prob-
ability distribution, what is the correlation between the perfor-
mance on HTR and KWS tasks? This topic is examined in sec-
tion 8.5.

5. How does our approach compares with state-of-the-art line-level
KWS works? This is studied in section 8.6.

6. How does the use of more traditional statistical models for hand-
written text affects the KWS assessment measures of our ap-
proach? We analyze this question in section 8.7.
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7. How can we use our line-oriented probabilities and indexes to
tackle KWS under a segmentation-free approach? In section 8.8
we empirically evaluate it.

8. How do other seminal works in KWS relate to our approach,
from an experimental point of view? We already studied this
in chapter 6, and we provide some experimental justification in
sections 8.9 to 8.11.

9. What is the performance of our probabilistic approach to tackle,
in a efficient but approximate way, Boolean queries containing
multiple words? The theoretical justification of our approach
was given in section 7.1, and we evaluate it in section 8.12.

8.1 Overview of the experimental setup

8.1.1 DATABASES

Most of the experiments reported here are evaluated at line level.
That is, for a given query, our system has to determine the set of rele-
vant text lines in a particular data set, regardless of the position of the
query keyword in the text line, or the number of occurrences within
the line. Nevertheless, some experiments under the fully segmentation-
free paradigm are also reported, as well as a couple of experiments
under the word-segmentation assumption.

Different databases are used as well to evaluate these experiments,
but most of them (at line level) are conducted only using the IAM
database (see appendix A.3). This is considered to be one of the tough-
est seminal databases under the line-level KWS paradigm, for which
typically the KWS performance is much lower than other line-level
data sets (such as George Washington, or Parzival). Yet, we will also
report line-level results on other databases for completeness in the
comparison with previous state-of-the-art works on KWS.

8.1.2 STATISTICAL MODELS FOR HANDWRITTEN TEXT

Most of the experiments described here have been conducted using
neural networks based on convolutional and one-dimensional LSTMs
layers (i.e. CRNN:S, for short), as described in section 4.3.5. However,
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some experiments using traditional Hidden Markov Models (with
Gaussian Mixture densities) are also performed, in order to highlight
that our approach can be used regardless of the underlying probabilis-
tic model.

In the case of the IAM experiments, we use the simplest neural
network architecture presented in [Puigcerver, 2017]. For the rest of
the data sets, we will describe the employed architecture in each case.
We have performed most of the experiments using PyLaia!, a toolkit
developed keeping in mind the needs of researchers working with
handwritten documents.

In most of the experiments we make use of the RMSProp algo-
rithm to perform the gradient descent updates of the neural network’s
parameters. In particular, for we used the setting described in [Puigcerver,
2017]. In the cases that we used a different setting, we will indicate
sO.

We used the Kaldi toolkit? to combine the output distribution of
the neural network with the n-gram language models. The n-grams
were trained typically using the OpenGrm libraries, with Kneser-Ney
smoothing and interpolation.

8.1.3 EVALUATION PROTOCOL

We typically report both the Mean and Global Average Precision. In
order to compute these, we used the so-called interpolated precision
[Manning et al., 2008]:

Tty = mMax 7T,y (8.1)
m'>m

where 71, is the recall at the m-th position of the ranked list.

The interpolated precision is justified from a practical point of
view: one typically would look at a few more results if this increases
the percentage of relevant retrieved documents (that is, the precision
of the larger set is higher). In addition, the interpolated precision at a
recall of 0 is well-defined, whereas plain precision is not.

Ihttps://github.com/jpuigcerver/PyLaia
Zhttp://kaldi-asr.org/


https://github.com/jpuigcerver/PyLaia
http://kaldi-asr.org/
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Recall that the Average Precision is the area below the Recall-
Precision curve. In order to compute this area, we use the trapezoid
integral in most of the experiments. For a list of M ranked results sim-
ply means, this (together with the fact that we use the interpolated
precision) simply means that the Average Precision is computed as:

M - ~
R Tm—1 + 7T,
AP = 7t101 + Z %(Prﬂ - Pm—l) (82)
m=2

where 7, and p;, are the interpolated precision and recall at the m-th
position of the ranked list.

Nevertheless, in some experiments, for a fair comparison with pre-
viously published results, we have adopted a different evaluation cri-
terion, that we will state in the corresponding section.

Notice that the Mean Average Precision can only be computed
for pertinent queries. That is, queries for which at least one relevant
element exists. This is because for non-pertinent queries, the Average
Precision is undefined. In some data sets that we use, the query sets
contain several non-pertinent keywords. In such cases, the Global AP
is computed taking into account the full query set, but the Mean AP
only takes into account the results of the pertinent keywords.

In addition, in some experiments we also plot the Recall-Precision
curves to give a deeper insight on the performance of the correspond-
ing KWS system.

8.2 Comparison of different relevance probabilities

In section 2.5 we saw that all relevance probabilities presented through
chapter 2 are related. In particular, given an image x and query v, the
maximum position-dependent relevance probability is a lower bound
of the position-independent relevance probability, i.e. P(R=1|X =
x,V=v).

If we are tackling a line-oriented KWS scenario, where the rele-
vance of a full text line for a given query keyword has to be deter-
mined, the natural approach would be to use P(R=1|X =x,V =0)
to answer this question. However, as we saw in chapter 5, creat-
ing a probabilistic word index from this distribution has a higher
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asymptotic cost than creating a probability index from other position-
dependent distributions.

Thus, in this section we will study the line-level KWS performance
of the indexes created for each of the relevance distributions intro-
duced in chapter 2, taking also into consideration the time required to
construct them. In order to evaluate the position-dependent indexes
in a line-level setting, where we only need to determine whether or
not the full text line is relevant, we will simply keep, for each word
in each line, the location (i.e. column, segment, or transcript position)
with the maximum relevance probability, as the Fréchet bounds from
section 2.5 suggest.

In order to do so, we evaluate each approach on the IAM database,
measuring the Mean and Global AP. We consider both lexicon-based
and lexicon-free approaches. In the first case, we use a word 3-gram
language model with a vocabulary of 50 000, while in the second case
we use a character 8-gram. In the lexicon-free case, some algorithms
need to set the maximum number of (pseudo-)words to index per line,
and we fixed this number to 100 (later on, in section 8.3.2.2, we will
study how this tunable parameter affects both the mAP and gAP).

The relevance probability used in each case, and the algorithms
used to build the respective word index are:

e Position independent (line-level) relevance probability, indicated
by P(R=1|X=x,V =v), and described in section 2.1. The lexicon-
based algorithm to build such index is explained in section 5.1.1.
In the lexicon-free case, we simply convert the character lattice
into a word lattice, as explained in section 5.3.1, and finally we
use the lexicon-based algorithm.

¢ (Maximum) Column relevance probability, given by the expres-
sionmax. P(R=1|X=x,V =1v,L:=c), and introduced in section 2.2.1.
Although we have not explicitly introduced the algorithm in
this thesis, we have briefly described it in section 5.1.2.2. In the
lexicon-free case, we first convert the lattice into a word lattice,
as in the previous approach, and the use the lexicon-based algo-
rithm.
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¢ (Maximum) Segment relevance probability, presented in section 2.2.2,

and denoted by max.,, P(R=1|X=x,V=1v,L,=(co,c1)). The
lexicon-based algorithm is described in section 5.1.2, and the
lexicon-free algorithm in section 5.3.2.

e (Maximum) Transcript position relevance probability, denoted
by max; P(R=1|X=x,V=uv,L,=k), described in section 2.2.3.
The lexicon-based algorithm is described in section 5.1.3, and
the lexicon-free algorithm in section 5.3.3.

All lexicon-free approaches need a set of delimiter characters to
automatically extract the (pseudo-)words from the sequence of char-
acters in the text line transcript(s), as we explained in section 5.3. In
the case of the IAM database, the characters used as delimiters are:
HwL &, (), 7, 27 and the whitespace symbol.

Table 8.1. Average Precision (both Mean and Global) on the IAM database for dif-
ferent relevance probabilities, evaluated in a line KWS setting. Results using lexicon-
based and lexicon-free are shown in tables 8.1a and 8.1b, respectively. In both cases,
a CRNN and a n-gram language model were combined to generate the lattices from
which the indexes were built.

(a) Word 3-gram, 50 000 words

Method mAP (%) gAP (%)
P(R=1|X=x,V=0) 93.8 91.1
max. P(R=1|X=x,V=0v,L:=c) 94.0 914
maXeo,c; P<R:1 ’ X=x,V=0,L,= <C0, C1)) 94.0 91.6
maxy P(R=1|X=x,V=09,L.=k) 94.0 91.1

(b) Character 8-gram

Method mAP (%) gAP (%)
P(R=1|X=xV =0) 95.7 93.0
max, P(R=1|X=x,V=v,L=c) 95.4 92.8
maxg, o, P(R=1|X=x,V=v,L,=(co,c1)) 95.5 92.9

max; P(R=1|X=x,V=0,L,=k) 95.4 92.7
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Tables 8.1a and 8.1b summarize the mAP and gAP on the IAM
database (test set), for each of the lexicon-based and lexicon-free ap-
proaches, respectively. Observe that all lexicon-based approaches be-
have very similarly. The same trend can be observed among the
lexicon-free methods, although both the mAP and gAP of the latter
are higher than those of the former (in section 8.3.1.2, we will see that
better results can be obtained using a larger vocabulary size, with the
lexicon-based approaches).

It may surprise the reader that, in the case of the lexicon-based
models, the performance of the position-independent relevance prob-
ability (i.e. P(R=1|X=x,V =v)) is lower than that of the other lower
bounds to this probability. After all, as we proved in chapter 3, rank-
ing according to this relevance probability should give the maximum
mAP and gAP values. Nevertheless, recall that these proofs require
that the relevance probability distribution used to rank the results is
actually the real distribution of the data. However, here we are not us-
ing the real distribution, but a (set of) statistical model(s) to estimate
it from training data.

Anyhow, the differences between all methods are very small. More-
over, when better statistical models are used (i.e. using lexicon-free
models), the performance is consistent with the theoretical results
from chapter 3.

Table 8.2 contains the total indexing times needed by each ap-
proach, to build the probabilistic indexes. These total times include
all the steps, from reading the lattices to writing the corresponding
index to disk, for both the validation and test sets of the database.

Observe that the lexicon-based approaches are faster than the equiv-
alent lexicon-free counterparts. This is because character lattices, are
typically larger (have more arcs and states) than word lattices. In ad-
dition, remember that all the lexicon-free approaches have a worst
case scenario cost which grows exponentially with the size of the lat-
tice.

The exponential cost is especially damaging for the first two lexicon-
free approaches, which actually need to expand the character lattices
to create equivalent (pseudo-)word lattices. For most text lines, these
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Table 8.2. Time needed by different algorithms to build the probabilistic index,
on the IAM database, for both the validation and test sets (1849 lines, 229 pages).
Results using lexicon-based and lexicon-free approaches are shown in tables 8.2a
and 8.2b, respectively. The total time needed to generate the respective lattices is
also represented. Experiments performed on a single core of an Intel Core i7-3820
CPU at 3.60GHz

(a) Word 3-gram, 50 000 words

Method Time (sec.)
P(R=1|X=x,V=0) 23.8
max. P(R=1|X=x,V=0v,L:=c) 1.0
maXe,cy P(R:1 | X=x,V=0,L,= (CO/ Cl)) 0.6
maxy P(R=1|X=x,V=0,Lc=k) 0.8
Lattice creation 105.8

Avg. # states = 37.4, # arcs = 108.5, # paths =2.8 - 107

(b) Character 8-gram

Method Time (sec.)
P(R=1|X=xV=0) 1754.9
max. P(R=1|X=x,V=v,L:=c) 101.2
maxg, ., P(R=1|X=x,V=0,L,=(co, 1)) 5.3
max; P(R=1|X=x,V=0,L,=k) 114
Lattice creation 264.4

Avg. # states = 506.2, # arcs = 713.5, # paths = 2.7 - 1012

methods are very fast (less than 0.1 seconds/line), but for some ex-
treme cases with an enormous amount of arcs, the exponential time
(and memory) is excessive and we need to prune the expanded lat-
tices. Another alternative would be to first extract a set of candidate
words to index (using one of the faster lexicon-free approaches), and
then compute the actual position-independent or column-relevance
probability only for these (pseudo-)words.

Nevertheless, given that the segment and position relevance prob-
abilities obtain virtually the same mAP and gAP than the position-
independent or column relevances, in real application we can simply



8.3. EFFECT OF THE LANGUAGE MODEL 177

use one of these. As a matter of fact, these faster approaches are also
more convenient for real applications, since we can obtain a word
bounding box for each indexed spot, and perform more advanced
types of queries in a very fast manner, as we saw in section 7.1.

For the rest of the line-oriented KWS experiments in this chapter,
unless stated otherwise, we will make use of the segment relevance
probability (i.e. maxg, ¢, P(R=1|X=x,V=v,L,=(cp,c1))), since it is
the fastest method for both lexicon-based and lexicon-free approaches.

Taking into consideration both the time needed to generate the lat-
tices and the time to create the index from these, we can process 229
pages in just 106.4 seconds (2.15 pages/second), using a lexicon-based
approach; or in 269.7 seconds (0.85 pages/second), if a lexicon-free
approach. Notice that these processing times were measured using a
single core of a relatively modest CPU, while the whole indexing pro-
cess can be widely parallelized, since each text line can be processed
independently.

Although lexicon-free approaches are slower than lexicon-based
ones, they do not suffer from the out-of-vocabulary problem, which
may be a real issue in databases with very few training samples (recall
that we used a large amount of external data in this experiment to
create the language models). Thus, in real scenarios (see large-scale
demonstrators in chapter 9), we typically use lexicon-free approaches.

8.3 Effect of the language model

In this section, we will study the impact of the language model in
the Keyword Spotting performance (measured using the Mean and
Global AP). These experiments are all performed on the IAM database.

In order to build a line-level index from each text line image, we
build a segment index for each text line (using section 5.1.2 and sec-
tion 5.3.2, for lexicon-based and lexicon-free models, respectively. Since
multiple segments of the same word can be present in the index, we
approximate the line relevance probability with the maximum of all
segments, for each word, just as we did in the previous section.
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Recall that the maximum segment-level relevance probability is
a lower bound of the exact line-level relevance probability (see sec-
tion 2.5). Nevertheless, as we saw in the previous section, this ap-
proach produces results very similar to the exact line-level relevance
probability, and it is much faster to obtain.

Regarding the hyperparameters needed in the combination of the
output of the neural networks and the n-gram language models, in
each of the following experiments, we have tuned both the optical
and the prior scales, using Bayesian optimization, just as we did be-
fore. Later, we will show that tuning both parameters is not critical to
achieving very competitive results, but we have tuned both for com-
pleteness in our experiments.

8.3.1 LEXICON-BASED MODELS

First, we evaluate the performance using word language models. That
is, each token in the n-gram represents a full word. The whitespace
characters are modeled as part of the word in the lexicon. In particu-
lar, we modeled each word to start with a whitespace character.

It is important to highlight that we have not performed any “tok-
enization” of the data before training the language model. This step is
usually done in HTR and many other applications, in order to reduce
the effective lexicon size (e.g. words like “don’t”, and “aren’t” are
split into “do” + “n’t” and “are” + “n’t”, respectively). This typically
improves the recognition accuracy, but it introduces some problems
in the case of KWS. Notice that we could split some word that was
a full keyword, and all of our lexicon-based algorithms, introduced
in section 5.1, assume that the arcs of the lattices are labeled with full
words. Thus, to keep the experiments simple we decided to train a
language model with the original text data.

There are two hyperparameters to adjust in this regard. One is the
size of the context in the language model (1, in the n-gram), and the
other is the size of the lexicon.
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8.3.1.1 N-gram order

Here, we study the effect of the n-gram context size in the KWS perfor-
mance. We kept the lexicon size fixed to 50 000 words. Below, fig. 8.1
shows the Mean and Global AP for each of the considered n-gram
sizes (i.e. 1, 2, 3, 4, and 5), for both the validation and the test sets of
the IAM database.
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Figure 8.1. Evolution of the Mean and Global Average Precision (mAP and gAP,
respectively) with respect to the order of a word n-gram language model, on the
IAM database. The vocabulary of all the language models was restricted to 50 000
words. The figure shows the results for both the Validation (Valid) and Test sets.

In the validation set, all n-gram sizes achieve a competitive Aver-
age Precision, and for n > 2 the results are almost identical (i.e. mAP:
94.8%, 94.9%, 94.9%, 94.9%; and gAP: 92.3%, 92.4%, 92.4%, 92.4%).
Considering these results, the optimal choice is n = 3.

The performance on the test set, although similar, does not yield
the same conclusions. Here, the AP of all n > 2 are indeed very
similar, but there is more fluctuation and the optimal choice for 7 is
n = 2 (i.e. mAP: 94.3%, 94.0%, 93.9%, 94.0%; and gAP: 91.8%, 91.6%,
91.7%, 91.6%).
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Although we have not conducted formal experiments to deter-
mine whether or not these differences are statistically significant, they
are very likely not significant’.

8.3.1.2 Lexicon size

As we mentioned above, the size of the lexicon must also be studied
for lexicon-based approaches, since it has (as we are about to show) a
significant impact on the quality of our system.

Here, we kept the context size of the n-gram constant (n = 3) and
tried with different lexicon sizes (10k, 20k, ..., and 100k). Notice that
we are only able to conduct this experiment with such large lexicons
because we are using the Brown, LOB and Wellington databases as
additional text data to train the language models. The lexicon size of
the training partition of the IAM database itself is only of 7772 words.
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Figure 8.2. Evolution of the Mean and Global Average Precision (mAP and gAP,
respectively) with respect to the lexicon size, on the IAM database. The order of
all language models was fixed to n = 3. The figure shows the results for both the
Validation (Valid) and Test sets.

3This hypothesis is based on the typical width of the confidence intervals from
other KWS publications, which is about 1-2% in AP [Sudholt and Fink, 2018].
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Figure 8.2 shows the evolution of the Mean and Global AP with
respect to the lexicon size, for both the validation and test sets of the
IAM database.

As expected, the quality of the KWS system improves consistently
with the number of words in the lexicon. The best results, for both
validation and test sets, are achieved with a vocabulary size of 100 000
words. For this lexicon size, the mAP is equal to 95.1% and the gAP
is 93.0%, in the test set.

Of course, the relevance probability of any OOV query will always
be zero, for any text line image. However, OOVs affect the perfor-
mance even if not queried. While the lattice is being built, the image
segment corresponding to the OOV will be aligned with many other
(wrong) words, all with a very low likelihood. This may cause issues
with the beam pruning used during decoding (if a narrow beam is
used, all terminal states may be pruned; if the beam is increased, the
lattice generation can be much slower), and may introduce errors in
the subsequent words in the path, since the probability of n subse-
quent words is tied due to the context size of the n-grams.

8.3.2 LEXICON-FREE MODELS

Given the issues that lexicon-based approaches may present, we now
investigate the performance of a lexicon-free approach.

In order to train the character n-gram language model, we have
split the original words in the training partition of the IAM database
(as well as the Brown, LOB, and Wellington) into characters. The
“whitespace” symbol is included in the character-level transcript. No-
tice that this is the same reference text used to train the CRNN with
the CTC algorithm.

8.3.2.1 N-gram order

First, we evaluate the performance with respect to the order of the
n-gram (character) language model. Here, we extract only the 100-
best word segments from each text line. Later, we will see that this
provides a good trade-off between quality and speed.
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Figure 8.3. Evolution of the Mean and Global Average Precision (mAP and gAP,
respectively) with respect to the order of a character n-gram language model, on the
IAM database. The figure shows the results for both the Validation (Valid) and Test
sets.

Figure 8.3 shows the results from this experiment, where the Mean
and Global AP are plotted with respect to the order of the n-gram. As
expected, the results also improve with the context size of the n-gram
language model. The best validation results are achieved with the 9-
gram, although they are almost identical to the 8-gram (mAP: 96.8 vs.
96.7; gAP: 96.0 vs. 95.9, respectively). However, the results on the test
set are exactly the same.

Observe that in order to have a character n-gram that covers the
same (or similar) context as a word m-gram, we typically need bigger
context sizes. Since we include the whitespace character as part of
the word in the lexicon-based system, we need a character context
of, approximately, n = m - w + (m — 1) to cover the same number of
characters as a m-gram word model, where w is the average number
of characters per word. For example, in the IAM database, since the
average number of characters per word is w = 4.1, we need a context
size of about 2 - 4.1 4+ 1 = 9.2 characters to cover the same context as
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a 2-gram word-based language model. This is a good rule of thumb
to estimate the required character context size, from a word n-gram.

Anyhow, given that all these experiments are actually very fast to
perform, one can simply sweep across multiple context sizes, just as
we did here.

Observe that the results that we achieve with 8-gram characters
are virtually the same as the achieved with a very large lexicon and a 3-
gram word language model. In real applications, where no additional
training data is available, we often prefer character language models.
Thus, for the rest of the experiments, unless otherwise stated, we will
use a lexicon-free approach.

8.3.2.2  Number of indexed spots per line

So far, we only indexed the 100-best segments from each text line, us-
ing the algorithm described in section 5.3.2. Nevertheless, observe
that this is the maximum number of indexed spots per line. For a
particular text line, the actual number may be slower, if the lattice
contains fewer hypotheses (due to beam pruning). In any case, the
(maximum) number of indexed spots per line can be adjusted in our
algorithm. Thus, we can study how this number affects the perfor-
mance of our system.

Generally speaking, depending on the entropy of the true distribu-
tion of the transcript posterior, i.e. P(w | x), and the expected length
of the transcript, the required number of indexed spots will need to
be increased, in order to achieve a good Average Precision.

In the IAM database, if we assume that the reference text repre-
sents the true transcript posterior, then the entropy of the true dis-
tribution is 0 (only one transcript per text line is given). Regarding
the expected length of the transcripts, among both validation and test
sets, each text line contains an average of 9.1 words, with a standard
deviation of 2.2 words/line. The text line with fewer words has 3 of
them, and the text line with most words has 18. This gives a lower
bound on the number of spots to index by our algorithm®*.

4In real scenarios, we can compute the expected number of words from the lat-
tices.
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Figure 8.4 depicts the evolution of the Average Precision with re-
spect to the (maximum) number of indexed spots per text line. Ob-
serve that once we set this maximum to 30, we start achieving very
good results. The performance achieved by the system with a max-
imum of 100 (which we used in the rest of the experiments in this
thesis) is virtually the same as for larger indexes.
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Figure 8.4. Evolution of the Mean and Global Average Precision (mAP and gAP,
respectively) with respect to the number of indexed segments per line, on the IAM
database. The figure shows the results for both the Validation (Valid) and Test sets.

Similarly, fig. 8.5 shows the evolution of the total size of the in-
dex (including both the validation and test lines) as well as the total
time required to produce such index®, with respect to the maximum
number of indexed spots per line.

Observe that, in the worst case scenario (extracting at most 24 300
spots per text line), we need just about 15 seconds to generate the in-
dex from the lattices, for the 1849 text lines (226 pages) that comprise
both the validation and test sets. Yet, virtually the same mAP and
gAP results can be obtained in about 5 seconds, by indexing (at most)
100 spots per line.

sing a single core of an Intel Core 17- at 3. 4
5Usi g a singl f an Intel C i7-3820 CPU at 3.60GH
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Figure 8.5. Evolution of the total index size and time with respect to the number of
indexed segments per line, on the IAM database. The total numbers include both the
validation and test sets of the database.

We must emphasize that naively indexing the text resulting of
an automatic transcription achieves considerably worse results, even
though the recognition error rates are quite low (4.4% CER, and 11.73%
WER, on the test set). The mAP and gAP obtained by this naive ap-
proach are 85.8% and 80.7%, using exactly the same statistical models.

8.3.3 EFFECT OF THE OPTICAL AND PRIOR SCALES

In most works, the optical scale®, #, and the prior scale, 3, are tuned
independently, typically using grid search (e.g. [Doetsch et al., 2014,
Voigtlaender et al., 2016]). Also, due to limitations in the software that
we (and many others) use to generate the lattices, the effective prior
scale is « - B, and not just B.

In any case, it is not clear that the effects of both hyperparameters
on the desired metric (e.g. mAP or gAP) are independent. Thus, in all

6The acoustic/optical scale plays a similar role to the grammar scale factor. The
former scales the likelihoods of the optical model (the CRNN in our case), while the
latter scales the language model probabilities.
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our previous (and following) experiments, we tuned both parameters
at the same time.

In particular, we first generate lattices using « = 1 for different
values of the prior scale, B € [0.0,0.1,...,1.0]. Because the optical
cost is stored separately in the lattice arcs, we can adjust a once the
lattice is generated, avoiding to re-generate lattices for each value of
« that we need to evaluate.

Then, we use Bayesian optimization using a Tree-structured Parzen
Estimator (TPE) [Bergstra et al., 2011] to find the pair (a*, *) that
maximizes the average of the mAP and the gAP7, for a given experi-
ment. We use a Bayesian optimization approach, instead of simple
grid search, because it makes the search much faster (in our case,
about 2-3 times).

Figures 8.6 and 8.7 show the evolution of the mAP and the gAP
with respect to the optical and the prior scales, in the validation set
of the IAM database. The color of the heat map represents the value
of the mAP (resp. gAP), the x-coordinate represents the value of the
optical scale (« € [0.2,04,...,4]), and the y-coordinate represents the
value of the prior scale (B € [0.0,0.1,...,1.0]). The sampled results
were interpolated to produce a smoother plot. Figure 8.6 was pro-
duced using a 8-gram character language model, and fig. 8.7 using
a a 3-gram word language model with a vocabulary size of 50000
words.

Observe that, in both figures, the optical scale has a more signifi-
cant impact on the performance, compared to the prior scale. In the
case of the lexicon-free model, if one fixes the optical scale to its op-
timum value, then all values of the prior scale have a very similar
performance. The mAP in the lexicon-based approach (see the left
plot in fig. 8.7) is slightly more susceptible to the combined effect of
the two hyperparameters.

This behavior is not particular of the IAM database. We conducted
additional experiments in other data sets and all show the similar

"We could optimize only the value of the mAP or the gAP, or some other combi-
nation of the two (e.g. geometric mean). However, for simplicity we decided to use
the average.
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Figure 8.6. Evolution of the Mean and Global Average Precision (mAP and gAP)
with respect to the optical and prior scales, in the validation set of the IAM database,
using a 8-gram character language model.
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Figure 8.7. Evolution of the Mean and Global Average Precision (mAP and gAP)
with respect to the optical and prior scales, in the validation set of the IAM database,
using a 3-gram word language model, with a vocabulary of 50 000 words.
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trends. For instance, fig. 8.8 shows the results of the same experiment
in the George Washington data set.
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Figure 8.8. Evolution of the Mean and Global Average Precision (mAP and gAP)
with respect to the optical and prior scales, in the validation set of the George Wash-
ington database, using a 6-gram character language model. We show the average
across the validation sets of the four cross-validation folds.

These results suggest that the value of the prior scale is not critical
to achieve very good KWS results. In fact, one could even use a null
prior scale, which is equivalent to using the raw output distribution
to perform the lattice generation, and still get very good results. This
is good news, because estimating the prior distribution requires pro-
cessing all the training data with the neural network and accumulate
the posteriors across all frames, which can take a few minutes.

In any case, optimizing the prior scale together with the optical
scale using a Bayesian optimization approach is very fast as well (in
our case, it took 5 minutes for the IAM database and 8 minutes for the
George Washington database).

8.4 Effect of the training data size and augmentation

Here, we study how the number of training samples (i.e. text lines)
available for training influences the results of our KWS approach. Re-
call that in order to train our probabilistic models, we need segmented
text lines with its transcription. Thus, if our solution is able to per-
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form well enough even with less training data, then we can poten-
tially save some of the costs of ground-truth production.

The partition of the IAM database that we use consists of 6161
training, 920 validation, and 929 test lines (747, 116, and 110 pages,
respectively). However, the total number of transcribed lines in the
database amounts to 13353 (1539 pages). Thus, we can exclude or
add several text lines to the original training set and study the evolu-
tion of the Average Precision (both Mean and Global) with respect to
the number of available training lines.

For the experiments in this section, we have used the same charac-
ter 8-gram language model used before. Recall, that this model was
trained using three external text-only databases. We have not studied
the influence of the external text data because this type of data is con-
sidered “free”, in comparison to the training data needed to train the
neural networks or GMM-HMMs, since human supervision is barely
needed to gather it.

In addition, we also study the effect of using artificial data aug-
mentation. This has been widely used for many applications in the
field of Pattern Recognition. In the handwritten text domain, we
showed in [Puigcerver, 2017] that simple (but adequate) random affine
distortions, applied to the training images, can significantly boost the
performance of a HTR system.

During training, in order to generate a random affine matrix for a
given image, we translate the upper-left, upper-right, and bottom-left
coordinates of the image in a random direction, such that the maxi-
mum translation is 30% of the height of the image. Then, we compute
the matrix of the affine transformation that maps the three original
coordinates to the new ones. This allows us to efficiently generate
arbitrary affine transformations which do not alter significantly the
content of the image. Our training software performs this operation
on-the-fly, for each training image independently.

Figure 8.9 shows the evolution of the Mean and Global Average
Precision, for both validation and test sets, with respect to the number
of training lines used to train the CRNN. The plot on the left of the
tigure shows the evolution when no artificial data augmentation is
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used, while the plot on the right shows this evolution when random
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affine distortions are used on the training samples.
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Figure 8.9. Evolution of the Mean and Global Average Precision (mAP and gAP,
respectively) with respect to the number of lines used to train the CRNN, on the JAM
database. The left plot shows the evolution when no artificial data augmentation is
used, while random affine distortions were used in the right plot. The results for
both the Validation (Valid) and Test sets are shown.

Observe that all measures typically improve with the number of
training lines used. The only exception is the validation mAP when
using about 11 500 images with no data augmentation, which is slightly
inferior than that of using only about 8200 (97.9% and 98.1%, respec-
tively). However, the differences are likely not statistically significant.
Even using a very small subset of training lines (about 2000), our ap-
proach provides a decent Mean and Global AP (91.1% and 88.8%, re-
spectively), which are higher than any other previously reported re-
sults for line-level KWS on the IAM database (see section 8.6.3).

In addition, using the random distortions that we just proposed
to artificially augment the training data also improves the results in
all cases. For instance, using the original training set (6 161 lines), the
results on the test set improve from 95.5% mAP and 92.9% gAP, to
96.7% mAP 94.9% gAP.
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8.5 Correlation between Average Precision and Recognition
Error

Given that our probabilistic approach uses the same probability dis-
tribution typically used in Handwritten Text Recognition tasks, i.e.
P(W | X), one might wonder what is the correlation of the perfor-
mance in a KWS and a HTR task, when the same probabilistic model
is used. In particular, we study the correlation between the mAP and
gAP, and the Character and Word Error Rates (CER and WER, typi-
cally used in HTR tasks).

In order to study this correlation, we use the same lexicon-free
model used in previous sections, considering different orders of the
n-gram language model, and different values of the optical and prior
scales. For each combination of hyperparameters, we compute the
CER, WER, mAP and gAP (on the test set of the IAM database). In
fig. 8.10, the x-coordinate in each plot represents the value of one of
the HTR measures (i.e. CER or WER), and the y-coordinate the corre-
sponding value achieved in the KWS task (i.e. mAP or gAP).

Certainly, extreme cases can be artificially constructed such that
the error rates are arbitrarily large, and the Average Precision still be
close to 100% (or vice versa). For instance, suppose that our recogni-
tion system recognizes perfectly all the query keywords (which are
very infrequent, compared to the total amount of words), but not any
other word. Then, the recognition error rates will be arbitrarily high,
but both mAP and gAP will be equal to 100%.

Nevertheless, as fig. 8.10 shows, a fairly linear relationship can
be established between the mAP/gAP and the CER/WER. Observe
that the correlation between the WER and both APs is larger that that
of the CER. This is obvious, since the relevance definition is done
at word-level (i.e. a pair of words is relevant if both words are ex-
actly the same), and the number of character errors in a given word,
if greater than zero, does not matter.

This linear relationship can be very useful to estimate the results
expected in a KWS task, for a given model, using results from an HTR
experiment (which is typically easier to conduct). First, one just needs
to estimate the slope and bias of the linear function, and then simply
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Figure 8.10. Correlation between Average Precision measures and Recognition Error
Rates, for the test set of the IAM database. All points in the plots use the same
CRNN, and a lexicon-free language model. However, different values for the order
of the n-gram, and the optical and prior scales were evaluated to generate the plots.

evaluate the probabilistic models on the HTR tasks, and predict its
KWS performance.

8.6 Results on other academic databases

In this section, we evaluate one of our lexicon-free approaches in
other line-level academic data sets: the George Washington and the
Parzival databases.

In each database, we tuned the order of the character n-gram lan-
guage model, as well as the optical scale and prior scale, as described
above. For each text line, we extracted only the 100-best pseudo-word
segments using the lexicon-free approach described in section 5.3.2.
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Finally, the results in each corpus are then compared with other
scientific publications.

8.6.1 GEORGE WASHINGTON

We trained a CRNN neural network similar to the one used in the
IAM experiments. The details are depicted in table 8.3. The CTC loss
was minimized using the RMSProp algorithm, a learning rate equal
to 3-10~* and a batch size of 16 images, for about 230k updates of the
parameters® In this particular database, we observed that using batch
normalization [Ioffe and Szegedy, 2015] in the convolutional layers
improved the recognition results, so we also used this technique in
the KWS experiments. In addition, since the data set is so small, we
also performed random affine transformations of the images during
training.

Table 8.3. Architecture of the CRNN used in the George Washington experiments.

Configuration Values
Convolutional block

Num. layers 4
Activation LeakyReLU
Conwv. filters {16, 32, 64, 64}
Conv. size {3, 3, 3, 3}
Max. pooling {2,2,2,0}
Batch normalization yes
Recurrent block

Num. layers 4
Type BLSTM
Units {128, 128, 128, 128}
Dropout {0.5,0.5, 0.5, 0.5}
Output layer

Units 72
Dropout 0.5

8This is about 700 epochs through the training data of each cross-validation fold,
which took about 2h12m using a NVIDIA Titan X.
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Figure 8.11 shows the evolution of the Average Precision (both
Mean and Global) with respect to the order of the character n-gram.
The delimiters used to generate the word indexes were the parenthe-
ses (i.e. “(” and “)”) and the whitespace symbol. Since this database
uses four-fold cross-validation, we tuned a unique optical and prior
scale by averaging the results across the four partitions.
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Figure 8.11. Evolution of the Mean and Global Average Precision (mAP and gAP)
with respect to the order of a character n-gram language model, on the George Wash-
ington database. The figure shows the average across the four-folds for both the
Validation (Valid) and Test sets.

The results are very similar across all values of n. In order to chose
a single value for 1, we picked the one that maximized the average
of the mAP and gAP in the validation set. There, the 8-gram model
achieves a mAP of 97.6% and a gAP of 93.5%, while in the test set
it achieves 95.6% (mAP) and 94.6% (gAP). Note that these numbers
are the averages across the four cross-validation folds. These results
were achieved with an optical and prior scales equal to 0.85 and 0.80,
respectively.
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8.6.2 PARZIVAL

We also performed experiments in the Parzival data set. The details
of the architecture of the CRNN are represented in table 8.4. The CTC
loss was minimized using the RMSProp algorithm, a learning rate
equal to 5-10~* and a batch size of 16 images, for about 28k param-
eter updates’ Contrary to the previous section, we did not use batch
normalization, nor training data augmentation for this experiment.

Table 8.4. Architecture of the CRNN used in the Parzival experiments.

Configuration Values
Conwolutional block

Num. layers 4
Activation ReLU
Conv. filters {16, 16, 32, 32}
Conv. size {3, 3,3, 3}
Max. pooling {2,2,2,0}
Batch normalization no

Recurrent block

Num. layers 3
Type BLSTM
Units {256, 256, 256}
Dropout {0.5,0.5, 0.5}
Output layer

Units 97
Dropout 0.5

Once more, we tried with different context sizes of the n-gram
character language model, adjusting for each of them both the optical
and the prior scale. The delimiters used to generate the word indexes
were the dot character, the hyphen (resp. “pt” and “eq” in the refer-
ence text), and the whitespace symbol. Figure 8.12 shows the results
of this experiment, for different values of n.

9This is about 200 epochs through, which took about 2h08m using a NVIDIA
Titan X.
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Figure 8.12. Evolution of the Mean and Global Average Precision (mAP and gAP)
with respect to the order of a character n-gram language model, on the Parzival
database. The figure shows the results for both the Validation (Valid) and Test sets.

The best results are achieved with the 6-gram. In the validation
set, this language model obtains 98.1% for both mAP and gAP (with
an optical and prior scales equal to 0.55 and 0.20, respectively). In the
test set, it achieves 97.3% and 98.2% points of mAP and gAP, respec-
tively. Nevertheless, the differences among all orders are small and
very likely not statistically significant.

8.6.3 COMPARISON WITH OTHER PUBLISHED WORKS

To put our results in comparison with previously published work,
table 8.5 presents results in the query-by-string, line-level Keyword
Spotting scenario, obtained by other authors on the IAM, George Wash-
ington and Parzival databases.

The following approaches have been considered: The method pre-
sented in [Terasawa and Tanaka, 2009] uses histogram of gradients
(HOG) and dynamic time warping (DTW); [Fischer et al., 2012, Fis-
cher et al., 2013] use approaches based on the classical HMM-Filler,
including the use of character language models to improve its results;
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in [Kumar and Govindaraju, 2014] they use a Bayesian logistic regres-
sion classifier; [Wshah et al., 2014] present a method based on the
HMM-Filler but with additional background modeling; [Wicht et al.,
2016b,Wicht et al., 2016a] use deep belief neural networks in combina-
tion of DTW and HMMs, respectively; [Toselli et al., 2016b] essentially
use the column-wise relevance probability (see section 2.2.1), making
use of GMMs, HMMs and a word language model to build the neces-
sary statistical models. Finally, [Frinken et al., 2012] use the BLSTM-
CTC approach briefly discussed in section 6.2.

In the case of the IAM database, we report in this table the results
achieved by the segment lexicon-free approach, using 8-gram charac-
ter language model, with artificial data augmentation (i.e. using ran-
dom affine distortions on the original training images). For the rest
of the databases, the reported results are the ones described earlier in
this section. Observe that the methods developed in this thesis signifi-
cantly improve previous state-of-the-art results, for all the considered
databases.

8.7 Using traditional GMM-HMM models

Although in the previous experiments we have only used models
based on CRNNs (combined with n-gram language models), other
types of statistical models for the text line transcripts, whose output
can be represented as a WFST can also be used.

For instance, as we explained in section 4.2, the traditional Hidden
Markov Models (with Gaussian Mixture densities) can also be used
to build the probabilistic indexes. In fact, at the early stages of the
development of this thesis, we mainly used HMMs to perform our
experiments.

In this section, we will use HMMs to tackle line-oriented KWS
tasks, using the approach described in this thesis to create probabilis-
tic word indexes. As we will see, these models can also achieve very
high performance for KWS tasks, when used under our formulation,
although they have been almost entirely replaced by modern CRNNSs.

HMM training was carried out with the embedded Baum-Welch
algorithm, using the HTK toolkit [Young et al., 2002]. A left-to-right
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Table 8.5. Average Precision (%) results achieved by different query-by-string, line-
level KWS approaches on the IAM, George Washington and Parzival databases. Pub-
lications that did not report the first decimal point are marked with “?”.

Measure IAM GW PAR

HOG-DTW R
[Terasawa and Tanaka, 2009] mAP — 791 _
Classic Filler-HMM mAP 689" 793 882
[Fischer et al., 2012] gAP 47.8+ 62.1 85.5
BLSTM-CTC

[Frinken et al., 2012] gAP 78.2 85.7 94.?
2-gram Filler-HMM +

[Figscher etal., 2013] gAP 55.1 73.9 -
BLRC R

[Kumar and Govindaraju, 2014] mAP 49.0 - -
Filler-BGR +

[Wshah et al., 2014] mAP 57.7 — -
CDBN-DTW mAP — 674 624
[Wicht et al., 2016b] gAP _ 55.7 58.8
CDBN-HMM mAP 724% 851 94.6
[Wicht etal., 20162 gAP 647" 712 923
HMM + 2-gram LM o ap 722 772 902

[Toselli et al., 2016b]

mAP 96.7f 956 973
gAP 949t 946 982

t Smaller query set and/or number of evaluation lines.

This thesis

i Artificial data augmentation.
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HMM was used for each character. The number of states and Gaus-
sian densities per state were roughly set up taking into account the
average number of frames aligned to each character in the alphabet,
and other data set features, and finally tuned using validation data.
Since the HTK toolkit does not offer good support for generating lat-
tices with large language models, in this section we will only used 2-
gram word language models. More details about the HMMs setting
and the language model are given in [Toselli and Vidal, 2015].

We use two large data sets, from the Bentham and Plantas col-
lections. The Bentham partition that we use is the one used in the
ICFHR2014 Competition on Handwritten Text Recognition on Transcripto-
rium Datasets [Sanchez et al., 2014], while the Plantas partition was in-
troduced in [Toselli et al., 2018a]. More details about these databases
can be found in appendices A.1 and A.5, respectively.

Bentham Plantas
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Figure 8.13. Recall-Precision curves of HMMs, CRNNSs, and fully automatic tran-
scription, on the Bentham and Plantas databases. In the Bentham database (left), the
gAP of HMMs is 90.7%, while that of the CRNN is 91.4%. In the Plantas database
(right), the gAP of the HMMs is 90.9%, and that of the CRNN is 92.9%. The plots
also show the performance of a (non-probabilistic) index built after automatically
transcribing all text lines with the CRNN, which achieves a gAP of 76.3% and 79.4%,
in each database, respectively.

In fig. 8.13, the recall-precision curves of the test set of both databases
are plotted (the Global Average Precision is the area below this curve).
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According to these results, using CRNNSs in the place of HMMs only
gives modest improvements with respect to the gAP. Observe that in
both cases, the gAP is very high. Thus, little gains can be expected
from using a better statistical model.

Nevertheless, as we will see in the next section, CRNNSs offer a
more robust performance when automatically segmented text lines
are used to create a probabilistic index for a segmentation-free KWS
scenario, which is closer setting to reality.

8.8 Segmentation-free evaluation

So far, we have performed experiments in documents with manually
segmented lines, and evaluated the spotting results at line level (with-

out the need of predicting accurate bounding boxes for the spots).
However, as we suggested in section 2.4, the position-dependent prob-

ability relevances described in this thesis can be directly used in segmentation-
free evaluations, by using automatic text line segmentation techniques.

In this section we will show the results of our approach evaluated
under a segmentation-free scenario. In particular, we have conducted
experiments using the same databases as two international competi-
tions: the ICFHR2014 Handwritten Keyword Spotting Competition'®, and
the ICDAR2015 Competition on Keyword Spotting for Handwritten Docu-
ments!!.

8.8.1 ICFHR2014 HANDWRITTEN KEYWORD SPOTTING COMPETI-
TION

Here, we use the Bentham collection employed in this competition
to evaluate the performance of a lexicon-based system, using GMMs,
HMMs, and a 2-gram word language model as the statistical models;
as well as a lexicon-free system, using a CRNN with a similar archi-
tecture to all the other networks used before, and a 7-gram character
language model. The results of the HMM-based system were origi-
nally published in [Vidal et al., 2015].

Ohttp://vc.ee.duth.gr/H-KWS2014/
Uhttp://transcriptorium.eu/~icdari5kws/
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Because in the original competition they did not provide any train-
ing data, we used the training (350 pages) and validation (50 pages)
from the ICFHR2014 Competition on Handwritten Text Recognition on
tranScriptorium Datasets [Sanchez et al., 2014], from which we excluded
the 50 pages used in the evaluation of the KWS competition.

In the case of the HMM-based system, an additional corpus of
10M running words (about 78000 distinct words) was used to esti-
mate the 2-gram language model. However, in the case of the CRNN-
based system, no additional training data, nor data augmentation,
was performed to estimate any of the statistical models.

We use the evaluation software provided by the organizers of the
competition. Contrary to most of the experiments in this thesis, they
do not use interpolated precision or the trapezoid integration method
to compute the Average Precision. Also, their software did not report
the gAP, only the mAP.

Since we are in a segmentation-free scenario, the systems must
provide a bounding box with the localization of each spotted key-
word in each page. Thus, an additional measure is needed in or-
der to decide whether the given bounding box is sufficiently correct.
The organizers of the competition used the overlapping area between
the reference bounding boxes and the detected ones, defined as #,
where A and B are the reference and the detected bounding boxes,
respectively. All detected keywords with an overlapping area greater

than 0.7 are considered correct!?.

The details about the training of the GMM-HMM, and the auto-
matic text line segmentation can be read in [Vidal et al., 2015]. The
architecture of the CRNN that we used in this thesis is described in
table 8.6. We trained the neural network using RMSProp, with a learn-
ing rate equal to 5 - 10~*, with a batch size of 16, for about 28k param-
eter updates.

12We are aware that this overlapping measure can be easily fooled by producing
spots with sizes equal to the whole page. However, for the sake of fair comparison,
we did not take advantage of this shortcoming of the evaluation protocol.
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Table 8.6. Architecture of the CRNN used in the ICFHR2014 Handwritten Keyword
Spotting Competition.

Configuration Values
Convolutional block

Num. layers 4
Activation ReLU
Conwv. filters {12, 24, 48, 48}
Conv. size {7,5,3, 3}
Max. pooling {2,2,2,0}
Batch normalization no

Recurrent block

Num. layers 3
Type BLSTM
Units {256, 256, 256}
Dropout {0.5,0.5, 0.5}
Output layer

Units 62
Dropout 0.5

In the case of the lexicon-free (CRNN-based) approach, we used
the algorithm described in section 5.3.2 to build a (pseudo-)word in-
dex, storing the relevance probability of each segment.

Because the competition was evaluated under the query-by-example
paradigm, we modeled the transcript posterior of the query image us-
ing the n-best transcription hypotheses, either using the HMM-GMM
model or the CRNNSs. In both cases, for the query image, instead of us-
ing a line-level language model, a character n-gram language model
for individual words was used.

With the probabilistic word index, and the query transcript pos-
terior, we follow the approach described in section 2.3 to obtain the
relevant bounding boxes for each query image.

Table 8.7 shows the results of the HMM and CRNN-based sys-
tems, using both manual and automatic line segmentation of the eval-
uation pages.
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Table 8.7. Results for manual and automatic line segmentation in the ICFHR2014
KWS competition. Results are reported using the Mean Average Precision (%) as
computed by the official evaluation software.

Manual Automatic

HMM-GMM + word 2-gram 86.5 71.5
CRNN + char 7-gram 88.9 87.3

Observe that the results achieved by the HMM and the CRNN
models are similar, but the later one is much more robust when au-
tomatic line segmentation is used during evaluation (both use man-
ually segmented lines during training). In addition, recall that the
CRNN-based system used fewer training data to estimate the charac-
ter language model.

Regardless of the particular statistical approach used to model the
required probability distributions, our probabilistic approach is much
superior than the other solutions submitted to the competition, as ta-
ble 8.8 shows.

In this table, the four top rows represent the official scoreboard
for the segmentation-free task of the competition, and the two rows
at the bottom represent the solutions based in our probabilistic per-
spective. In addition to the mAP, other performance metrics are also
shown: the precision at 5 (P@5), and two normalized discounted cu-
mulative gain measures, one assuming a binary relevance judgment
(NDCGbin) and the other assuming non-binary judgment (NDCG).
Further details about these evaluation measures are explained in the
competition report [Pratikakis et al., 2014].

Finally, fig. 8.14 shows some qualitative results of the CRNN-based
approach, for a given query image (with the word “offence” written
in it) and a test page of the competition (with several instances of this
keyword). It is worth mentioning that we did not make use of any
image processing technique to improve the bounding boxes of the
segments indexed by our system.

Finally, we must highlight that this particular competition violates
the definition of binary relevance that is used in this thesis. In partic-
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Figure 8.14. Figure (a) shows a query of the ICFHR2014 H-KWS Competition, and
(b) a fragment of a page where multiple instances of this query were spotted by the
CRNN system using automatic text line segmentation.
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Table 8.8. Comparison of multiple systems submitted to the original competition
(“Team 1”7, “Team 3”, ...), and two systems employing the probabilistic KWS ap-
proach described in this thesis and automatic text line segmentation: one using
GMM-HMMs and a word language model (“GMM-HMM + word 2-gram”); and an-
other one using CRNNs and a character language model (“CRNN + char 7-gram”).

P@5 NDCG(bin) NDCG mAP

Team 1 61.1 64.0 65.7 419
Team 3 56.8 51.8 53.6 372
Team 4 34.1 36.3 376 209
Team 5 55.0 51.3 531 347
GMM-HMM + word 2-gram  87.9 82.2 823 715
CRNN + char 7-gram 96.0 92.2 919 873

ular, they consider as relevant some word regions of the evaluation
pages that contain different words than that of the given query image.
For example, for a query image with the text “possess” written in it,
some text regions in the test pages are considered relevant, while the

text actually written in these are words like “possesst”, “possessed”
or “possession”.

Although one of the assumptions in our approach is clearly vi-
olated, our probabilistic perspective still outperforms all the other
(word-segmented distance-based) heuristic solutions, by a significant
margin, even using different statistical models, like traditional GMM-
HMM and more recent neural network-based solutions.

8.8.2 ICDAR2015 COMPETITION ON KEYWORD SPOTTING FOR HAND-
WRITTEN DOCUMENTS

The ICDAR2015 Competition on Keyword Spotting for Handwritten Doc-
uments [Puigcerver et al., 2015b] was organized in order to provide a
benchmark to fairly compare different KWS approaches. Two tracks
were created: a training-free (for systems that do not need labeled
training data), and a training-based (for other systems that do need
labeled data, like the presented in this thesis). In the training-based
track, two sub-tracks were created: one following the query-by-string
paradigm and the other following the query-by-example.
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Since the data used in this competition is based on the Bentham
collection, we used the same CRNN architecture and the same train-
ing procedure for the neural network and the character language model.

The submissions to the training-based track were only evaluated
under a segmentation-free paradigm. Thus, we first automatically
segmented the evaluation pages into lines, using the Transkribus tool,
which can be downloaded and used freely!. Then, a lattice was gen-
erated for each text line, from which a segment-level probabilistic in-
dex was created, as described in section 5.3.2 (and as we did for the
previous competition). Using the text line coordinates obtained from
the automatic segmentation, and the indexed segments, we can ob-
tain word-level bounding boxes relative to the whole page.

These bounding boxes need to be refined in a last step, since the
evaluation measure used in the competition is very sensitive to the
overlap between the detected and the reference bounding boxes. Con-
trary to the previous competition, the intersection over the union mea-
sure was used in this case. This measure is defined as Q—GS, where A
and B are the areas of the reference and spotted bounding boxes, re-
spectively. Only correct matches with an overlapping ratio greater or
equal than 0.7 were considered correct. We used the evaluation soft-
ware provided by the competition to measure the Global and Mean
Average Performance.

Table 8.9. Comparison of multiple systems and measures in the ICDAR2015 Compe-
tition on KWS.

Query-by-String
mAP (o/o) gAP (O/o)

Team 1 87.1 85.3
Team 2 38.2 18.2
Ours 91.5 86.4

Bhttps://transkribus.eu/
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Table 8.9 shows the Mean and Global'* Average Precision of our
approach, compared to the best results of the two teams that partici-
pated in the training-based track. Team 1 uses 2D-LSTM and a fairly
similar approach to the BLSTM-CTC, described in section 6.2. Team
2 use a combination of multiple BLSTM networks, with handcrafted
features, and a KWS approach similar to the HMM-Filler, described
in section 6.1.

The lower performance achieved by Team 2 is very likely due to
problems recovering accurate word bounding boxes, and due to the
fact that they used handcrafted features to feed their neural networks.
Our performance is very similar to that of Team 1 (the winner), but
slightly superior. Indeed, according to their description, they follow
an approach very similar to the BLSTM-CTC, but multiple segments
are retrieved per text line (up to 4). As we explained in section 6.2,
the BLSTM-CTC approach can also be interpreted under our proba-
bilistic umbrella, thus it is reasonable that both approaches perform
similarly.

In a real application, our approach has the benefit that we do not
need to know the potential queries in advance, to build the word in-
dex, and thus, we can respond to queries instantly.

In summary, we have seen that our probabilistic indexes can be
easily used in segmentation-free scenarios, by automatically segment-
ing the pages. This is of vital importance for real-life applications,
since accurately segmented text lines or words are never available.
Later, in chapter 9 we will follow the same procedure as in this sec-
tion, to apply our method to large-scale collections (with several tens
of thousands of pages).

8.9 Probabilistic interpretation of the HMM-Filler

In this section, we describe the experiments that we carried out to
highlight the probabilistic interpretation of the HMM-Filler, which
we described in section 6.1, as well as the improvements achieved
by using better approximations to the relevance probability.

14 The gAP was not originally reported in the competition, but report it here, since
we had access to the submissions.
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The experiments are performed on the IAM database at line level.
That is, we assume that the text lines have been segmented and we
aim to localize the relevant text lines for a set of query keywords. We
use the JAM partition used in the original publication describing the
HMM-Filler approach [Fischer et al., 2012].

8.9.1 DESCRIPTION

For each character in the training lexicon, a left-to-right HMM-GMM
was used in order to model the likelihood of the images. The number
of states and the number of mixtures was tuned using the annotated
validation partition (in order to minimize the CER). The HTK soft-
ware [Young et al., 2002] was used to train the HMM-GMM models
using the Baum-Welch algorithm. In order to perform a fair compar-
ison, we used exactly the same image processing, feature extraction
and even the same models used in [Fischer et al., 2012], which were
kindly provided by the authors of the paper.

Once the models were trained, character lattices were obtained
for each of the text lines using HTK or iATROS [Lujadn-Mares et al.,
2008]. In order to generate the lattices, character n-gram language
models of different orders were trained on the well-known Lancaster-
Oslo/Bergen text corpus (LOB) [Johansson et al., 1978]. Since the IAM
corpus was build from the LOB, we excluded from the original LOB
corpora all sentences used in the test set of the IAM database.

In order to limit the size of the generated CLs, a maximum node
input degree of 30 edges and beam search were used during decod-
ing. Additionally, the grammar scale factor and character insertion
penalty parameters were adjusted using the validation data to opti-
mize the CER. We followed the approach described in [Toselli and Vi-
dal, 2013] in order to compute the HMM-Filler scores from character
lattices, since this greatly reduces the computational burden. We used
the same lattices to compute the relevance probability, as described by
eq. (6.4).

We use the length of the keyword (number of character) as the
heuristic to perform length normalization of the scores. That is, the
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retrieved lines were ranked in increasing order of:

_logPy(R=1|X=x,V=0)

logP'(R=1|X=x,V =0) o]

(8.3)

where |v] is the length of the keyword and log P,,(R=1 | X =,V =
v) is the relevance log-probability computed using the HMM-Filler
approximation or the exact probability’.

8.9.2 RESULTS

Table 8.10 shows the results of the comparison. We denote the HMM-
Filler results as “Viterbi” (since they can be interpreted as a Viterbi
approximation of the exact probability), and the exact probability as
“Forward” (since it is computed using a Forward-like algorithm on
the lattices). The optimal value of v was tuned on the validation data
in order to maximize the Global Average Precision.

Table 8.10. Line-level Global Average Precision (gAP) results in IAM, using HMM-
GMM, and different character n-grams and approximations to P(R = 1 | x,v).
“Viterbi” refers to the HMM-Filler approximation, and “Forward” refers to the ex-
act computation of the probability using lattices. The length normalization hyperpa-
rameter () was adjusted on the validation set, its optimal value (y*) is also shown
in each case.

n-gram 0 1 2 3 4 5 6

gAP 345 375 412 454 488 499 505
Viterbi gAP 40.2 429 452 477 494 500 505
7 19 20 19 18 16 13 038

346 38.1 418 471 528 544 558
Forward gAP 403 434 457 494 533 545 558
7 20 19 19 18 16 13 08

=1

First, we can observe that using better character language mod-
els (higher order n-grams) greatly improves the Average Precision of

15 Actually, the relevance probabilities are exact modulo the pruning used to ob-
tain the lattices. However, since we were using large lattices and a large decoding
beam, we can assume that these probabilities are very close to the exact ones.
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the two methods. This is consistent with the probabilistic reasoning
followed through this thesis: the better the probabilistic models of
the handwritten text, the better Keyword Spotting performance one
should expect.

Secondly, observe that as the order of the n-gram language model
augments, the optimal value of -y decreases. This suggests that, as we
hypothesized in section 6.1, the length normalization heuristic is only
necessary when poor probabilistic models are used.

Thirdly, the exact computation of the relevance probabilities proves
to be better than the Viterbi (i.e. HMM-Filler) in all cases, as expected.
In the case of low-order n-grams, the two methods perform quite sim-
ilar, but when the order of the LM increases, the exact computation
clearly shows its superiority. This is due to the fact that, when using
poor statistical models, there is not much difference between comput-
ing the exact probability or a not-so-good approximation.

We must highlight the fact that the absolute and relative improve-
ments, with respect to the HMM-Filler increase with the size of the
n-gram. This suggests that not only using good probabilistic models
is important, but also using the the right quantities to rank the text
lines.

Finally, fig. 8.15 shows the Recall-Precision curves of the Viterbi
approximation and the exact computation of P(R=1|X=x,V=0v),
using a 6-gram LM with oy = 1. The figure gives additional insights
about the behavior of two algorithms. The flat regions in both curves
tell that there are many events with the same (high) score. The for-
ward algorithm seems to discriminate better between the true rele-
vant events and the false positive cases, which explains the increase
in the maximum precision with only a slight drop in the minimum
recall. Since the flat region is present in both cases, we hypothesize
that it is due to the underlying statistical models, and not the algo-
rithms. Finally, once the confidence of the underlying probabilistic
model decays, both algorithms behave very similar as shown by the
curve.
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Figure 8.15. Recall-Precision curves of the Viterbi approximation and the exact com-
putation (Forward) of P(R=1|X =x,V =v). The gAP is the area below these curves.

8.10 Probabilistic interpretation of traditional distance-based
systems

8.10.1 DESCRIPTION

In this section, we present some results using the probabilistic inter-
pretation of traditional distance-based methods that was presented in
section 6.3. The aim of this section is to highlight the issues that these
methods could generally present and were described in the aforemen-
tioned section, namely: the “multi-variance” and “multi-mode” prob-
lem.

There are countless distance-based works in the KWS literature.
Unfortunately, most of them do not share the source code of their
methods. Hence, re-implementing and exploring how the “multi-
variance” and “multi-mode” problems affect each of these works would
be a very time consuming task, and out of the scope of this disserta-
tion. Thus, we have chosen the work presented in [Sfikas et al., 2016]
to illustrate the effect of these problems. We did so because it is a
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fairly recent work and, most importantly, the source code of the pa-
per is publicly available on the Internet'®.

This work presents a query-by-example (QbE) system that oper-
ates on segmented words and makes use of the so-called Zoning Ag-
gregated Hypercolumn features, which is a fixed-size vector represen-
tation of a word image.

Each word image is partitioned into 6 vertical (overlapping) zones.
Each zone has the same height as the image and a variable width
(which depends on the configuration of the method). For each of
these zones, pixel-level descriptors are extracted using a ConvNet
which was previously trained to perform character recognition on
“street-view” images (in particular, they use the network from [Jader-
berg et al., 2014]). These descriptors are known as “hypercolumns”,
which are then aggregated into a single vector per zone, and the vec-
tors from all zones are concatenated to produce a fixed-size, word-
level feature vector. As a result, a vector of 1536 features is obtained
from each image. These vectors are finally normalized using the eu-
clidean norm. Figure 8.16 describes the feature extraction work-flow.
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Figure 8.16. Work-flow of the feature extraction process used to obtain Zoning Ag-
gregated Hypercolumn features. Figure kindly provided by Giorgos Sfikas.

ohttps://github.com/sfikas/zah
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Finally, in order to rank the set of candidate images, the distance
between the feature vector corresponding to the query image and
each of the candidate vectors is computed, and candidates are ranked
according to the increasing euclidean distance.

The experiments are carried on the George Washington database.
More particularly, we use the same partitions as in [Almazén et al.,
2014, Sudholt and Fink, 2016] and many others. We chose to perform
experiments in the George Washington database because both [Sfikas
et al., 2016] and [Sudholt and Fink, 2016] used it (and tuned their sys-
tems to work well on it). This is the same partition as we will use in
the next section, where we will study the probabilistic interpretation
of the PHOCNet model. However, notice that this is not the parti-
tion used in the original [Sfikas et al., 2016] work (our evaluations
sets contain more queries), thus our results do not match those pub-
lished in the original work. In order to know more details about the
George Washington database and this partition in particular, refer to
appendix A.2.

We will use the Global and Mean Average Precision measures
(gAP and mADP, respectively) to compare three ranking alternatives.
In particular, we rank a set of candidate images, represented by their
feature vectors {x; : 1 <i < m} (i.e. all word-segmented images from
the test pages), for each of the query images, {y; : 1 < j < n}, using
these approaches:

1. Increasing order of the euclidean distance (i.e. |[x; —yjl|,), as
proposed in the original work.

2. Decreasing order of the candidate posterior, P(C=i|Y =y;), as
explained in section 6.3, and particularly using eq. (6.12).

3. Decreasing order of the relevance probability, P(R=1| X =x;,Y =y;).
In particular, using egs. (6.13) and (6.15).
8.10.2 RESULTS

The candidate posterior in eq. (6.12) and the word posterior in eq. (6.15)
(used to compute the relevance probability) have a “sharpness” hy-
perparameter, s, that needs to be tuned.
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Figure 8.17 shows the Mean and Global AP obtained with differ-
ent values of the sharpness parameter, using each of the probabilistic
approaches described before.

80

100 | N —Q—P(C:z’\yj),mAP
A - A -A - _, .
s - |- P(C:z\yj),gAP
—— P(R=1 \xi,yj), mAP
(

- A~ P(R=1|x;y;), gAP

60

40

20

Average Precision (%)

0, -

27t 2t 28 2 27 Y
Sharpness, s

Figure 8.17. Global and Mean Average Precision (AP and mAP, respectively) for
different values of the “sharpness” hyperparameter, s, used in egs. (6.12) and (6.15)
to estimate P(C=i|y;) and P(R=1]x;y;), respectively.

In the case of the candidate posterior, P(C =i|y;), the mAP is al-
ways 67.1% because this parameter does not affect the relative order
of the candidate images when compared to the same query image. In
fact, this is the same mAP as the one obtained by the original method
(ranking in increasing euclidean distance). On the other hand, this pa-
rameters affects both the mAP and the gAP when using the relevance
posterior, P(R =1 | x;,y;). In order to compute the word posteriors
from eq. (6.15), involved in the computation of the relevance proba-
bility, we used all available training examples.

Given the results depicted in fig. 8.17 we decided to use s = 8 to
compute P(C =1i|y;), and s = 128 to compute (the word posteriors
involved in) P(R=1|x;,y;). These results are compared with the first
(original) approach of simply ranking using the euclidean distance.
Table 8.11 shows the mAP and gAP in each of the cross-validation
folds of the George Washington database, as well as their average.
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Table 8.11. Mean and Global Average Precision (mAP and gAP, respectively) on
the George Washington database, obtained by different ranking strategies based on
the features extracted by [Sfikas et al., 2016]. The results are shown for each of the
individual cross-validation folds, as well as the average across the four sets.

Metric Order by CvVl CVv2 CV3 CV4 Avg.

—|x—yill, 666 693 663 663 67.1
mAP (%) P(C=ily;) 666 693 663 663 67.1
P(R=1|x,y;) 89.0 905 89.0 874 89.0

—lx—yill, 323 290 280 287 292
gAP (%) P(C=ily;) 520 527 528 521 524
P(R=1|x,y) 965 962 970 959 964

8.10.3 DISCUSSION

As we explained in section 6.3, and as shown in the experimental re-
sults from table 8.11, ranking the retrieved results according to some
distance may not be a good idea, since this is prone to both the “multi-
variance” and “multi-mode” problems, introduced earlier in this the-
sis.

We can normalize the distances among all candidate images (as
P(C=i]|y;) does) in order to solve the “multi-variance” issue, which
has a large impact on the Global AP (but not the Mean AP, which is
unaffected by this). However, these results can be further improved
by actually computing a relevance probability (i.e. P(R =1 | x;y;))
if we have some labeled training examples. As we have seen during
this thesis, ranking according to the later probability (if well modeled)
is the optimal strategy for the usually used Mean and Global Average
Precision measures.

Even though we are using a very simple model of the word poste-
rior probability (based only on nearest-neighbors), we will see in the
next section (see table 8.13), that our probabilistic framework reduces
the gap between the approach described here and more advanced
methods (such as PHOC and CTC-based neural networks).

It is worth emphasizing that using other distance metrics would
probably not solve the problem. In particular, as we discussed in sec-
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tion 6.3, and given that our feature vectors are unit normed, using
the popular cosine similarity would have produced exactly the same
mAP and gAP results!””. We decided to use the euclidean distance
because that was the metric used in the original paper.

Of course, the effectiveness of the relevance probability depends
on how good the model of the word posterior probability is. Thus,
in the next section, instead of using a simple model based on nearest-
neighbors, we will use a neural network to model the word posterior
of an image (in a lexicon-free manner).

8.11 Probabilistic interpretation of the PHOCNet

8.11.1 DESCRIPTION

In section 6.4 we discussed that, in practice, the PHOC representation
of a word, is exactly equivalent to the word itself. This is because
there is virtually a one-to-one mapping between words (strings of
characters) and PHOC binary vectors, for the restricted set of words
of a given data set (see fig. 6.7).

Then, we saw that the neural networks (or support vector ma-
chines, in the original work of [Almazan et al., 2014]) used to predict
the PHOC from an image, can be interpreted in a probabilistic way
(they are estimating the posterior probability of PHOC binary vectors,
given the image, assuming that each of the components of the vector
is independent from the others).

Hence, given the (practical) equivalence between words and PHOC
binary vectors, the neural networks built are equivalent to a word rec-
ognizer. Thus, given this and our probabilistic interpretation of the
model, we derived a probabilistically-sound equation to compute the
relevance probability from the network’s output (see section 6.4.2).

One of the goals of this experiment is to show that this probabilis-
ticapproach can achieve results as good as the traditional (dissimilarity-

2 2 2 2
Ylx—yly = Ixlz+llylz —2xTy. x| =yl =1 = |lx —yll3 = 2~ 2xTy. Thus,
lx — y|l, and xTy produce an equivalent (inverse) ranking, since one is a monotonic
function of the other.
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based) PHOCNet approach, which are more interpretable and with
some theoretical guarantees (see chapter 3).

Given that a neural network trained to predict the PHOC vectors
is essentially as powerful as a word recognizer, the second goal, is to
use a more traditional model of the transcript’s posterior of a word
image.

Regarding the second goal, we tried to use as many parts as pos-
sible from the original TPP-PHOCNet architecture. In [Sudholt and
Fink, 2016] they tried to replace the last layer from the network with
a word classifier (Softmax CNN). However, the results that they ob-
tained were not as good as with the PHOCNet approach, for a KWS
task. Although they did not compute the relevance probability using
the Softmax output as word posteriors, based on our experience with
lexicon-based approaches (see section 8.3.1), we believe that building
a word classifier is not the best option due to the out-of-vocabulary
problem. Thus, we have replaced the fully connected layers from the
PHOCNet architecture with a single recurrent layer, followed by a
Softmax layer to predict character labels, and have used the CTC loss
to train this network. With the network’s posteriors, we generate lat-
tices as described in section 4.6.3, we prune this lattices for speed pur-
poses with a beam equal to 15, and then we simply use the method
presented in section 2.3.1.1 to compute the relevance probability. This
latter step is performed simply by a composition of two WFSTs and
the Backward algorithm in the result to compute the sum of all paths
(review section 4.6.2.2).

In summary, we will compare the results obtained by three differ-
ent approaches:

1. Ranking the elements by increasing Bray—Curtis measure, of the
pairs of vectors produced by the PHOCNet architecture (actu-
ally, the TPP-PHOCNet from [Sudholt and Fink, 2017]). We will
refer to this approach as PHOCNet.

2. Ranking the elements by decreasing relevance probability, com-
puted from our probabilistically-sound interpretation of the PHOC
representation. We will refer to this as Probabilistic PHOCNet.
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3. Ranking the elements by decreasing relevance probability, com-
puted from a similar neural network to the TPP-PHOCNet, but
trained using the CTC loss. We will refer to this approach as
CTCNet.

For the PHOC-based methods (1 and 2 from the list above) we use
the TPP-PHOCNet architecture described in [Sudholt and Fink, 2017].
We have re-implemented their architecture in PyTorch, since we later
needed to slightly adapt it to use the CTC loss. Since the authors pub-
lished their source code, we made sure to be using the same training
loss (binary cross entropy); learning algorithm (Stochastic Gradient
Descent, with batch size 10, learning rate equal to 10~*, momentum
equal to 0.9, and weight decay equal to 5 - 10~°); and the same data
augmentation procedure.

We use the same evaluation measures as in the paper. That is, we
compute the Mean Average Precision (mAP), without precision inter-
polation. In addition, we also compute the Global Average Precision
(gAP), which is not typically reported in PHOC-based works.

In order to compare these results with those of the previous sec-
tion, we have replicated the experiments from [Sudholt and Fink,
2017] on the George Washington database, using exactly the same par-
titions, ground-truth transcripts and query sets, to make sure that we
made a fair comparison. Since the results of all methods are very close
in this data set, we have trained 8 neural networks with different ran-
dom seeds for each of the cross-validation (CV) fold of the database.
We report the average of the 8 runs in each CV partition, for each of
the assessment measures (mAP and gAP).

8.11.2 RESULTS

Table 8.12 shows the mAP and gAP achieved by each approach, in
each of the George Washington CV test sets, as well as the average
across the four cross-validation folds.

First, observe that our own implementation of the TPP-PHOCNet
achieves almost the same mAP as the original work (97.7% and 97.8%,
respectively). The differences are likely due to the random seed used
in each case, and due to the fact that some operations executed in
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GPUs are non-deterministic. Our implementation achieves 98.4% gAPD,
while in [Sudholt and Fink, 2017] they did not report this figure.

The Probabilistic PHOCNet formulation (Prob. PHOCNet) achieves
slightly better results for both mAP and gAP: 98.1% and 98.7%. The
CTCNet approach gives an additional (small) improvement on the
mAP, achieving a value of 98.3%, while the gAP is the same as the
Prob. PHOCNet.

Table 8.12. Comparison of the Mean and Global Average Precision achieved by
PHOC-based works and our distance-based methods, in the George Washington
database.

Metric Method Cvl CV2 CV3 (V4 Avg.
PHOCNet (orig.) — — — — 978

mAP (%) PHOCNet (ours) 97.7 982 979 971 977
/" Prob. PHOCNet 98.0 985 983 977 98.1
CTCNet 988 984 983 975 983

PHOCNet (orig.) — — — — —

AP (%) PHOCNet (ours) 983 984 99.0 98.0 984

Prob. PHOCNet 983 989 994 983 98.7
CTCNet 983 988 995 981 98.7

8.11.3 DISCUSSION

It is important to emphasize that we did not performed any fine-
tuning for any of the approaches, we simply used the same architec-
ture and hyperparameters used in the original TPP-PHOCNet paper.
This means that the Probabilistic PHOCNet and the CTCNet may be
in a slight disadvantage in front of the original TPP-PHOCNet, since
in the later they presumably did tune these hyperparameters, as well
as the architecture of the neural network. Nevertheless our (lower
bounded, in this sense) mAP and gAP are still better than those of
the PHOCNet, although the differences are not significant, since all
methods achieve very high values for both metrics.

One advantage of the CTCNet, which we have not exploited here,
is that we could have combined its output with an external language
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model, as we did in previous sections. However, we decided not to
do so to keep this experiment simple and comparable with traditional
word segmentation-based publications.

Moreover, the CTCNet has far less parameters than the PHOC-
Net (17935589 and 59 859 420, respectively), since all the fully con-
nected layers in the latter have been replaced with a single bidirec-
tional LSTM, and a linear layer for the final mapping. This suggests
that indeed the PHOCNet is over-parameterized for the task. This is
consistent with our hypothesis that a given PHOC binary vector is a
redundant representation of a particular word. Thus, by eliminating
this redundancy we can reduce the number of parameters needed by
the model, as the CTCNet results shows.

Table 8.13. Summary of the KWS results on the word-segmented George Washington
database, for different approaches described in this thesis. The first three rows are
results obtained following a traditional distance-based approach. The three middle
rows were obtained using PHOC-based neural networks. And the final row shows
the result of a CRNN trained using the CTC algorithm.

Method mAP (%) gAP (%)
(Features from [Sfikas et al., 2016])

Raw distance —||x; — y;l|, 67.1 29.2
PC=i|Y=1y) 67.1 524
PR=1]X=ux,Y=y) 89.0 96.4
PHOCNet [Sudholt and Fink, 2017] 97.8 —
PHOCNet (ours) 97.7 98.4
Prob. PHOCNet 98.1 98.7
CTCNet 98.3 98.7

Table 8.13 summarizes the results of the KWS experiments per-
formed using segmented word images. That is, the results from the
probabilistic interpretation of the the traditional distance-based meth-
ods (described in the previous section), the PHOC-based neural net-
works (including its probabilistic interpretation described in this sec-
tion), and the CTC-based neural network (also described here).

Observe that applying the probabilistic formulation described in
this thesis over the traditional distance-based and PHOC-based ap-
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proaches improves both the mAP and gAP. In addition, using a neu-
ral network trained with the CTC loss also improves these results.
The most remarkable result is the huge improvement achieved using
a simple distance-based method, which significantly reduces the gap
between traditional approaches based on nearest-neighbors and mod-
ern convolutional neural networks.

8.12 Multi-word queries

In the last, but not least, experiment we evaluate the performance of
a system based on our probabilistic perspective that can respond to
multi-word Boolean queries.

8.12.1 DESCRIPTION

This system, essentially follows the method described in section 7.1.
Since multi-word queries rarely occur on the same line, the evalua-
tion in this experiment is done at page level. That is, our goal is to
determine whether or not a complete page is relevant for the given
(Boolean) query. A given page is relevant for a multi-word AND
query if all words in the query are written in the page. Similarly, the
page is relevant with respect to an OR query if any of the words is
written in the page.

We use the Bentham collection, previously used in section 8.7. The
multi-word queries that we use are all pairs of distinct words from
the original query set used in this database. The original query set
consists of 3293 query keywords, extracted from the training set, with
a frequency of occurrence in the training set ranging from 2 to 10. This
avoids including most stop words (generally with word frequencies
greater than 10) and also many (singleton) words that are unlikely
to appear in the test partition. This gives a total number of 5420278
multi-word queries, that have to be spotted in 33 test pages.

Despite the large number of single-word and multi-word queries,
only a small portion of queries have some relevant page in the database.
In the case of the single-word queries, only 674 words appear in the
test images. Similarly, for the multi-word AND and OR queries, only
1992007 and 11784 have some relevant page, respectively. We call
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these queries “pertinent”, and the queries without any relevant page
in the test set, “non-pertinent”.

In our original publication, we study the performance for all types
of queries (singletons, AND, and OR) when the number of “non-pertinent”
queries increases. However, for the sake of brevity, we will only
report the results for “pertinent” queries (i.e. queries for which at
least one relevant page exists), and for a set of queries with the same
amount of “non-pertinent” and “pertinent” queries. We refer to these
two groups as ¥ = 0 and r = 1, respectively (i.e. the ratio between
“non-pertinent” and “pertinent” queries).

In order to build the probabilistic index, we used Hidden Markov
Models and word 2-grams. That is, our approach is lexicon-based.
The models that we used were essentially the same as in section 8.7,
but here we also used discriminative training to improve the training
of the HMMs. The results from this section were published in [Toselli
et al., 2018b], which contains additional details about the statistical
models and the training procedure.

Since we operate at page level (without caring about the actual lo-
cation of the words within the page), we build a probabilistic index
that contains the (approximate) relevance probability for each word
in the lexicon and each page from the test set. The page-level rele-
vance probability is approximated by the probability of the best seg-
ment within the page, just as we did in most line-level experiments
in the rest of this chapter. Then, the relevance probability for multi-
word queries is simply approximated by min and max operations, as
explained in section 7.1.

8.12.2 RESULTS

Table 8.14 shows the results of the multi-word experiments performed,
for the two types of query sets: r = 0 is the set of queries that are all
“pertinent” and r = 1 is the set of queries with the same ratio of “per-
tinent” and “non-pertinent” queries. Only the Global AP is reported,
since the Mean AP cannot be computed on “non-pertinent” queries.
As shown in the table, the system has an excellent performance for all
types of queries (single-word and multi-word), in the two considered
query sets.
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Table 8.14. Global Average Precision (gAP) obtained in the multi-word KWS exper-
iments, on the Bentham database. r = 0 denotes the set of all “pertinent” queries,
and r = 1 the set of the same number of “non-pertinent” and “pertinent” queries.

Single AND OR

r=0 946 931 935
r=1 927 919 909

gAP (%)

It is important to understand that, from a practical point of view,
a ratio of “non-pertinent” to “pertinent” queries equal to 1 is quite
unlikely: it would correspond to the use of an information retrieval
system where half of the queries try to find information which cannot
actually be found in the indexed collection.

Obviously, a perfect system should not produce any result for a
non-pertinent query. But a real system may spot, with non-negligible
confidence, pages containing words similar to those stated in the query.
This typically tends to result in degradations of the precision.

8.12.3 DISCUSSION

First, observe that the total number of pairs of multi-word queries
and pages in this experiment is extremely large. Without the use of
a probabilistic index, computing the relevance probability on-the-fly,
for such a large number of pairs would be simply unfeasible.

Secondly, we have seen that our simple combination of the single-
word probability relevances yields to an excellent performance for
both types of multi-word queries. This experiment validates the ap-
proach presented in section 7.1. Recall that the max and min combi-
nation of probabilities, for the OR and AND Boolean queries, gives a
lower and upper bound to the real probability, respectively (assum-
ing that the real probability is well represented by the used statistical
model).

As a result, we can use this simple approach to support multi-
word queries in real (and large-scale) databases, as we will see in the
demonstrators described in the next chapter.
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8.13 Summary

Here, we summarize the main results of each of the experiments con-
ducted in this chapter, that give the answer to each of the questions
posed at the start of the chapter.

1. In section 8.2 we showed that the line relevance probability can
be efficiently and effectively approximated by the segment or
transcript position probabilities. We have algorithms that can
construct such indexes in a very efficient way, for both lexicon-
based and lexicon-free models (2 pages/sec. and 1 page/sec.,
respectively, without using any parallelization).

2. In section 8.3, we showed that lexicon-based approaches, al-
though usually faster, can produce worse results if they are not
trained with a large lexicon. Thus, in real applications, we rec-
ommend using lexicon-free approaches with a sufficiently large
order n-gram language model (e.g. n € [6, 8]).

3. We saw that the number of labeled samples that are needed to
train the used neural networks is not excessively high (see sec-
tion 8.4). In fact, for the considered data set, and using syn-
thetic data augmentation, we can get the same performance us-
ing only about one half of the available training data. Of course,
using additional training data does not hurt the performance.

4. There is a clear linear correlation between the performance in
HTR and KWS tasks, as shown in section 8.5. In particular, we
can alleviate the experimentation costs since HTR experiments
are much faster to perform, and we know that improvements in
CER and WER will translate to gAP and mAP.

5. In section 8.6, we showed that our approach produces state-of-
the-art results for several line-level KWS benchmarks, widely
used in prior academic works.

6. In section 8.7, we also showed that more traditional models
for the handwritten text, namely HMMs, can also be effectively
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used in our framework, since our indexing algorithms take WEF-
STs as the input. Also, HMMs provide virtually the same per-
formance as RNNS, for well segmented text lines.

7. We tackle segmentation-free KWS by simply performing auto-
matic text line segmentation. We showed in section 8.8 that this
provides excellent results, on the data sets of two different com-
petitions, using different methods for text line segmentation. In
addition, we also show that RNNSs are more robust to errors in
the automatic line segmentation than HMMs. Thus, we prefer
the former in real applications like the large-scale demonstra-
tors, described in the next chapter.

8. In sections 8.9 to 8.11, we perform experiments interpreting tra-
ditional KWS approaches from a probabilistic perspective (namely
the HMM-Filler, distance-based, and PHOCNet-based methods).
We show that a probabilistic interpretation with the correct mod-
els can greatly improve the mAP and gAP measures.

9. In section 8.12, we have showed that our methods can be effec-
tively (and efficiently) used to support multi-word queries. This
approach is used in all the large-scale demonstrators used in the
next chapter.






Large-scale demomnstrators

In order to demonstrate the effectiveness and efficiency of the prob-
abilistic framework and the algorithms developed in this thesis, we
built several large-scale demonstrators, within the scope of different
research projects. All demonstrators allow the users to search for ar-
bitrary Boolean expressions and phrase queries on different historical
collections, composed of several thousands of pages, written in differ-
ent languages and from different periods of time.

9.1 Architecture design

The demonstrators follow a client—server architecture made of 4 main
components: the web client, the web server, the data server and the
KWS server, as shown in fig. 9.1.

9.1.1 DESCRIPTION OF THE SERVERS
9.1.1.1 Web and Data servers

The main task of the web server is to serve the HTML pages of the
user interface and prepare the responses to the user’s requests. For
that, a HTTP web server (Apache) is used with PHP support. The web
server connects to the other servers when the requested information
is not available.

For instance, this services does not directly stores the document
images and metadata, which are stored in a separate database, han-
dled by the Data server (although in practice, the data server and the
web server reside in the same machine).
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Figure 9.1. Client-server architecture used by the large-scale demonstrators. The
web client is a regular web browser, the web server receives the user’s request and
prepares the response as HTML files. The KWS server contains the probabilistic
index, similar to an “inverted index” used by a regular search engine. The data
server stores all images and metadata of the documents in a database.

Likewise, when the user sends a KWS query to the web server,
this redirects the query to the KWS server, and prepares the HTML
pages that will present the relevant results to the user.

9.1.1.2 KWS server

The KWS server is the main component of the system and implements
a probabilistic word index, similar to the ones used by regular search
engines. This server implements a RESTful API using HTTP which is
used by the web server to redirect the user’s queries.

The index has a conceptual hierarchical structure, as represented
in fig. 9.2. In our current implementation, we actually use a hierarchy
of hash tables to represent this conceptual hierarchy.

At the top of the hierarchy, we use a hash table that maps from
words to the set of collections that contain (with an estimated prob-
ability greater than 0) at least one instance of such word. Then, an
additional set of hash tables are used to map to the collection’s books
that contain each term. An additional level of the hierarchy maps to
relevant pages within the book. Finally, for each page, a (ranked) list
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Collections

Books

Pages

Figure 9.2. Representation of the hierarchical index used in the large-scale demon-
strators.

of all relevant word instances within that page is stored with the ac-
tual relevance probability, and the bounding box coordinates of the
word instance.

Notice that using hash tables allows for extremely fast searches
at any particular level of the hierarchy, since accessing a particular
level can be done in constant time (on average). However, this rep-
resentation is not the most memory efficient one, since the explicit
implementation of the hierarchy has a significant memory overhead.

This memory footprint could be reduced significantly using a “lin-
ear” layout of the hierarchy, for instance keeping the tuples (word,
collection, book, page) sorted. Then, any level could be accessed in
O(log n) (where n is the total number of indexed pages), which would
result in virtually the same time as the nested hash table architecture
in real use cases, but much lower spatial cost.

An additional advantage of this linear layout is that, since words
would be lexicographically ordered, we could support prefix queries
very efficiently. Nevertheless, our current implementation does not
support this feature.
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9.1.2 DESCRIPTION OF THE WEB CLIENT

From the user perspective, the system is simply a web page, similar
to a regular search engine, which she can access using her favorite
web client (Firefox, Chrome, Safari, etc.). This way, we can support
users using multiple devices and operating systems. The web client
only communicates through the web server with the rest of the com-
ponents.

The web interface consists of a search box where the user can type
the query. The user can also specify the maximum number of results
that the system should retrieve and /or a confidence threshold to filter
out the results with a relevance probability below that threshold.

Queries can be formed by individual terms, or Boolean combina-
tions of these terms using the logical AND, OR and NOT operations,
which are represented, respectively by the characters “&&” (i.e. dou-
ble ampersand), “| |” (double vertical bar) and “~” (dash). If the user
types two consecutive words without any operators, the system inter-
prets it as a logical AND. The user can form nested Boolean expres-
sions using the parentheses (e.g. (jail || prison) && (clean ||
easy)). In addition, phrase-queries are also supported by our engine
using the square brackets (e.g. [the white housel).

The web client offers different views, depending on the level of
the hierarchical index that the user is currently visiting (see the previ-
ous subsection). If the user is at the root and sends a request to the
system, this will report all relevant collections. Then she can look into
a specific collection and the set of relevant books of that collection will
be shown. Next, the user can move to a specific book and the set of
relevant pages will be shown. Finally, she can visualize the location
of the spotted words in a particular page.

In the inner stages of the hierarchy, the visual interface is as de-
picted in fig. 9.3a. This figure is showing all relevant pages for a par-
ticular query within a book. At the leafs of the hierarchy (pages), the
interface is as seen in fig. 9.3b, where all the instances of the spotted
terms within a particular page are shown. The color of the box sur-
rounding the spotted word indicates the confidence (relevance prob-
ability) of the match (green: high confidence, red: low confidence).
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Figure 9.3. Web client graphical interface at different levels of the index hierarchy
displaying the search results for the Boolean query (jail V prison) A (clean V

easy).
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9.2 Trésor des Chartes

The large collection of the “Trésor des Chartes”, produced by the French
royal chancery and encompassing about 68 000 images, dating from
1302 to 1483, was used to evaluate the outcome of the HIMANIS
project!. The main goal of HIMANIS was to build effective and ef-
ficient solutions serving queries over large sets of historical handwrit-
ten document images.

The “Trésor des Chartes” collection is a challenging and particularly
interesting case study. This large and emblematic collection is a key
source of information to understand the origin of centralized nation
states in Europe, in the medieval age.

In order to train the statistical models required to create the prob-
abilistic index, 436 images were used. The transcripts corresponding
to these images were obtained from the text edition provided by Paul
Guérin [Guérin, 1896]. The training data covers the registers dating
from 1302 to 1361, which represents merely 0.67% of the complete cor-
pus, but is largely representative of its diversity and challenges. Fig-
ure 9.4 shows some pages from this collection as well as a trimmed
act image with its modernized transcript.

Medieval documents like the one considered in the HIMANIS
project, entail two important linguistic challenges. Namely, they are
written in more than one language and they are heavily abbreviated
(in the Chancery data set, especially the text parts written in Latin).
The latter problem is particularly insidious because the (only) image
transcripts generally available are modernized versions where all the
abbreviations are completely expanded.

As discussed in [Villegas et al., 2016c], this constitutes a serious
drawback to train adequate optical character models. Moreover, ac-
cording to the requirements of the search functionality aimed at in HI-
MANIS, textual queries must allow (only) modernized word forms.

Nevertheless, thanks to the combination of powerful statistical
models for handwritten text (in particular CRNN) and the lexicon-
free indexing approaches presented in this thesis (in particular sec-

Ihttps://himanis.org/
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Figure 9.4. Examples of page images from the “Trésor des Chartes” data set.Extract
from Paris, Archives Nationales, JJ 67, fol. 34v, n. 97 (1 May 1329). The ground truth,
modernized transcript of the text in the bottom image is also shown.

tion 5.3.2), the project was successful against these challenges, as shown
in the results reported by [Bluche and Messina, 2017].

The quantitative results from the project are summarized in ta-
ble 9.1. These were obtained from the available ground-truth data
(341 images used for training, 95 used for evaluation). Words from
the evaluation set, excluding numbers and punctuation marks, were
used as query words, making a total of 6 506 query keywords. A large
proportion of these keywords are expanded forms of words which in
the images appear abbreviated in several ways. Thus, a query set
exclusively composed of expanded forms of abbreviated words was
also used (244 total keywords).
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Lexicon-based and lexicon-free approaches were compared, as well
as deterministic indexes (obtained from the 1-best automatic transcript
given by the system) and probabilistic indexes. The results achieved
for abbreviations-only are superior than those of the full query set,
because most abbreviated words have, on average, more training in-
stances than the expanded ones.

Table 9.1. Summary of Average Precision results in the “Chancery” data set from
the HIMANIS project. Lexicon-free models (i.e. “Lex-free”) use a combination of
CRNN and character 5-grams. Lexicon-based models (i.e. “Lex-based”) use the same
CRNN, but a word 2-gram language model. Deterministic indexes (“deter.”) use the
automatic transcript produced by the system, while the probabilistic ones (“prob.”)
use the framework described in this thesis (particularly, algorithms described in sec-
tions 5.1.2 and 5.3.2).

Query set System mAP (%) gAP (%)
Lex-free deter. 445 58.1
Full Lex-based prob. 46.2 63.7
Lex-free prob. 68.0 75.0
Lex-free deter. 52.2 68.6

Abbreviations-only Lex-free prob. 73.6 83.8

The resulting probabilistic index contains about 366 million en-
tries (indexed spots), as shown in table 9.2. The reader can access the
demonstrator following the next hyperlink.

http://prhlt-carabela.prhlt.upv.es/himanis

Table 9.2. Statistics of the probabilistic index used in the Trésor des Chartes demon-
strator.

# Pages (P) 83290
# Spots 365 888 252
# of running words (W, expected value) 47260386
# Spots / W 7.7
# W / P (expected value) 567.4

#Spots / P 4392.9
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9.3 Teatro del Siglo de Oro

The “Teatro del Siglo de Oro” collection was indexed within the READ
project?, as one of its multiple large-scale demonstrators. The goal
of the Recognition and Enrichment of Archival Documents (READ)
project was to make archival material more accessible by develop-
ing and implementing cutting-edge technology in Handwritten Text
Recognition, Key Word Spotting, Layout Analysis, and related fields.

In particular, the “Teatro del Siglo de Oro” collection encompasses
hundreds of play3 manuscripts written by the Spanish playwright,
poet and novelist, Lope de Vega, between the late XVI and early XVII
centuries. Lope de Vega was one of the key figures in the Spanish
Golden Age4 of Literature, and is one of the most prolific authors
in the history of literature. The complete collection of manuscripts is
made of about 100 000 images, although at the moment of writing this
dissertation only 23 000 images (230 manuscripts) have been indexed
so far. The statistics of the probabilistic index are shown in table 9.3.

Table 9.3. Statistics of the probabilistic index used in the Teatro del Siglo de Oro demon-
strator.

# Pages (P) 22498
# Spots 31227062
# of running words (W, expected value) 3464620
# Spots / W 9.0
# W / P (expected value) 154.0
#Spots / P 1388.0

Although these documents are written by a single hand in a sin-
gle language, they contain a large portion of abbreviated words (e.g.
most names of characters and locations in the scripts are abbreviated),
which makes the indexing process very challenging, in similar ways
to the faced in the “Trésor des Chartes”. Figure 9.5 shows some exam-
ples of the images included in the collection, and a detailed view of a

Zhttps://read.transkribus.eu/
3Teatro, in Spanish.
4Siglo de Oro, in Spanish.


https://read.transkribus.eu/
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fragment of one page. The figure also shows a spotted result for the
phrase query "la India oriental".

In order to build the probabilistic indexes for the large scale demon-
strator, 286 transcribed page images were used. The statistical mod-
els used to build the index were a neural networks (a CRNN like the
one described in section 4.3.5 and used in many other experiments in
this thesis) and a 8-gram character language model (trained only on
the available transcripts). In order to perform a quantitative assess-
ment of the quality of the probabilistic index, cross-validation was
performed using a query set made of 5409 keywords. The (lexicon-
free) probabilistic index was built using the algorithm described in
section 5.3.2. Figure 9.6 shows the Recall-Precision curve to summa-
rize the results of this experiment.

These preliminary results show, once again, that the proposed
probabilistic framework and algorithms introduced in this thesis can
be effectively (and efficiently) used to tackle the task of indexing a
large collection of document images. The demonstrator can be ac-
cessed following the link below.

http://prhlt-carabela.prhlt.upv.es/tso/

9.4 The Bentham Collection

Last, but not least, the Bentham collection is used as the third large-
scale demonstrator to highlight the effectiveness of the technology
introduced in this thesis. This collection includes several hundreds
of manuscripts written by Jeremy Bentham, an influential English
philosopher, jurist, and social reformer from the XVIII and XIX cen-
turies; as well as many of his secretarial staff. A portion of this col-
lection was first indexed in the Transcriptorium project®. The rest
of the collection was processed during the READ project, described
before. The entire collection is composed of around 100000 images,
from which about 76 000 are available through this large scale demon-
strator. The statistics of the index used in the demonstrator are shown
in table 9.4.

Shttp://transcriptorium.eu/


http://prhlt-carabela.prhlt.upv.es/tso/
http://transcriptorium.eu/
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(a) Examples of page images from the “Teatro del Siglo de Oro” collec-
tion

&« 20 ‘@thsecun prhit-carabelaprhlt.upv.es/tso/index.php/ui/show/TS0,/178/1017q=%5Bla+India+oriental % sD&L=5. ﬁ-| >

BUSQUEDA TEXTUAL EN IMAGENES
fa India orentan [m==| PRHLT READ

Ayuda y ejemplos
Confianza: [50_ T ) Max. resultados: I_
Estas aqui: ORIGEN » TSO » RES_85 » page 101
1 coincidencia encontrada para “[la india oriental]” con una confianza de 84.8 |
- Previa | Siguiente —

£2018 TEATRO DEL SIGLO DE ORO (BNE) (ver tanbién aqui y aqui) & PROLOPE, READ, PRHLT
KHTML €SS AA Browse Happy

(b) Spotted result for the phrase query "la India oriental".

Figure 9.5. Examples of page images from the “Teatro del Siglo de Oro” collection, and
a spotted result for a phrase query.



238 CHAPTER 9. LARGE-SCALE DEMONSTRATORS
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Figure 9.6. Recall-Precision curve summarizing the results of the experiments car-
ried out in the “Teatro del Siglo de Oro” collection. The Global AP (area under this
curve) is of 80%, while the Mean AP is of 83%.

Table 9.4. Statistics of the probabilistic index used in the Bentham demonstrator.

# Pages (P) 76161
# Spots 171991957
# of running words (W, expected value) 22770041
# Spots / W 7.6
#W / P (expected value) 299.0

#Spots / P 2258.3
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A subset of this collection has been used in many HTR and KWS
competitions, as well as in some of the experiments described in the
previous chapter. Some quantitative results can be reviewed in sec-
tions 8.8.1, 8.8.2 and 8.12. Details about the data used for these exper-
iments can be reviewed in appendix A.1.

The demonstrator can be accessed through the link below.

http://prhlt-carabela.prhlt.upv.es/bentham


http://prhlt-carabela.prhlt.upv.es/bentham




Conclusions

10.1 Contributions

In this section the main contributions of this dissertation are summa-
rized.

10.1.1 KEYWORD SPOTTING PROBABILISTIC FRAMEWORK

After describing the many flavors of Keyword Spotting (see chap-
ter 1), we have introduced a new probabilistic formulation of Key-
word Spotting in chapter 2. Here, we present Keyword Spotting as
an instance of Information Retrieval, where the relevant documents
or pieces of documents (i.e. manuscript pages, individual lines or
image segments) have to be presented to the user for a given query
(represented by a string or an exemplar image).

The key idea of the formulation is to compute a (binary) relevance
probability that takes into account the definition of relevance given
the content of the document and the query, and the stochastic nature
of the content, given the images (of the document, and also the query
in the query-by-example paradigm).

Besides, this formulation can be applied (directly, or with minor
modifications) to tackle Keyword Spotting for all of its typical seg-
mentation assumption (word and line-based segmentation, as well as
segmentation-free), as empirically shown in the experiments chapter
(i.e. chapter 8).

Not only that, in chapter 3 we have mathematically proven that,
under the necessary assumptions (i.e. the correct probability distribu-
tions are used), our framework is the best possible strategy (i.e. opti-
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mal) for many of the typically used evaluation measures used across
academia and industry, like the Average Precision, Normalized Dis-

counted Cumulative Gain and Precision-at-k measures (both Mean
and Global).

In short, we have built a principled and robust probabilistic frame-
work for Keyword Spotting and have shown its validity both theoret-
ically and in practice.

10.1.2 PROBABILISTIC MODELS OF HANDWRITTEN TEXT

Because our framework works on top of probability distributions, we
need good statistical models to approximate these and that can be au-
tomatically estimated from training data, (since the real distributions
are never know in practice).

In chapter 4 we have reviewed some of the traditional models
used to represent the content (transcript) of handwritten text docu-
ments, and we have proposed a new neural network-based architec-
ture that only uses convolutional and one-dimensional recurrent lay-
ers. This architecture achieves a similar or better accuracy then previ-
ous state-of-the-art models in a fraction of time (6 to 9 times faster).

Finally, we have explained how the result (i.e. the stochastic tran-
scription of a text image) of these models, and others yet to come, can
be be represented using Weighted Finite State Transducers, which uni-
fies its representation and allows to use our algorithms with arbitrary
types of probabilistic models.

10.1.3 INDEXING ALGORITHMS BASED ON THE FRAMEWORK

Using Weighted Finite State Transducers to represent the (stochastic)
content of the document and queries, in chapter 5 we have developed
several algorithms that allow us to build probabilistic word indexes,
based on the framework developed earlier.

These indexes, similar to the ones constructed by traditional search
engines on text data (like Web pages, or PDF documents) enable us
to scale our framework to very large collections of documents, with a
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search time which is virtually constant with respect to the the index
size (the number of terms and documents indexed).

10.1.4 PROBABILISTIC INTERPRETATION OF OTHER METHODS

In chapter 6, we have presented a probabilistic interpretation of sev-
eral methods used in the Keyword Spotting literature in the past (and
some still used).

This interpretation enabled us to understand the assumptions and
limitations of these approaches, and we proposed different solutions
for “fixing” these limitations and improving such methods. For in-
stance, we studied (and improved) the traditional HMM-Filler, the
BLSTM-CTC approach, a distance-based approach typically used for
segmentation-based query-by-example KWS, and the popular PHOC-
Net method.

10.1.5 BEYOND TRADITIONAL AND ACADEMIC KEYWORD SPOTTING

Finally, we have used our probabilistic framework and algorithms to
tackle Keyword Spotting scenarios which are less frequent in the aca-
demic literature, but are of vital importance for real usage scenarios.

For example, in chapter 7 we have presented how to tackle, in a
principled way, Keyword Spotting with Boolean and phrase queries,
using our framework. Also, we have suggested how to use our proba-
bilistic formulation in other applications related to Keyword Spotting
(from an Information Retrieval perspective), such as Content-based
Image Retrieval.

Moreover, in chapter 9 we have shown that our solutions can be
applied, in an effective and efficient manner, to large collections of
documents, which are rarely targeted in academic domains.

10.2 Scientific publications

Although a large portion of the concepts, algorithms, proofs and ex-
periments presented in this thesis are brand new and have not been
published before, some others were first published in several confer-
ence and journal papers. In summary, during the development of
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this thesis, the author has collaborated in the publication of 2 refer-
eed journal articles and 13 refereed conference papers (6 CORE A, 5
CORE B, 2 CORE C), which are directly related to the content of this
thesis.

This section briefly describes these publications and its relation-
ship to this dissertation.

10.2.1 PROBABILISTIC MODELS OF HANDWRITTEN TEXT

The following paper described the architecture of the neural network
widely used in this thesis to (probabilistically) model the transcript of
a handwritten text line.

e Joan Puigcerver. Are Multidimensional Recurrent Layers Re-
ally Necessary for Handwritten Text Recognition? Proceedings of
the 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR). Kyoto, Japan, 2017.

The need for multidimensional recurrent layers (particularly, 2D-
LSTMs) for handwritten text recognition was studied in this

work. As explained in section 4.3.5, we found a much faster

architecture based only on 1D-LSTMs and convolutional layers

that matched the performance of the previous state-of-the-art.
This work was awarded with the Best Student Paper Award.

10.2.2 KEYWORD SPOTTING PROBABILISTIC FRAMEWORK

The papers in this subsection present some of the concepts of the prob-
abilistic framework described in this thesis or describe some of the
algorithms.

e Joan Puigcerver, Alejandro H. Toselli, and Enrique Vidal. Prob-
abilistic interpretation and improvements to the HMM-filler for
handwritten keyword spotting. Proceedings of the 13th IAPR In-
ternational Conference on Document Analysis and Recognition (IC-
DAR). Nancy, France, 2015.

The core of the probabilistic framework presented in section 2.1
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was first described here, as well as the probabilistic interpreta-
tion of the HMM-Filler, described in section 6.1. Experiments
from this paper, and more additional results are described in
section 8.9.

e Enrique Vidal, Alejandro H. Toselli, and Joan Puigcerver. High
Performance Query-by-Example Keyword Spotting Using Query-
by-String techniques. Proceedings of the 13th IAPR International
Conference on Document Analysis and Recognition (ICDAR). Nancy,
France, 2015.

The probabilistic framework developed in this thesis was used
to tackle the query-by-example paradigm, as described in sec-
tion 2.3. The results from this paper, and additional experiments
using CRNN s are described in section 8.8.

e Alejandro H. Toselli, Joan Puigcerver, and Enrique Vidal. Context-
Aware Lattice based Filler approach for Keyword Spotting in
Handwritten Documents. Proceedings of the 13th IAPR Interna-
tional Conference on Document Analysis and Recognition (ICDAR).
Nancy, France, 2015.

In this publication, we modified the traditional HMM-Filler and
studied its performance using high-order n-gram language mod-
els. In addition to the results reported in this paper, we have
conducted more related experiments, which are described in
section 8.9.

e Alejandro H. Toselli, Joan Puigcerver, and Enrique Vidal. Two
Methods to Improve Confidence Scores for Lexicon-Free Word
Spotting in Handwritten Text. Proceedings of the 15th Interna-
tional Conference on Frontiers in Handwriting Recognition (ICFHR).
Shenzhen, China, 2016.

Here we presented an algorithm which computes the relevance
probability of a column (see section 2.2.1) from a character lat-
tice. We compared its performance with the relevance probabil-
ity of the whole text line (i.e. section 2.1).

e Alejandro H. Toselli, Enrique Vidal, Joan Puigcerver, and Ernesto
Noya-Garcia. Probabilistic multi-word spotting in handwritten
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text images. Pattern Analysis and Applications. 2018. Here, we
use the algorithm described in section 5.3.2 to build an index
of words. Then, the approach described in section 7.1 is used
to perform Boolean queries. The models to generate the lattices
involved in the experiments are CRNNSs, as described in sec-
tion 4.3.5.

10.2.3 KEYWORD SPOTTING APPLICATIONS

The following papers describe the application and results of some of

the

probabilistic indexing algorithms described in this thesis, espe-

cially on large-scale collections of handwritten documents.

e Theodore Bluché, Sebastien Hamel, Christopher Kermorvant,
Joan Puigcerver, Dominique Stutzmann, Alejandro H. Toselli,
and Enrique Vidal. Preparatory KWS Experiments for Large-
Scale Indexing of a Vast Medieval Manuscript Collection in the
HIMANIS Project. Proceedings of the 14th IAPR International Con-
ference on Document Analysis and Recognition (ICDAR). Kyoto,
Japan, 2017.

In this publication the results of the HIMANIS project, briefly
described in section 9.2, were presented. The experiments car-
ried out in the paper were done using the lexicon-free index-
ing approach presented in section 5.3.2, which implements the
probabilistic framework developed in this thesis, in particular
the one described in section 2.2.2.

e Eva Lang, Joan Puigcerver, Alejandro H. Toselli, and Enrique
Vidal. Probabilistic Indexing and Search for Information Extrac-
tion on Handwritten German Parish Records. Proceedings of the
16th International Conference on Frontiers in Handwriting Recogni-
tion (ICFHR). Niagara Falls, United States, 2018.

The indexing methods presented in section 5.3.2 were applied
to one of the large-scale collections of the READ project. This
collection is composed of pages with tabular content, which we
exploit to improve the information extraction accuracy.
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10.2.4 KEYWORD SPOTTING COMPETITIONS

Several competitions were organized to promote the interest in the
field of Keyword Spotting, and that provided useful data sets and
results for this dissertation (e.g. sections 8.8.1 and 8.8.2).

e Joan Puigcerver, Alejandro H. Toselli, and Enrique Vidal. IC-
DAR2015 Competition on Keyword Spotting for Handwritten
Documents. Proceedings of the 13th IAPR International Conference
on Document Analysis and Recognition (ICDAR), Nancy, France,
2015.

The principal goal of this competition was to provide a unified
framework to evaluate distinct approaches to Keyword Spot-
ting. In this thesis, experiments that outperform the best results
in the segmentation-free scenario have been presented in sec-
tion 8.8.2.

e Mauricio Villegas, Joan Puigcerver, Alejandro H. Toselli, Joan
A. Sanchez, and Enrique Vidal. Overview of the ImageCLEF
2016 Handwritten Scanned Document Retrieval Task. Working
Notes of the Conference and Labs of the Evaluation Forum (CLEF).
Evora, Portugal, 2016.

This competition aimed to bring research groups with interests
in Information Retrieval to the Keyword Spotting community. It
also introduced some new aspects, not typically found in KWS
competitions, like multi word queries, possibly broken into mul-
tiple text lines. With the results from this competition, we could
study the correlation between the performance of KWS systems
at word level and line level, as mentioned in section 1.2.2.2.

e Joannis Pratikakis, Konstantinos Zagoris, Basilis Gatos, Joan
Puigcerver, Alejandro H. Toselli, and Enrique Vidal. ICFHR2016
Handwritten Keyword Spotting Competition (H-KWS 2016). Pro-
ceedings of the 15th International Conference on Frontiers in Hand-
writing Recognition (ICFHR). Shenzhen, China, 2016.

We organized this competition as a continuation of the ICDAR2015
Competition on Keyword Spotting. In addition to the previous
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goals, we aimed to analyze the effects of the available training
data in the performance of the submitted KWS solutions.

10.2.5 OTHER KEYWORD SPOTTING WORKS

Before we developed the indexing algorithms for lexicon-free lattices,
described in section 5.3, we tried to estimate the relevance probability
of out-of-vocabulary keywords from lexicon-based lattices (or word
graphs). The following works, focused on those aspects. Although
this issue has been only briefly described in section 5.2, these works
were an important step towards the conception of the lexicon-free in-
dexing algorithms presented in this thesis.

e Joan Puigcerver, Alejandro H. Toselli, and Enrique Vidal. Word-
Graph-Based Handwriting Keyword Spotting of Out-of-Vocabulary
Queries. Proceedings of the 22nd International Conference on Pat-
tern Recognition (ICPR). Stockholm, Sweden, 2014.

In this work several strategies to estimate relevance probabili-
ties of out-of-vocabulary keywords from word graphs were pre-
sented.

e Joan Puigcerver, Alejandro H. Toselli, and Enrique Vidal. Word-
Graph and Character-Lattice Combination for KWS in Hand-
written Documents Proceedings of the 14th International Confer-
ence on Frontiers in Handwriting Recognition (ICFHR). Stockholm,
Sweden, 2014.

Here, we suggested to combine lexicon-based and lexicon-free
approaches in order to improve the overall performance of the
KWS system.

e Joan Puigcerver, Alejandro H. Toselli, and Enrique Vidal. A
New Smoothing Method for Lexicon-Based Handwritten Text
Keyword Spotting. Proceedings of the 7th Iberian Conference on Pat-
tern Recognition and Image Analysis (IbPRIA). Santiago de Com-
postela, Spain, 2015.

A better approach to estimate the relevance probability of out-
of-vocabulary keywords was presented in this work, which op-
erated on the line posteriorgrams.
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e Joan Puigcerver, Alejandro H. Toselli, and Enrique Vidal. Query-
ing out-of-vocabulary words in lexicon-based keyword spotting.
Neural Computing and Applications. 2017.

The problem of out-of-vocabulary keywords in the field of KWS
is reviewed here, together with a summary of the smoothing
methods described in the previous works and additional results
and insights.

10.3 Open source software

Besides from scientific publications, an important fraction of time dur-
ing the span of the PhD was dedicated to write software that enabled
us to be more productive and make our experiments reproducible.
It is very common that many details necessary to replicate the experi-
ments in a given article are not always described in it. Plus, even with
all the details, rewriting the software necessary to repeat the experi-
ments is a very time consuming (and not rewarded) task. We did not
want this to happen with the results from this thesis and our papers.

In addition, we aimed to produce not only a well principled for-
mulation of Keyword Spotting, but software that could be easily used,
improved and adapted by (private or public) organizations that needed
to incorporate Keyword Spotting technologies in their own products
and services.

Hence, we decided to release as open source most of the software
(at least the critical parts) developed in during this doctorate.

e Laia. We built this deep learning toolkit for handwritten text
recognition in order to showcase the architecture that we de-
signed for handwritten text modeling (i.e. section 4.3.5). Since
then, this software has been widely used in our experiments, for
both handwritten text recognition and keyword spotting.

https://github.com/jpuigcerver/Laia

e PyLaia. This project was the successor of Laia and has been
built to be more modular, easier to maintain, and to eliminate
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some of the limits of the previous software. Many experiments
done in this thesis can be directly replicated from the examples
available in the software’s repository.

https://github.com/jpuigcerver/PylLaia

e Probabilistic indexing software. The implementation of all the
algorithms described in chapter 5, which are the practical core
of this thesis can be found in this project, as well as many other
utilities to perform HTR and KWS-related tasks.

https://github.com/jpuigcerver/kaldi-lattice-utils

10.4 Future work

Finally, we would like to identify future lines of research and develop-
ment that we have already considered, or we think may be important.

10.4.1 STOCHASTIC DEFINITIONS OF RELEVANCE

During all the thesis, we have assumed that the notion of relevance
is of deterministic nature, given the content of the document and the
query, and only depends on these variables. Under the Information
Retrieval perspective, the challenging part was not in the notion of
relevance, but in the uncertainty regarding the content of the docu-
ments.

This is quite the opposite to the applications that the Information
Retrieval community typically tackles, where the content of their doc-
uments is perfectly known (e.g. the content of a Web page or a PDF
document is given), but the concept of relevance has an stochastic
nature (e.g. we would not benefit from a search engine that would
simply retrieve all web pages that contain the text in the given query).

In order to improve the usefulness of our solutions, especially
when dealing with large collections of documents and queries regard-
ing high-frequency words, we need to investigate how to extend our
algorithms and models to consider this new source of uncertainty, in
a principled, robust, and efficient manner.


https://github.com/jpuigcerver/PyLaia
https://github.com/jpuigcerver/kaldi-lattice-utils
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10.4.2 BETTER STATISTICAL MODELS AND TRAINING

Every improvement in the statistical models of the text content of the
images will have an impact on the final KWS performance. Our ar-
chitecture based on convolutional and recurrent neural networks has
done an excellent job to model the text on text lines in several lan-
guages. However, we need to continue exploring for better archi-
tectures, or even radically different models. Especially if we aim to
tackle more challenging documents with difficult layout analysis, line
segmentation.

For instance, these later steps, which are currently performed as
a preliminary step, can also be modeled as stochastic processes, from
which probabilistic models can be constructed and integrated with
our current solutions.

In addition, the data efficiency of our models could be further im-
proved. Although the human effort needed to produce labeled train-
ing data is definitely worth it when indexing large collections of docu-
ments, we need to explore new ways of training our statistical models,
perhaps even using unlabeled data, to make our solutions more data
efficient, and to allow their use by low-budgeted institutions, or in
collections with very few available data.

10.4.3 PROBABILISTIC FRAMEWORK APPLIED TO OTHER DOMAINS

Finally, we need to explore other domains in which our framework
can be applied with minor (or no) modifications. For instance, we
have already suggested one of this applications, Content-based Im-
age Retrieval, in section 7.2. But we need to continue exploring this
direction and many others, like the retrieval of music scores, cross-
lingual information retrieval, multi-modal information retrieval, etc.

In addition, we would also like to use our probabilistic Keyword
Spotting approach in order to aid the transcription process of docu-
ments, in an iterative way. For instance, a small portion of documents
could be manually transcribed. Then, the rest of documents would be
probabilistically indexed and the most likely word instances would
be presented to the user for a verification in a single step. Finally, we
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could re-train our models using the additional data and repeat the
process.



Corpora

A.1 Bentham

The Bentham collection includes several hundreds of manuscripts writ-
ten by Jeremy Bentham, an influential English philosopher, jurist, and
social reformer in the XVIII and XIX centuries; as well as many of his
secretarial staff. A portion of this collection was first indexed in the
Transcriptorium project!. The rest of the collection was processed dur-
ing the READ project?. The entire collection is composed of around
100 000 images, but only a small portion of those have been manually
transcribed.

Many HTR and KWS publications and competitions have used
this collection, very often with different partitions of the database. In
the following subsections we will detail the statistics of each of the
partitions used in this thesis. Figure A.1 shows two pages and a few
segmented text lines from this collection.

A.1.1 ICFHR-2014 COMPETITION ON HTR

One of the partitions of the Bentham collection that we use, for line-
oriented KWS experiments, is the ICFHR-2014 Handwritten Text Recog-
nition on a tranScriptorium Dataset competition (also shortened as ICFHR-
2014 HTRtS). This encompasses a total of 433 pages (11473 lines with
nearly 110000 running words and a vocabulary of more than 9700
different words. Table A.1 shows the main statistics of this data parti-
tion, for the train, validation and test sets that we used.

Ihttp://transcriptorium.eu/
Zhttps://read.transkribus.eu/
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Figure A.1. Examples of a two pages and a few segmented lines from Bentham
collection.

Table A.1. Statistics of the Bentham partition from the ICFHR-2014 Competition on
HTR as used in our experiments.

Train  Valid. Test Total

# Pages 350 50 33 433
# Lines 9198 1415 860 11473
# Words 86075 12962 7868 106905
# Characterst 442,336 67,400 40,938 550,674
Alphabet sizet 91 91 91 91
Lexicon size 8658 2709 1946 9716

t Not including the whitespace or other auxiliary symbols.
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A.1.1.1 Line-level experiments

Several criteria can be assumed to select the keywords to be used in
the assessment of a KWS system. Clearly, any given KWS system may
perform better or worse depending on the query keywords it is tested
with, and how these words are distributed in the test set. Of course,
the larger the set of keywords, the more reliable the empirical results.
Moreover, since our approach is aimed at indexing large collections,
testing with a large set of keywords is mandatory.

In the experiments using this partition (i.e. section 8.7), we adopted
all the words in the training set as queries. In this case, this gives a
total number of 8 658 query keywords (the training lexicon size), and
some of the statistics of these queries in the test set are shown in ta-
ble A.2.

Table A.2. Statistics of the queries in the test set of the Bentham partition used in the
ICFHR-2015 Competition on HTR.

# Queries 8 658
# Pairs 7445 880
# Pertinent queries 1487
# Pertinent pairs 6727

A.1.1.2  Page-level experiments

For the multi-word experiments described in section 8.12, the KWS
evaluation was performed at page level.

In this case, the query set was composed of 3293 words whose
frequency of occurrence in the training partition ranges from 2 to 10.
This avoids including most stop words (generally with word frequen-
cies greater than 10) and also many words that are unlikely to appear
in the test partition. Despite the selection criteria adopted, only a rel-
atively small subset of 674 words from the query set actually appear
in any of the test lines. The corresponding query keywords are called
“pertinent”, while all the other queries are called “non-pertinent”.

In addition, we also defined a pool of multi-word queries con-
sisting of all the 5420278 pairs of different words . Similarly to the
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previous case, not all the word-pairs in the multi-word query set are
pertinent. The total (maximum) number of pertinent queries which
can be composed for each query type are reported in table A.3, along
with the other figures mentioned above. The table also reports the
equivalent statistics for the number of pairs of (query, page) that can
be formed.

Table A.3. Statistics of the query pools generated in the page-level multi-word ex-
periments on the Bentham database.

Query type Total Pertinent T'max
Single-word 3293 674 3.89

Queries AND 5420278 11784 458.97
OR 5420278 1992007 1.72

Single-word 108 669 836 128.99

Pairs AND 178869174 12438 14379.86

OR 178869174 2739674 64.29

We report results with two sets of queries generated from the pre-
vious pool. First, r = 0 is the set of (single or multi-word) queries
that are all pertinent (i.e. queries for which at least one relevant page
exists), and r = 1 is the set of queries with the same ratio of perti-
nent and non-pertinent queries. Thus, » denotes the ratio between
non-pertinent and pertinent queries.

A.1.2 ICFHR-2014 COMPETITION ON KWS

One of the databases used in the ICFHR-2014 Handwritten Keyword
Spotting Competition® [Pratikakis et al., 2014] was based on the Ben-
tham collection.

Since the competition was targeted to researchers using training-
free (and query-by-example) KWS approaches, no training data was
officially released. However, the test set of 50 page was extracted from
the 400 pages available for training and validation, released in the
previous HTR competition. Thus, we excluded the 50 test pages from
this 400 pages and used the manually segmented text lines, provided

Shttp://vc.ee.duth.gr/H-KWS2014/
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by the HTR competition for training and validation purposes. The set
of pages used for training and validation is not disjoint. We simply
randomly sampled 10% of the text lines available for training to create
the validation set.

Table A.4 shows the main statistics from the Bentham partition
used in the ICFHR-2014 Competition on KWS. Notice that the alpha-
bet size is much smaller than that of the HTR competition. This is
because we converted all transcripts into lowercase, since the compe-
tition on KWS was scoped in a query-by-example setting.

Table A.4. Statistics of the Bentham partition from the ICFHR-2014 Competition on
KWS as used in our experiments.

Train Valid. Test Total

# Pages 350 321 50 400
# Lines 8337 973 1303 10613
# Words 70223 8187 10786 89196
# Characterst 308507 35946 46644 391097
Alphabet sizet 60 60 60 60
Lexicon size 7301 2155 2452 8389

t Not including the whitespace or other auxiliary symbols.

In our experiments we only targeted the segmentation-free ap-
proach, by using both the provided manual segmentation (available
from the ICFHR-2014 Competition on HTR), and fully automatic seg-
mentation based on the Horizontal Projection Profile of the test pages
[Likforman-Sulem et al., 2007].

This is essentially the same setting as in [Vidal et al., 2015], al-
though there we used an additional text corpora to improve the word
2-gram language model, while in this thesis we only use the tran-
scripts of the training images to train a character language model.

The query set is composed of 290 word images. The keywords de-
picted by these image correspond to words written more than 5 times
in the test partition, and had a length greater than 6 characters. The
query images come from several writers, have different writing styles,
font sizes, and noise. Query images have to be spotted in images of
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pages written by the same or different writers and/or exhibiting dif-
ferent writing variations. Some examples of the query images are
shown in fig. A.2.
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Figure A.2. Examples of the query images used in the ICFHR-2014 Competition on
KWS.

Since we are in a segmentation-free scenario, there is an humon-
gous amount of possible pairs of (query, bounding box) at page level.
However, the test set only contains 2850 reference bounding boxes
for the 290 queries.

It is important to highlight that this database violates one of the as-
sumptions made in our probabilistic formulation. In particular, some
of the “relevant” bounding box instances in the test pages for a partic-
ular query, actually contain a different word written in them. For ex-
ample, instances of words like “altogether” or “characteristic” were
considered relevant for query images with the word “together” or
“character” written on them, respectively.

A.1.3 ICDAR-2015 COMPETITION ON KWS

The ICDAR-2015 Competition on Keyword Spotting for Handwritten Doc-
uments* was was organized in order to provide a benchmark to fairly
compare different KWS approaches.

The data used in this competition is also part of the Bentham col-
lection, and is a subset of a similar competition, targeting HTR, that
was launched within the ICDAR-2015 conference’®. Some of the pages
used in the ICFHR-2014 competitions on HTR and KWS were also
used in here, as part of the train and validation sets.

The test set consists of 70 document images (never used in any
previous competition), containing several difficult problems to be ad-
dressed, including writing from different authors, styles, font-sizes,

‘http://transcriptorium.eu/~icdaribkws/
Shttp://transcriptorium.eu/~htrcontest/contest ICDAR2015/public_
html/
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crossed-out words, etc. In addition, 10 document pages were pro-
vided for validation purposes. The main block of text was extracted
from the original pages, so participants did not have to deal with
marginalia.

An additional set of 423 document images, with manually seg-
mented and transcribed text lines was also provided to the partici-
pants competing in the training-base track. The total number of text
lines in this additional set is of 11 144. Since the 10 validation pages
provided by the competition organizers (named Valid.-I) were not
transcribed or segmented into lines, we used 10% of the training lines
to tune some of the hyperparameters of our model (we call this set
Valid.-II). Some statistics of the data, as used in our experiments, are
reported in table A.5.

Table A.5. Statistics of the Bentham partition from the ICDAR-2015 Competition on
KWS as used in our experiments.

Valid.-I Test Train Valid.-II Total

# Pages 10 70 423 393 583
# Lines — — 10013 1131 11144
# Words ~3392 ~16840 84071 9359 ~113662
# Characterst — — 366596 40588 407184
Alphabet sizet — — 60 60 60
Lexicon size — — 8012 2321 8449

t Not including the whitespace or other auxiliary symbols.

Notice that the full transcripts of the Valid.-I and test sets were not
provided, thus the number of words is only approximated, based on
the number of word images provided in the segmentation-based task.
In addition, the provided transcripts were normalized by converting
to lowercase and transliterating all the text.

Within the training-free track, two sub-tracks were defined: one
following the query-by-string and the other the query-by-example
paradigms (QbS and QbE, respectively). A total of 243 different key-
words compose the the query set, with lenghts ranging from 6 to 15
characters. Each keyword is is represented by up to 6 different exam-
ple images, making a total of 1421 query images. All query keywords
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were written at least 4 times in the test set. In total, there are 1867
relevant bounding boxes to be retrieved for the 243 keywords (QbS
scenario), and 11 006 for the 1421 query images (QbE scenario).

Similarly to the ICFHR-2014 Competition on KWS, all casing in-
stances of a word were considered equivalent (hence our lowercase
normalization of the transcripts), but not plurals or derived words.
For instance, “therefore” and “Therefore” are considered the same
keyword, but not “according” and “accordingly”, nor “instance” and
“instances”.

A.2 George Washington

The George Washington database (sometimes referred to as Washing-
ton, or simply GW), was created from the George Washington Papers
at the Library of Congress®. These papers were written in the 18th
century in English language, mainly by George Washington himself.

This collection has been used in seminal KWS publications, such
as [Rath et al., 2004, Rath and Manmatha, 2007, Fischer et al., 2012,
Frinken et al., 2012, Almazan et al., 2014], and it is one of the most
used among the KWS researchers.

Note that different versions of this data set are used in the litera-
ture. We will perform experiments using two of these versions. Fig-
ure A.3 contains some examples of the page images extracted from
this data set.

A.2.1 LINE-LEVEL EXPERIMENTS

The line-level partition is supported by the Research Group on Com-
puter Vision and Artificial Intelligence (FKI) at the Institute of Com-
puter Science an Applied Mathematics (IAM), in Bern (Switzerland).
It was originally used in [Fischer et al., 2012], and it is based on the
same 20 pages originally used by [Lavrenko et al., 2004], although the
word and line segmentations, and the transcripts are of their own.

bhttps://www.loc.gov/collections/george-washington-papers/
about-this-collection/
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Figure A.3. Examples of page images extracted from the George Washington
database.

A detrimental characteristic of this partition is that they only pro-
vide the binarized and normalized line and word images, which is a
sub-optimal scenario for modern models, like CRNNs. Nevertheless,
we use this partition because it has been widely used in previous line-
level KWS works. A few of these lines are shown in fig. A.4.
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Figure A.4. Examples of a few normalized and binarized line images used from the
line-level partition of the George Washington database.

The 20 pages in this partition encompass a total number of 656 text
lines. Since this is a quite small data set, four-fold cross-validation
(CV) partitions were defined. In each CV partition, 10 pages are used
for training, 5 for validation and 5 for testing purposes. The average
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statistics across the four folds of this partition are shown in table A.6.
Notice that the average statistics in the validation and test sets are
identical, due to the cross-validation procedure.

Table A.6. Statistics of the George Washington partition used in the line-level exper-
iments.

Train (avg.) Valid./Test (avg.) Total

# Lines 328.0 164.0 656
# Words 2451.0 12255 4902
# Characterst 11165.5 5582.8 22331
Alphabet sizet 70.0 66.5 70
Lexicon size 898.0 538.8 1466

T Not including the whitespace or other auxiliary symbols.

The alphabet size is different from that of the originally published
in [Fischer et al., 2012], since they considered some frequent words
(e.g. the signature “G.W.”) as individual symbols of their alphabet.

To perform KWS experiments, the set of words in the training lexi-
con of each cross-validation fold with at least one occurrence in in the
test set was used as the query set. Thus, all queries are pertinent in
the test set, although not necessarily in the validation set of each fold.
Table A.7 summarizes this statistics.

Table A.7. Statistics of the queries used in the IAM database.

Valid. (avg.) Test (avg.)

# Queries 104.5 104.5
# Pairs 17139.0 171445
# Pertinent queries 46.5 104.5
# Pertinent pairs 108.0 194.3

A.2.2 WORD-LEVEL EXPERIMENTS

Another popular partition of this data set is the one used in [Almazan
et al., 2014], which is also based on [Lavrenko et al., 2004]. This parti-
tion is typically used by KWS works with word-segmentation needs,
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such as the distance and PHOC-based approaches compared in sec-
tions 8.10 and 8.11.

Here, only a training and test sets are defined for each of the (four)
cross-validation folds, which are not the same as in the previous par-
tition. The number of words in each training and test partition is the
same across the four folds.

Under this setting, all word images with more than one occur-
rence in the test set are used as queries, and the rest of instances in
the test set have to be retrieved by the given KWS system. The tran-
scriptions of the word images have been converted to lowercase, and
punctuation marks have been removed, so that a pair of images con-
taining the same word but with different cases is considered perti-
nent. For evaluation purposes, only pairs of distinct images are con-
sidered. Table A.8 summarizes the statistics of this partition of the
George Washington database.

Table A.8. Statistics of the George Washington partition used in the word-level ex-
periments.

Train Test Total
# Words 3645 1215 4860
# Pairs — 1471365 —
# Pertinent pairs — 16842 —

A3 IAM

The IAM database (or simply IAM) was compiled by the Research
Group on Computer Vision and Artificial Intelligence (FKI) at the In-
stitute of Computer Science an Applied Mathematics (IAM), in Bern
(Switzerland). The database as of October 2002 is described in [Marti
and Bunke, 2002]. It is publicly accessible” and freely available upon
request for non-commercial research purposes.

The handwritten text images in this data set were produced by 500
different persons that transcribed fragments of text from the Lancaster-

"http://www.fki.inf.unibe.ch/databases/iam-handwriting-database
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Oslo/Bergen (LOB) corpus [Johansson et al., 1978]. Text from the
LOB corpus was split into fragments of 3-6 sentences, with at least

50 words each.

At the moment of transcribing the texts, no restrictions were im-
posed on the writing style or the type of pen and thus, very different
styles and sizes are present. Images were scanned at 300dpi. Some
pages and text lines are depicted in fig. A.5.
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Figure A.5. Examples of a few pages and segmented lines extracted from the IAM
database.

The official partition of the latest version of the database (version
3.0) consists of 747 training pages (6 161 text lines, from 283 writers),
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two validation sets of 105 pages (900 lines, from 46 writers) and 115
pages (940 text lines, from 43 writers), respectively, and a test set of
232 pages (1861 lines, from 128 writers). However, in this thesis,
as well as in many other line-oriented KWS works, we use a differ-
ent partition of the database, summarized in table A.9. Notice that
this partition is different from the typically used in many recent HTR
works (e.g. [Doetsch et al., 2014, Voigtlaender et al., 2016, Puigcerver,
2017]), although the training set is the same in all cases.

Table A.9. Statistics of the IAM partition used in the experiments.

Train Valid. Test Total

# Writers 283 25 25 333
# Pages 747 116 110 973
# Lines 6161 920 929 8010
# Words 53767 8599 8315 70681
# Characterst 275466 41031 40445 364952
Alphabet sizet 78 74 71 78
Lexicon size 7772 2450 2492 9792

t Not including the whitespace or other auxiliary symbols.

The query set employed in this thesis was also used in previous
KWS publications (e.g. [Toselli et al., 2013, Toselli and Vidal, 2013,
Puigcerver et al., 2015¢c] and many others). It consists of 3421 words?,
most of which were extracted from the training set, excluding English
stop words. The same set of queries is used in both the validation and
test sets. Table A.10 shows some statistics of the query set, on both the
validation and test sets.

Following [Bertolami and Bunke, 2008], we use three external text
corpora to improve the n-gram language models. In particular, we
use the the full LOB corpus (except the sentences that appear in the
original test set of the IAM) [Johansson et al., 1978], the Brown corpus
[Nelson and Kugera, 1964] and the Wellington corpus [Holmes et al.,
1998]. These three external corpora are typically used for experiments
with the IAM database in HTR and KWS works. Table A.11 gives
additional information of the three text corpora.

8https://gist.github.com/jpuigcerver/a2c94a2196211aeabb2c08774£50£541
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Table A.10. Statistics of the queries used in the IAM database.

Valid. Test
# Queries 3421 3421
# Pairs 3147320 3178109
# Pertinent queries 1053 1101
# Pertinent pairs 1849 1919

Table A.11. Statistics of the external corpora used in the JAM database experiments.

LOB Brown Wellington

# Words 1119904 1045213 1144401
# Characterst 5803916 5582023 6055820
Lexicon size 52724 53115 58919

1 Not including the whitespace or other auxiliary symbols.

The three of them contain full sentences much larger than the text
lines of the IAM database (actually, equivalent to a full page of the
IAM database). We split the sentences in these data sets so that the
distribution of the number of words in each split “line” matches that
of the lines in the IAM database, in order to improve the n-gram mod-
els.

A.4 Parzival

This database contains images of medieval German manuscripts, from
the 13th century, written in Gothic script. The full Parzival collection
consists of 16 books, although only a small subset has been manually
annotated by German transcribers. Transcriptions are available for 47
pages, out of the 318 available in the full data set.

We use the partition released’ by the Research Group on Com-
puter Vision and Artificial Intelligence (FKI). Their release provides
the page images in color, scanned at 300dpi, as well as binarized and
normalized text line images.

Shttp://www.fki.inf.unibe.ch/databases/iam-historical-document-database/
parzival-database
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Figure A.6 shows some examples of the pages and (processed) text
lines available in the database. Observe that the binarization and nor-
malization carried out is quite severe and degrades the images signif-
icantly. Still, we have used these in our experiments.
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Figure A.6. Examples of a couple of pages and segmented (binarized and normal-
ized) text lines extracted from the Parzival database.

The statistics of the partition can be found in table A.12. No-
tice that, on the one hand, the 47 pages are not distributed disjointly
among the train, validation, and test sets, which makes this data set
somehow easier than others (e.g. IAM). On the other hand, some
of the characters present in the validation and test sets are not in-
cluded in the training set, meaning that these characters are badly
modeled (if considered at all) by the statistical models. This is the
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same partition used in many seminal KWS papers such as [Fischer
et al., 2012, Frinken et al., 2012, Toselli et al., 2016a].

Table A.12. Statistics of the Parzival partition used in the experiments.

Train Valid. Test Total
# Pages 47 47 47 47
# Lines 2237 912 1328 4477
# Words 14042 5671 8407 28120
# Characterst 64436 26211 38339 105343
Alphabet sizet 89 79 81 95
Lexicon size 3221 1753 2305 4936

1 Not including the whitespace or other auxiliary symbols.

We use the official query set released by the FKI group. This con-
sists of 1217 different keywords, which are used in both validation
and test. The statistics of the query set are summarized in table A.13.

Table A.13. Statistics of the query set used in the Parzival database.

Valid. Test
# Queries 1217 1217
# Pairs 1109904 1616176
# Pertinent queries 718 1217
# Pertinent pairs 3533 5764

Notice that all the queries are pertinent in the test set, meaning
that at least one test line is relevant for each query keyword.

A.5 Plantas

The “Historia de las plantas” manuscript (shorted as Plantas), produced
in the XVII century by the Spanish botanist Bernardo de Cienfuego,
is a source of valuable information for researchers interested in the

botanical knowledge of the modern era.

In this work, only the first volume of Plantas was used for exper-
imentation. Table A.14 shows basic statistics of the Plantas data set.
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We excluded empty page images or those containing only drawings.
Full details about this database are found in [Toselli et al., 2018a].
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Figure A.7. Examples of a couple of pages and some text lines extracted from the
Plantas dabatase.

It is important to mention that reference transcripts of Plantas
are provided in two different versions: diplomatic and modernized.
We have only used the diplomatic transcripts, which typographically
transcribe as accurately as possible all significant characteristics of the
original manuscript, including spelling, punctuation marks, abbrevi-
ations, crossed-out and inserted text, and other text alterations.
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Table A.14. Statistics of the Plantas partition used in the experiments.

Train Valid. Test Total

# Pages 224 40 607 871
# Lines 6788 955 11801 19544
# Words 67912 9753 117029 194694
Alphabet sizet 73 73 73 73

Lexicon size 10861 2198 14018 20834

1 Not including the whitespace or other auxiliary symbols.

Table A.15. Statistics of the total amount of text data used with the Plantas database.

# Words Lexicon size

70557 11890

In addition to the transcripts from the training images, in order
to estimate n-gram language models, we included the text from the
glossaries and indexes. We did so to reduce the number of out-of-
vocabulary words in the validation and test sets, since we performed
only lexicon-based experiments on this data set. Table A.15 contains
some basic statistics of the total amount of text used to train the lan-
guage model.

The query set for Plantas was defined on the extended lexicon (last
column in table A.15), excluding 958 words corresponding to num-
bers. This gives a total number of 10932 different query keywords.
The same set of queries was used for both validation and test exper-
iments. Table A.16 includes some relevant statistics about the query
set (on the test partition).

Table A.16. Statistics of the query set used in the test partition of the Plantas
database.

# Queries 10932
# Pairs 129 008 532
# Pertinent queries 43888

# Pertinent pairs 86304
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