计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 535-538.

• 综合、交叉与应用 • 上一篇    下一篇

序列模式挖掘在通信网络告警预测中的应用

张光兰, 杨秋辉, 程雪梅, 姜科, 王帅, 谭武坤   

  1. 四川大学计算机学院软件学院 成都61000
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 作者简介:张光兰(1994-),女,硕士,主要研究方向为软件自动化测试,E-mail:[email protected];杨秋辉(1970-),女,副教授,主要研究方向为软件自动化测试框架和平台、自动化单元测试工具、数据挖掘等;程雪梅(1991-),女,硕士,主要研究方向为数据挖掘;姜 科(1994-),男,硕士,主要研究方向为软件自动化测试;王 帅(1992-),男,硕士,主要研究方向为软件自动化测试;谭武坤(1990-),男,硕士,主要研究方向为软件自动化测试。

Application of Sequence Pattern Mining in Communication Network Alarm Prediction

ZHANG Guang-lan, YANG Qiu-hui, CHENG Xue-mei, JIANG Ke, WANG Shuai, TAN Wu-kun   

  1. School of Software,Sichuan University,Chengdu 610000,China
  • Online:2019-02-26 Published:2019-02-26

摘要: 告警预测是保证整个网络的稳定性和可靠性的技术之一。现有的告警预测技术存在未考虑告警数据的时间顺序、难以获取先验知识等缺陷。由此,提出了一种基于拓扑约束的序列模式挖掘方法以发现有意义的告警序列模式。该方法主要考虑网络节点之间的拓扑连接关系,将其作为告警序列模式挖掘的约束条件;并且为了发现非频繁重大告警模式,改进了序列模式挖掘的剪枝操作,将包含重大告警的序列模式直接保留。实验结果表明,采用基于拓扑约束的序列模式挖掘方法挖掘出的告警序列模式可以提高网络告警预测的精度和效率,并能较准确地预测非频繁的“重大”告警。

关键词: 告警预测, 通信网络, 网络拓扑结构, 序列模式挖掘

Abstract: Alarm prediction is one of the techniques that ensures the stability and reliability of the entire network.Exis-ting alarm forecasting technologies have defects such as not considering the time sequence of warning data and difficult to obtain the priori knowledge.Therefore,this paper proposed a sequence pattern mining method based on topological constraints to find a meaningful alarm sequence pattern.This algorithm mainly considers the topological connections between network nodes and takes them as constraints for mining the alarm sequence pattern.In order to find non-frequent major alarm mode,it improves pruning of sequential pattern mining,preserves sequence patterns containing major alarms directly.Experiments show that the alarm sequence mode mined by the sequential pattern mining method based on topological constraints can improve the accuracy and efficiency of the network alarm prediction and predict the infrequent “major” alarms more accurately.

Key words: Alarm prediction, Communication network, Network topology architecture, Sequence pattern mining

中图分类号: 

  • TP311
[1]GAO Z,CHEN Z,FENG Y,et al.Mining Sequential Patterns of Predicates for Fault Localization and Understanding[C]∥2013 IEEE 7th International Conference on Software Security and Reliability (SERE).IEEE,2013:109-118.
[2]WU P H,PENG W C,CHEN M S.Mining sequential alarm patterns in a telecommunication database [C]∥International Workshop on Databases in Telecommunications.Springer,2001:37-51.
[3]NUNEZ M,MORALES R,TRIGUERO F.Automatic discovery of rules for predicting network management events [J].IEEE Journal on Selected Areas in Communications,2002,20(4):736-745.
[4]KLEMETTINEN M,MANNILA H,TOIVONEN H.Rule discovery in telecommunication alarm data [J].Journal of Network and Systems Management,1999,7(4):395-423.
[5]HATONEN K,KLEMETTINEN M,MANNILA H,et al.Know-ledge discovery from telecommunication network alarm databa-ses [C]∥Proceedings of the Twelfth International Conference on Data Engineering,1996.IEEE,1996:115-122.
[6]MANNILA H,TOIVONEN H,VERKAMO A I.Discovery of frequent episodes in event sequences [J].Data Mining and Knowledge Discovery,1997,1(3):259-289.
[7]HATONEN K,KLEMETTINEN M,MANNILA H,et al.TA-SA:Telecommunication alarm sequence analyzer or how to enjoy faults in your network [C]∥Network Operations and Management Symposium,1996,IEEE.IEEE,1996:520-529.
[8]JAIN-ZHI O,PEI-HSIN W,MING-SYAN C.Experimental results on a constraint based sequential pattern mining for telecommunication alarm data [C]∥Proceedings of the Second International Conference on Web Information Systems Enginee-ring.IEEE,2001:186-193.
[9]GARCIA R,LLANA L,MALAGON C,et al.Event Prediction in Network Monitoring Systems:Performing Sequential Pattern Mining in Osmius Monitoring Tool [M]∥Advances in Data Mining:Applications and Theoretical Aspects.Berlin:Springer-Verlag Berlin,2010:632-642.
[10]WANG Z,ZHANG B,LI G.A Topological Constraints Based Sequential Data Mining Approach on Telecom Networks Alarm Data [C]∥International Joint Conference on Computational Scien-ces and Optimization,2009(CSO 2009).2009:750-754.
[11]MEIRA D M,NOVEMBER B H.A Model For Alarm Correlation in Telecommunications Networks [J].Federal University of Minas Gerais,1998.
[12]EIRA D M,NOGUEIRA J M S.Modelling a telecommunication network for fault management applications [C]∥NetworkOpe-rations and Management Symposium,1998(NOMS 98).IEEE.IEEE,1998:723-732.
[13]JAUDET M,HUSSAIN A,SHARIF K.Temporal classification for fault-prediction in a real-world telecommunications network [C]∥Proceedings of the IEEE Symposium on Emerging Technologies,2005.IEEE,2005:209-214.
[14]ZAKI M J,LESH N,OGIHARA M.Predicting failures in event sequences [M]∥Data Mining for Scientific and Engineering Applications.Springer,2001:515-539.
[15]SALFNER F,LENK M,MALEK M.A survey of online failure prediction methods [J].Acm Computing Surveys,2010,42(3):10.
[16]ZHONG J,GUO W,WANG Z.Study on network failure prediction based on alarm logs [C]∥2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC).2016:1-7.
[1] 郭鹏军, 张泾周, 杨远帆, 阳申湘.
飞机机内无线通信网络架构与接入控制算法研究
Study on Wireless Communication Network Architecture and Access Control Algorithm in Aircraft
计算机科学, 2022, 49(9): 268-274. https://doi.org/10.11896/jsjkx.210700220
[2] 王思明, 谭北海, 余荣.
面向6G可信可靠智能的区块链分片与激励机制
Blockchain Sharding and Incentive Mechanism for 6G Dependable Intelligence
计算机科学, 2022, 49(6): 32-38. https://doi.org/10.11896/jsjkx.220400004
[3] 苏畅, 张定权, 谢显中, 谭娅.
面向5G通信网络的NFV内存资源管理方法
NFV Memory Resource Management in 5G Communication Network
计算机科学, 2020, 47(9): 246-251. https://doi.org/10.11896/jsjkx.190800008
[4] 陆鑫赟, 王兴芬.
基于领域关联冗余的教务数据关联规则挖掘
Educational Administration Data Mining of Association Rules Based on Domain Association Redundancy
计算机科学, 2019, 46(6A): 427-430.
[5] 刘晓东, 魏海平, 曹宇.
考虑网络拓扑结构变化的SIRS模型的建立与稳定性分析
Modeling and Stability Analysis for SIRS Model with Network Topology Changes
计算机科学, 2019, 46(6A): 375-379.
[6] 张洪泽, 洪征, 王辰, 冯文博, 吴礼发.
基于闭合序列模式挖掘的未知协议格式推断方法
Closed Sequential Patterns Mining Based Unknown Protocol Format Inference Method
计算机科学, 2019, 46(6): 80-89. https://doi.org/10.11896/j.issn.1002-137X.2019.06.011
[7] 孙文平, 常亮, 宾辰忠, 古天龙, 孙彦鹏.
基于知识图谱和频繁序列挖掘的旅游路线推荐
Travel Route Recommendation Based on Knowledge Graph and Frequent Sequence Mining
计算机科学, 2019, 46(2): 56-61. https://doi.org/10.11896/j.issn.1002-137X.2019.02.009
[8] 程珍, 赵慧婷, 章益铭, 林飞.
扩散的多播分子通信网络的比特错误率分析
Bit Error Rate Analysis of Diffusion-based Multicast Molecular Communication Networks
计算机科学, 2019, 46(11): 80-87. https://doi.org/10.11896/jsjkx.181001925
[9] 李智远,李晶,张剑.
基于连通图的天地一体化测控通信网络仿真
Simulation for Integrated Space-Ground TT&C and Communication Network Routing Algorithm
计算机科学, 2018, 45(6A): 295-299.
[10] 荣俸萍,方勇,左政,刘亮.
MACSPMD:基于恶意API调用序列模式挖掘的恶意代码检测
MACSPMD:Malicious API Call Sequential Pattern Mining Based Malware Detection
计算机科学, 2018, 45(5): 131-138. https://doi.org/10.11896/j.issn.1002-137X.2018.05.022
[11] 朱鹏宇,鲍培明,吉根林.
用户频繁通信关系的并行挖掘算法研究
Parallel Algorithm for Mining User Frequent Communication Relationship
计算机科学, 2018, 45(2): 103-108. https://doi.org/10.11896/j.issn.1002-137X.2018.02.018
[12] 万莹, 洪玫, 陈宇星, 王帅, 樊哲宁.
基于时间、空间和规则的无线网络告警关联方法
Wireless Network Alarm Correlation Based on Time,Space and Rules
计算机科学, 2018, 45(11A): 287-291.
[13] 金鑫,李龙威,苏国华,刘晓蕾,季佳男.
基于Spark框架和PSO优化算法的电力通信网络安全态势预测
Prediction about Network Security Situation of Electric Power Telecommunication Based on Spark Framework and PSO Algorithm
计算机科学, 2017, 44(Z6): 366-371. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.083
[14] 王树怡,董东.
基于聚类和偏序序列的API用法模式挖掘
Mining of API Usage Pattern Based on Clustering and Partial Order Sequences
计算机科学, 2017, 44(Z6): 486-490. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.108
[15] 崔展齐,牟永敏,张志华,王伟光.
基于函数调用序列模式挖掘的程序缺陷检测
Defects Detection Based on Mining Function Call Sequence Patterns
计算机科学, 2017, 44(11): 226-231. https://doi.org/10.11896/j.issn.1002-137X.2017.11.034
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!