计算机科学 ›› 2015, Vol. 42 ›› Issue (Z11): 142-145.
赵春晖,陈才扣
ZHAO Chun-hui and CHEN Cai-kou
摘要: 局部保持鉴别分析在人脸识别研究中具有非常重要的地位。在此基础上提出的2DLPDA算法直接在二维空间进行运算,一定程度上提高了性能。但是当样本在光照阴影、遮挡等情况下时,识别率受到很大影响,为此提出一种改进的算法,即分块二维局部保持鉴别分析方法。其将样本分块,以更好地提取样本中的局部近邻特征。这样同一样本的不同分块在选择近邻时,就可能具有来自不同样本的近邻,从而能更好地提取样本的局部特征。最后将局部特征整合为整体作为识别的依据。在AR、YALE及ORL库上验证了算法的有效性。
[1] Turk M,Pentland A.Eigenface for recognition[J].Journal ofCognitive Neuroscience,1991,3(1):71-86 [2] Belhumeur P N,Hespanha J P,Kriegman D J.Fisherfaces:Reco-gnition Using Class Specific Linear Projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,9(7):711-720 [3] Tenenbaum J B,de Silva V,Langford J C.A global geometric framework for nonlinear dimensionality reduction [J].Science,2000,290(5500):2319-2323 [4] Belkin M,Niyogi P.Laplacian Eigenmaps for dimension reduction and data representation[J].Neural Computation,2001,5(6):1373-1396 [5] Roweis S T,Saul L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,0(5500):2323-2326 [6] Bengio Y,Paiement J,Vincent P,et al.Out-of-sample extensions for LLE,Isomap,MDS,eigenmaps,and spectral clustering[J].Neural Computation,2004,6(10):2179-2219 [7] He X F,Yan S C,Hu Y X,et al.Face recognition using laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,7(3):328-340 [8] Yan S C,Xu D,Zhang B Y,et al.Graph embedding and extension:a general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,9(1):40-51 [9] Yang J,Yang J Y.From image vector to matrix:a straightforward image projection technique-IMPCA vs.PCA[J].Pattern Recognition,2002,5:1997-1999 [10] Li M,Yuan B Z.2D-LDA:A statistical linear discriminant analysis for image matrix[J].Pattern Recognition Letters,2005,6:527-532 [11] 卢官明,左加阔.基于二维局部保持鉴别分析的特征提取算法[J].南京邮电大学学报(自然科学版),2014,4(5):1-8 [12] Hu H F.Orthogonal neighborhood preserving discriminant ana-lysis for face recognition[J].Pattern Recognition,2008,1:2045-2054 |
No related articles found! |
|