计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 105-109.
殷昊, 徐健, 李寿山, 周国栋
YIN Hao, XU Jian, LI Shou-shan, ZHOU Guo-dong
摘要: 文本情绪识别是自然语言处理问题中的一项基本任务。该任务旨在通过分析文本判断该文本是否含有情绪。针对该任务,提出了一种基于字词融合特征的微博情绪识别方法。相对于传统方法,所提方法能够充分考虑微博语言的特点,充分利用字词融合特征提升识别性能。具体而言,首先将微博文本分别用字特征和词特征表示;然后利用LSTM模型(或双向LSTM模型)分别从字特征和词特征表示的微博文本中提取隐层特征;最后融合两组隐层特征,得到字词融合特征,从而进行情绪识别。实验结果表明,该方法能够获得更好的情绪识别性能。
中图分类号:
[1]PANG B,LEE L,VAITHYANATHAN S.Thumbs up?:Sentiment Classification U-sing Machine Learning Techniques[C]∥Proceedings of Empirical Methods in Natural Language Proces-sing (EMNLP 2010).2002:79-86. [2]AMAN S,SZPAKOWICZM S.Identifyi-ng Expressions of Emotion in Text[C]∥Text,Speech and Dialogue,International Conference.2007:196-205. [3]黄磊,李寿山,周国栋.基于句法信息的微博情绪识别方法研究[J].计算机科学,2017,44(2):244-249. [4]王攸然.微博语言特点初步分析[J].河南广播电视大学学报,2015,28(1):70-72. [5]MAEDA H,SHIMADA K,ENDO K.Twitter Sentiment Analysis Based on Writing Style[M]∥Advances in Natural Langu-age Processing.Springer Berlin Heidelberg,2012:278-288. [6]刘欢欢,李寿山,周国栋,等.中文情绪识别方法研究[J].江西师范大学学报(自然版),2013,37(2):120-124. [7]姚源林,王树伟,徐睿峰,等.面向微博文本的情绪标注语料库构建[J].中文信息学报,2014,28(5):83-91. [8]LI S S,HUANG L,WANG R,et al.Sent-ence-level Emotion Classification with L-abel and Context Dependence[C]∥ACL(1).2015:1045-1053. [9]LIU H H,LI S S,ZHOU G D,et al.Joint Modeling of News Reader’s and Comment Writer’s Emotions[C]∥ACL(2).2013:511-515. [10]RANA R.Emotion Classification from Noisy Speech-A Deep Learning Approach[J].arXiv preprint arXiv:1603.05901,2016. [11]TRIPATHI S,ACHARYA S,SHARMA R D,et al.Using Deep and Convolutional Neural Networks for Accurate Emotion Classification on DEAP Dataset[C]∥Twenty-Ninth IAAI Con-ference.2017. [12]GRAVES A.Supervised Sequence Label-ling with Recurrent Neural Networks[M].Springer Berlin Heidelberg,2012. [13]HUANG L,LI S S,ZHOU G D.Emotion Corpus Construction on Microblog Text[M]∥Chinese Lexical Semantics.Springer International Publishing,2015. [14]SCHUSTER M,PALIWAL K K.Bidire-ctional Recurrent Neural Networks[J].IEEE Transactions on Signal Processing,1997,45(11):2673-2681. [15]HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving Neural Networks by Preventing Co-adaptation of Feature Detectors[J].Computer Science,2012,3(4):212-223. [16]GLOROT X,BORDES A,BENGIO Y.Deep Sparse Rectifier Neural Networks[C]∥International Conference on Artificial Intelligence and Statistics.2011. [17]KINGMA D P,BA J.Adam:A Method for Stochastic Optimization[J].arXiv:1412.6980,2017. |
[1] | 张源, 康乐, 宫朝辉, 张志鸿. 基于Bi-LSTM的期货市场关联交易行为检测方法 Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM 计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304 |
[2] | 徐鸣珂, 张帆. Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法 Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition 计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085 |
[3] | 于家畦, 康晓东, 白程程, 刘汉卿. 一种新的中文电子病历文本检索模型 New Text Retrieval Model of Chinese Electronic Medical Records 计算机科学, 2022, 49(6A): 32-38. https://doi.org/10.11896/jsjkx.210400198 |
[4] | 林夕, 陈孜卓, 王中卿. 基于不平衡数据与集成学习的属性级情感分类 Aspect-level Sentiment Classification Based on Imbalanced Data and Ensemble Learning 计算机科学, 2022, 49(6A): 144-149. https://doi.org/10.11896/jsjkx.210500205 |
[5] | 王杉, 徐楚怡, 师春香, 张瑛. 基于CNN-LSTM的卫星云图云分类方法研究 Study on Cloud Classification Method of Satellite Cloud Images Based on CNN-LSTM 计算机科学, 2022, 49(6A): 675-679. https://doi.org/10.11896/jsjkx.210300177 |
[6] | 高越, 傅湘玲, 欧阳天雄, 陈松龄, 闫晨巍. 基于时空自适应图卷积神经网络的脑电信号情绪识别 EEG Emotion Recognition Based on Spatiotemporal Self-Adaptive Graph ConvolutionalNeural Network 计算机科学, 2022, 49(4): 30-36. https://doi.org/10.11896/jsjkx.210900200 |
[7] | 袁景凌, 丁远远, 盛德明, 李琳. 基于视觉方面注意力的图像文本情感分析模型 Image-Text Sentiment Analysis Model Based on Visual Aspect Attention 计算机科学, 2022, 49(1): 219-224. https://doi.org/10.11896/jsjkx.201000074 |
[8] | 程思伟, 葛唯益, 王羽, 徐建. BGCN:基于BERT和图卷积网络的触发词检测 BGCN:Trigger Detection Based on BERT and Graph Convolution Network 计算机科学, 2021, 48(7): 292-298. https://doi.org/10.11896/jsjkx.200500133 |
[9] | 俞建业, 戚湧, 王宝茁. 基于Spark的车联网分布式组合深度学习入侵检测方法 Distributed Combination Deep Learning Intrusion Detection Method for Internet of Vehicles Based on Spark 计算机科学, 2021, 48(6A): 518-523. https://doi.org/10.11896/jsjkx.200700129 |
[10] | 胡聿文. 基于优化LSTM模型的股票预测 Stock Forecast Based on Optimized LSTM Model 计算机科学, 2021, 48(6A): 151-157. https://doi.org/10.11896/jsjkx.200400011 |
[11] | 陈慧琴, 郭贯成, 秦朝轩, 李兆碧. 基于GM-LSTM模型的南京市老年人口预测研究 Research on Elderly Population Prediction Based on GM-LSTM Model in Nanjing City 计算机科学, 2021, 48(6A): 231-234. https://doi.org/10.11896/jsjkx.200900142 |
[12] | 钱甜甜, 张帆. 基于分布式边缘计算的情绪识别系统 Emotion Recognition System Based on Distributed Edge Computing 计算机科学, 2021, 48(6A): 638-643. https://doi.org/10.11896/jsjkx.201000010 |
[13] | 张争万, 吴迪, 张春炯. 基于多通道稀疏LSTM的蜂窝流量预测研究 Study of Cellular Traffic Prediction Based on Multi-channel Sparse LSTM 计算机科学, 2021, 48(6): 296-300. https://doi.org/10.11896/jsjkx.210400134 |
[14] | 张姝楠, 曹峰, 郭倩, 钱宇华. 一种基于时序关系网络的逻辑推理方法 Logical Reasoning Method Based on Temporal Relation Network 计算机科学, 2021, 48(5): 239-246. https://doi.org/10.11896/jsjkx.201000171 |
[15] | 董哲, 邵若琦, 陈玉梁, 翟维枫. 基于BERT和对抗训练的食品领域命名实体识别 Named Entity Recognition in Food Field Based on BERT and Adversarial Training 计算机科学, 2021, 48(5): 247-253. https://doi.org/10.11896/jsjkx.200800181 |
|