计算机科学 ›› 2019, Vol. 46 ›› Issue (6A): 461-467.

• 大数据与数据挖掘 • 上一篇    下一篇

基于三维特征协同支配的个性化学习资源推荐方法

李浩君, 张征, 张鹏威   

  1. 浙江工业大学教育科学与技术学院 杭州310023
  • 出版日期:2019-06-14 发布日期:2019-07-02
  • 通讯作者: 李浩君(1977-),男,博士,副教授,主要研究方向为智能计算、智能学习,E-mail:[email protected]
  • 作者简介:张 征(1995-),男,硕士生,主要研究方向为智能计算、智能学习;张鹏威(1992-),男,硕士生,主要研究方向为智能计算、智能学习。
  • 基金资助:
    本文受国家自然科学基金项目(61503340),国家社会科学基金项目(16BTQ084)资助。

Personalized Learning Resource Recommendation Method Based on Three-dimensionalFeature Cooperative Domination

LI Hao-jun, ZHANG Zheng, ZHANG Peng-wei   

  1. College of Education Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China
  • Online:2019-06-14 Published:2019-07-02

摘要: 个性化推荐正成为信息服务时代的重要形式,是缓解学习者知识迷航、提升学习效率的有效途径。为了满足学习者对在线学习资源的个性化需求,提出一种基于三维特征协同支配的个性化学习资源推荐方法(TPLRM)。首先通过完善学习者与在线学习资源特征的匹配关系,建立了三维特征协同支配的个性化学习资源推荐模型,并进行参数化描述;其次设计了一种基于高斯隶属函数模糊控制的二进制粒子群优化算法(FCBPSO)来对推荐模型目标函数进行求解;最后在多个评价指标下,通过5组对比实验验证了TPLRM推荐方法有较好的推荐性能。

关键词: 二进制粒子群优化算法, 个性化学习资源推荐, 隶属函数, 模糊控制

Abstract: Personalized recommendation is becoming an important form of information service era,and it is an effective way to alleviate knowledge disorientation and improve learning efficiency.In order to meeting learners’ personalized needs for online learning resources,personalized recommendation technology is increasingly important.Therefore,this paper proposed a personalized learning resource recommendation method based on three-dimensional feature cooperative domination (TPLRM).Firstly,a personalized learning resource recommendation model based on three-dimensional feature cooperative domination is constructed,resource recommendation feature parameters are improved,and fitness function is built.Secondly,the binary particle swarm optimization algorithm based on fuzzy control of Gauss’s membership function (FCBPSO) is used to solve the model.Finally,the evaluation target system is established.Five groups of comparative experiments verifies that TPLRM recommendation method has better recommendation performance.

Key words: Binary particle swarm optimization algorithm, Fuzzy control, Membership function, Personalized learning resource recommendation

中图分类号: 

  • TP311
[1]叶晓庆,刘盾,梁德翠.基于协同过滤的三支粒推荐算法研究[J].计算机科学,2018,45(1):90-96.
[2]赵兴旺,梁吉业,郭兰杰.一种基于空间变换的协同过滤推荐算法[J].计算机科学,2018,45(7):16-21.
[3]文俊浩,孙光辉,李顺.基于用户聚类和移动上下文的矩阵分解推荐算法研究[J].计算机科学,2018,45(4):215-219,251.
[4]尹祎,冯丹,施展.一种基于效用的个性化文章推荐方法[J].计算机学报,2017,40(12):2797-2811.
[5]SARATH C A P,DHEEBAN S G,Deepak V,et al.Personalized e-course composition approach using digital pheromones in improved particle swarm optimization[C]∥International Confe-rence on Natural Computation.IEEE,2010:2677-2681.
[6]KURILOVAS E,ZILINSKIENE I,DAGIENE V.Recommen-ding suitable learning scenarios according to learners’ prefe-rences:An improved swarm based approach[J].Computers in Human Behavior,2014,30(1):550-557.
[7]DEMARCOS L,GARCIA-CABOT A,GARCIA-LOPEZ E,et al.Parliamentary optimization to build personalized learning paths:Case study in web engineering curriculum[J].International Journal of Engineering Education,2015,31(4):1092-1105.
[8]DEMARCOS L,BARCHINO R,MARTNEZ J J,et al.Competency-Based Intelligent Curriculum Sequencing Using Particle Swarms[C]∥Eighth IEEE International Conference on Advanced Learning Technologies.IEEE Computer Society,2008:295-297.
[9]WANG T I,TSAI K H.Interactive and dynamic review course composition system utilizing contextual semantic expansion and discrete particle swarm optimization[J].Expert Systems with Applications,2009,36(6):9663-9673.
[10]YANG Y J,WU C.An attribute-based ant colony system for adaptive learning object recommendation [J].Expert Systems with Applications,2009,36(2):3034-3047.
[11]SARATH C A P,DHEEBAN S G,DEEPAK V,et al.Persona-lized e-course composition approach using digital pheromones in improved particle swarm optimization[C]∥International Conference on Natural Computation.IEEE,2010:2677-2681.
[12]CHU C P,CHANG Y C,TSAI C C.PC 2 PSO:personalized e-course composition based on Particle Swarm Optimization[J].Applied Intelligence,2011,34(1):141-154.
[13]DHEEBAN S G,DEEPAK V,DHAMODHARAN L,et al.Improved personalized e-course composition approach using modified particle swarm optimization with inertia-coefficient[J].International Journal of Computer Applications,2011,1(6):109-115.
[14]SHARMA R,BANATI H,BEDI P.Adaptive Content Sequencing for e-Learning Courses Using Ant Colony Optimization[C]∥International Conference on Soft Computing for Problem Solving (SocProS 2011).2011:579-590.
[15]TAN X H,SHEN R M,WANG Y.Personalized course generation and evolution based on genetic algorithms[J].Journal of Zhejiang University-Science C,2012,13(12):909-917.
[16]GAO Y,PENG L,Li F,et al.A Multi-objective PSO with Pareto Archive for Personalized E-Course Composition in Moodle Learning System[C]∥International Symposium on Computational Intelligence and Design.2016:21-24.
[17]丁继红,刘华中.大数据环境下基于多维关联分析的学习资源精准推荐[J].电化教育研究,2018(2):53-59.
[18]XIE Q,XIONG F,HAN T,et al.Interactive resource recom-mendation algorithm based on tag information[J/OL].World Wide Web-internet & Web Information Systems,https://doi.org/10.1007/s11280-018-0532-y.
[19]ZHANG Y,LEI T,QIN Z,et al.A Service Recommendation Algorithm Based on Modeling of Dynamic and Diverse Demands[J].International Journal of Web Services Research,2018,15(1):47-70.
[20]ZHU H,TIAN F,WU K,et al.A Multi-Constraint Learning Path Recommendation Algorithm Based on Knowledge Map[J].Knowledge-Based Systems,2018,143(3):102-114 [21]ZHOU Y,HUANG C,HU Q,et al.Personalized learning full-path recommendation model based on LSTM neural networks[J].Information Sciences,2018,444(5):135-152.
[22]吴雷,方卿.基于改进粒子群算法的学习路径优化方法[J].系统科学与数学,2016,36(12):2272-2281.
[23]张爱玲,李鹏,刘晟.基于粒子群算法的图像椒盐噪声去除算法[J].计算机科学,2017,44(8):301-305.
[24]张燕平,荆紫慧,张以文,等.基于离散粒子群算法的动态Web服务组合[J].计算机科学,2015,42(6):71-75.
[25]MENG X,JIA L.A New Kind of PSO--Convergent Fuzzy Particle Swarm Optimization and Performance Analysis[C]∥Fourth International Conference on Networked Computing and Advanced Information Management.IEEE Computer Society,2008:102-107.
[26]MIRJALILI S M,LEWIS A.S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization[J].Swarm & Evolutionary Computation,2013,9:1-14.
[1] 尹宏俊, 邓楠, 程亚迪.
基于加速度模糊控制的六足机器人遥操作
Teleoperation Method for Hexapod Robot Based on Acceleration Fuzzy Control
计算机科学, 2022, 49(6A): 714-722. https://doi.org/10.11896/jsjkx.210300076
[2] 李姗姗,陈莉,张永新,袁娅婷.
基于RPCA的图像模糊边缘检测算法
Fuzzy Edge Detection Algorithm Based on RPCA
计算机科学, 2018, 45(5): 273-279. https://doi.org/10.11896/j.issn.1002-137X.2018.05.047
[3] 牛萍娟,张浩伟,田海涛.
基于云平台的温室精细管理系统研究
Research of Greenhouse Precise Management System Based on Could Platform
计算机科学, 2016, 43(Z11): 597-600. https://doi.org/10.11896/j.issn.1002-137X.2016.11A.135
[4] 徐文华,陈海燕,张育平,王建东.
一种基于中介真值程度度量的模糊综合评价方法
Fuzzy Comprehensive Evaluation Method Based on Measure of Medium Truth Degree
计算机科学, 2016, 43(2): 204-209. https://doi.org/10.11896/j.issn.1002-137X.2016.02.044
[5] 刘智.
基于失真激励式机会模糊控制的视频跟踪机制
Video Tracking Scheme Based on Opportunity Fuzzy Control with Distortion Incentive
计算机科学, 2016, 43(12): 307-310. https://doi.org/10.11896/j.issn.1002-137X.2016.12.057
[6] 王建华,李晓峰,高巍巍.
广义洛伦兹内核函数在模糊C均值聚类中的应用研究
Research on Generalized Lorenz Kernel Function in Fuzzy C Means Clustering
计算机科学, 2015, 42(9): 268-271. https://doi.org/10.11896/j.issn.1002-137X.2015.09.052
[7] 张屹.
基于干道绿波效应协同策略的信号配时模糊控制
Signal Timing Fuzzy Control Based on Road Green Wave Effect Collaborative Strategy
计算机科学, 2014, 41(Z6): 80-82.
[8] 汤建国,佘堑,祝峰.
覆盖Value集
Covering Vague Sets
计算机科学, 2012, 39(1): 256-260.
[9] 徐凤生,史开泉.
Value集模糊嫡度量的新构造方法
New Construction Method of Fuzzy Entropy of Vague Sets
计算机科学, 2011, 38(9): 208-210.
[10] 李朔枫,李太勇.
一种基于距离的自适应模糊粒子群优化算法
Distance-based Adaptive Fuzzy Particle Swarm Optimization
计算机科学, 2011, 38(8): 257-259.
[11] 高昂,慕德俊,胡延苏,潘文平.
基于自适应模糊控制的Web带宽区分服务
Bandwidth Differentiated Service in Web Server Based on Self-tuning Fuzzy Control
计算机科学, 2010, 37(7): 83-86.
[12] 任永昌,邢涛,刘大成.
基于模糊理论的软件开发成本估算
Software Development Cost Estimates Based on Fuzzy Theory
计算机科学, 2010, 37(10): 130-134.
[13] 张虹.
温室环境现场层监控系统控制策略研究

计算机科学, 2009, 36(5): 241-243.
[14] .
一种基于柔性逻辑的控制方法研究

计算机科学, 2009, 36(2): 158-161.
[15] .
区间速率连续Petri网的模糊模型

计算机科学, 2009, 36(2): 234-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!