计算机科学 ›› 2015, Vol. 42 ›› Issue (Z11): 142-145.

• 模式识别与图像处理 • 上一篇    下一篇

分块二维局部保持鉴别分析在人脸识别中的应用

赵春晖,陈才扣   

  1. 扬州大学信息工程学院 扬州225002,扬州大学信息工程学院 扬州225002
  • 出版日期:2018-11-14 发布日期:2018-11-14

Modular Two-dimensional Locality Preserving Discriminant Analysis and its Application in Human Face Recognition

ZHAO Chun-hui and CHEN Cai-kou   

  • Online:2018-11-14 Published:2018-11-14

摘要: 局部保持鉴别分析在人脸识别研究中具有非常重要的地位。在此基础上提出的2DLPDA算法直接在二维空间进行运算,一定程度上提高了性能。但是当样本在光照阴影、遮挡等情况下时,识别率受到很大影响,为此提出一种改进的算法,即分块二维局部保持鉴别分析方法。其将样本分块,以更好地提取样本中的局部近邻特征。这样同一样本的不同分块在选择近邻时,就可能具有来自不同样本的近邻,从而能更好地提取样本的局部特征。最后将局部特征整合为整体作为识别的依据。在AR、YALE及ORL库上验证了算法的有效性。

关键词: 人脸识别,模式识别,特征抽取,局部保持投影,分块算法,最大间距准则

Abstract: Locality preserving discriminant analysis takes very important position in face recognition research.Based on this,the 2DLPDA method was proposed,which directly processes the operation in the two dimensional space.In some way,it improves the performance of the algorithm.But the problem of the sensitivity to such variations like lighting’ expression and occlusion will make a big influence on the recognition rate when using 2DLPDA method.We proposed an improved algorithm called modular two-dimensional locality preserving discriminant analysis method.We divided the sample in blocks,so that we could extract the local neighborhood of the sample better.Because each sample was divided into blocks,the different blocks of one sample may have different nearest neighbors,causing local features of the sample to be extracted better .At the end of the method,all the local features are integrated together to be the basis for the identification.Experimental results on AR,YALE and ORL face databases show that the proposed method outperforms the 2DLPDA method.

Key words: Face recognition,Pattern recognition,Feature extraction,Locality preserving projection,Modular method,Maximum margin criterion

[1] Turk M,Pentland A.Eigenface for recognition[J].Journal ofCognitive Neuroscience,1991,3(1):71-86
[2] Belhumeur P N,Hespanha J P,Kriegman D J.Fisherfaces:Reco-gnition Using Class Specific Linear Projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,9(7):711-720
[3] Tenenbaum J B,de Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction [J].Science,2000,290(5500):2319-2323
[4] Belkin M,Niyogi P.Laplacian Eigenmaps for dimension reduction and data representation[J].Neural Computation,2001,5(6):1373-1396
[5] Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,0(5500):2323-2326
[6] Bengio Y,Paiement J,Vincent P,et al.Out-of-sample extensions for LLE,Isomap,MDS,eigenmaps,and spectral clustering[J].Neural Computation,2004,6(10):2179-2219
[7] He X F,Yan S C,Hu Y X,et al.Face recognition using laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,7(3):328-340
[8] Yan S C,Xu D,Zhang B Y,et al.Graph embedding and extension:a general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,9(1):40-51
[9] Yang J,Yang J Y.From image vector to matrix:a straightforward image projection technique-IMPCA vs.PCA[J].Pattern Recognition,2002,5:1997-1999
[10] Li M,Yuan B Z.2D-LDA:A statistical linear discriminant analysis for image matrix[J].Pattern Recognition Letters,2005,6:527-532
[11] 卢官明,左加阔.基于二维局部保持鉴别分析的特征提取算法[J].南京邮电大学学报(自然科学版),2014,4(5):1-8
[12] Hu H F.Orthogonal neighborhood preserving discriminant ana-lysis for face recognition[J].Pattern Recognition,2008,1:2045-2054

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!