计算机科学 ›› 2019, Vol. 46 ›› Issue (6A): 550-554.

• 综合、交叉与应用 • 上一篇    下一篇

基于深度学习的智能教学系统的设计与研究

陈晋音, 王桢, 陈劲聿, 陈治清, 郑海斌   

  1. 浙江工业大学信息工程学院 杭州310000
  • 出版日期:2019-06-14 发布日期:2019-07-02
  • 通讯作者: 陈晋音(1982-),女,博士,副教授,主要研究方向为数据挖掘、智能计算等,E-mail:[email protected]
  • 作者简介:王 桢(1997-),男,硕士生,主要研究方向为数据挖掘及其应用;陈劲聿(1999-),男,硕士生,主要研究方向为数据挖掘等;陈治清(1998-),男,硕士生,主要研究方向为机器学习与应用;郑海斌(1995-),男,硕士生,主要研究方向为大数据分析、机器学习等。
  • 基金资助:
    本文受国家自然科学基金(61502423,61572439),浙江省科技计划项目(LGF18F030009),浙江工业大学重中之重学科开放基金资助。

Design and Research on Intelligent Teaching System Based on Deep Learning

CHEN Jin-yin, WANG Zhen, CHEN Jin-yu, CHEN Zhi-qing, ZHEN Hai-bin   

  1. College of Information Engineering,Zhejiang University of Technology,Hangzhou 310000,China
  • Online:2019-06-14 Published:2019-07-02

摘要: 深度学习的快速发展,使其在教育领域的应用逐渐受到重视。文中介绍了一种基于深度学习的智能教学系统,该系统包括线上个性化学习推荐和线下课堂质量双向评估两部分。在线上系统中,设计基于深度学习的成绩预测和在线学习行为规律分析,并结合图像处理技术实现学习情绪分类。在线下系统中,通过训练目标检测模型、人脸检测模型和人脸分割模型,并与线上系统结合,实现了在线学习行为特征提取、线下成绩预测、学习规律分析和个性化学习推荐,同时通过线下课堂信息数据实现对高校教学质量和学生学习行为的评价和反馈。由实验结果可知,该系统不仅获取信息的渠道方便快捷,而且能够减少大量的时间成本,迎合当下线上线下相结合的新型学习教学方式,能有效提高教师的教学效率以及学生的学习效率。

关键词: 个性化学习推荐, 人脸识别, 深度学习, 双向评估, 智能课堂

Abstract: With the rapid development of deep learning,its application in education has gradually received attention.This paper introduced an intelligent teaching system based on deep learning that includes online personal learning behavior recommendation and offline bidirectional evaluation of the class quality.In the online system,based on deep lear-ning,grades prediction and online learning behavior analysis are achieved,and the image processing technology is combined to achieve learning emotion classification.In the offline system,the target detection model,face detection model and face segmentation model are trained,and the online system is combined to achieve online learning behavior feature extraction,offline grades prediction,learning regularity analysis and personal learning recommendation.The experimental results show that this system not only facilitates the access to information,but also reduces the time cost,which effectively improves the teaching efficiency of teachers and the learning efficiency of students.

Key words: Bidirectional eva-luation, Deep learning, Face recognition, Intelligent course, Personalized learning recommendation

中图分类号: 

  • TP319
[1]COATES H.The value of student engagement for higher education quality assurance[J].Quality in Higher Education,2005,11(1):25-36.
[2]ALLY M.Foundations of educational theory for online learning[J].Theory and Practice of Online Learning,2004,2(5):15-44.
[3]LESTA L,YACEF K.An intelligent teaching assistant system for logic[C]∥International Conference on Intelligent Tutoring Systems.Springer,Berlin,Heidelberg:IEEE Press,2002:421-431.
[4]FENGMEI C.Design of Intelligent Teaching Analysis System [J].Journal of Advanced Oxidation Technologies,2018,21(2):12-17.
[5]胡峰,赵俊博,焦瑞莉.基于 ZigBee 的互动教学系统学生端设计[J].测控技术,2017,36(5):152-155.
[6]张新明,何文涛.支持翻转课堂的网络教学系统模型探究[J].现代教育技术,2013,23(8):21-25.
[7]王永明,徐继存.论在线课程教学系统的建构[J].中国电化教育,2018,2(3):66-73.
[8]贾积有,张必兰,颜泽忠,等.在线数学教学系统设计及其应用效果研究[J].中国远程教育,2017,1(3):37-44.
[9]HUNG J L,ZHANG K.Revealing Online Learning Behaviors and Activity Patterns and Making Predictions with Data Mining Techniques in Online Teaching[J].Journal of Online Learning &Teaching,2008,4(4):426-436.
[10]RATNAPALA I P,RAGEL R G,DEEGALLA S.Students behavioural analysis in an online learning environment using data mining[C]∥International Conference on Information and Automation for Sustainability.San Francisco:IEEE Press,2015:132-139.
[11]马国富,王子贤,刘太行,等.大数据时代下的线上线下混合教学模式研究[J].教育文化论坛,2017,9(2):22-24.
[12]张策,徐晓飞,张龙,等.利用 MOOC 优势重塑教学实现线上线下混合式教学新模式[J].中国大学教学,2018,5(3):7-11.
[13]SADEGHI B H M.A BP-neural network predictor model for plastic injection molding process[J].Journal of Materials Processing Technology,2000,103(3):411-416.
[14]KONTOYIANNIS I,ALGOET P H,SUHOV Y M,et al.Nonparametric entropy estimation for stationary processes and random fields,with applications to English text[J].IEEE Transactions on Information Theory,1998,44(3):1319-1327.
[15]SARODE N,BHATIA S.Facial expression recognition[J].International Journal on Computer Science and Engineering,2010,2(5):1552-1557.
[16]GIRSHICK R.Fast r-cnn[C]∥Proceedings of the IEEE International Conference on Computer Vision.Boston:IEEE Press 2015:1440-1448.
[17]SCHROFF F,KALENICHENKO D,PHILBIN J.Facenet:A unified embedding for face recognition and clustering[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE Press,2015:815-823.
[1] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[2] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[5] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[6] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[7] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[8] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[9] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[10] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[11] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[12] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[13] 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋.
改进Faster R-CNN的光学遥感飞机目标检测
Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN
计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121
[14] 黄璞, 杜旭然, 沈阳阳, 杨章静.
基于局部正则二次线性重构表示的人脸识别
Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation
计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018
[15] 王建明, 陈响育, 杨自忠, 史晨阳, 张宇航, 钱正坤.
不同数据增强方法对模型识别精度的影响
Influence of Different Data Augmentation Methods on Model Recognition Accuracy
计算机科学, 2022, 49(6A): 418-423. https://doi.org/10.11896/jsjkx.210700210
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!