Computer Science ›› 2018, Vol. 45 ›› Issue (6A): 1-10.
• Review • Next Articles
YIN Liang1,YUAN Fei2,3,XIE Wen-bo2,3,WANG Dong-zhi4,SUN Chong-jing2,3
CLC Number:
[1]SINGHAL A.Official Google Blog:Introducing the Knowledge Graph:things,not strings.http://www.mendeley.com/catalog/official-google-blog-introducing-knowledge-graph-things-not-strings. [2]BRACHMAN R J.What IS-A is and isn't:An analysis of taxonomic links in semantic networks.United States Journal of Computer,1983,16(10):30-36. [3]STEINER T,VERBORGH R,TRONCY R,et al.Adding realtime coverage to the google knowledge graph[C]∥International Conference on Posters & Demonstrations Track-Volume 914.CEUR-WS.org,2012:65-68. [4]WANG Z C,WANG Z G,LI J Z,et al.Knowledge extraction from Chinese wiki encyclopedias.Frontiers of Information Technology & Electronic Engineering,2012,13(4):268-280. [5]ZENG Y,WANG H,HAO H,et al.Statistical and structural analysis of web-based collaborative knowledge bases generated from Wiki Encyclopedia[C]∥2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology-Volume 01.IEEE Computer Society,2012:553-557. [6]HUANG Z,CHUANG W,ONG T H,et al.A graph-based re- commender system for digital library[C]∥2nd ACM/IEEE-CS Joint Conference on Digital Libraries.ACM,2002:65-73. [7]SIEK J G,LEE L Q,LUMSDAINE A.The Boost Graph Library: User Guide and Reference Manual,Portable Documents.Canada:Pearson Education,2001:17. [8]DAI X,LI J,LIU T,et al.HRGRN:A Graph Search-Empowe- red Integrative Database of Arabidopsis Signaling Transduction,Metabolism and Gene Regulation Networks.Plant and Cell Physiology,2016,57(1):12. [9]DIESTEL R,KR?L D,SEYMOUR P.Graph theory.Oberwolfach Reports,2016,13(1):51-86. [10]WALKINGSHAW A D,ALEKANDROVSKY B L,VAN-HOFF A A,et al.Generating an Implied Object Graph Based on User Behavior:U.S.Patent Application 14/691,370.https://patents.google.com/patent/US20150227563. [11]NARAYANAN S,NANDAGOPAL V,SUN E.Automatically generating nodes and edges in an integrated social graph:U.S.Patent 9,002,898.2015-4-7. [12]李涓子.知识图谱:大数据语义链接的基石.http:// www.cipsc.org.cn/ kg2/.LI Juan-zi.Knowledge graph:the foundation for big data semantic link.(2015-02-20).http://www.cipsc.org.cn/kg2. [13]刘峤,李杨,杨段宏,等.知识图谱构建技术综述.计算机研究与发展,2016,53(3):582-600. [14]徐增林,盛泳潘,贺丽荣,王雅芳.知识图谱技术综述.电子科技大学学报,2016,45(4):589-606. [15]耿霞,张继军,李蔚妍.知识图谱构建技术综述.计算机科学,2014,41(7):148-152. [16]刘显敏,李建中.基于建规则的XML实体抽取方法.计算机研究与发展,2014,51(1):64-75. [17]Wikimedia Foundation Inc.simple API for XML. .http:// en.wikipedia.org/ wiki/simpl_API_for_XML. [18]黎玲利,高宏.基于距离度量的实体识别算法.智能计算机与应用,2014,4(6):61-63. [19]刘雪莉,王宏志,等.基于实体的相似性连接算法.软件学报,2015,26(6):1421-1437. [20]贾真,何大可,杨燕,等.基于弱监督学习的中文网络百科关系抽取.智能系统学报,2015,10(1):113-119. [21]王俊华,左万利,闫昭.基于朴素贝叶斯模型的单词语义相似度度量.计算机研究与发展,2015,52(7):1499-1509. [22]刘绍毓,周杰,李弼程,等.基于多分类 SVM-KNN 的实体关系抽取方法.数据采集与处理,2015,30(1):202-210. [23]刘晓勇.一种基于树核函数的半监督关系抽取方法研究.山东大学学报(工学版),2015,45(2):22-26. [24]MINTZ M,BILLS S,SNOW R,et al.Distant Supervision for Relation Extraction Without Labeled Data[C]∥Joint Confe-rence of the Meeting of the Acl & the International Joint Confe-rence on Natural Language Processing of the Afnlp:Volume.Association for Computational Linguistics,2009:1003-1011. [25]CHENG A,XIA F,GAO J.A comparison of unsupervised me- thods for Part-of-Speech Tagging in Chinese[C]∥23rd International Conference on Computational Linguistics:Posters.Associa-tion for Computational Linguistics,2010:135-143. [26]BANKO M,CAFARELLA M J,SODERLAND S,et al.Open Information Extraction from the Web[C]∥International Joint Conference on Artifical Intelligence.2007:2670-2676. [27]ZHU J,NIE Z,LIU X,et al.StatSnowball:a statistical approach to extracting entity relationships[C]∥Proceedings of the 18th international conference on World wide web.ACM,2009:101-110. [28]WU F,WELD D S.Open information extraction using Wikipedia∥Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics.Association for Computational Linguistics,2010:118-127. [29]FADER A,SODERLAND S,ETZIONI O.Identifying relations for open information extraction[C]∥Proceedings of the Confe-rence on Empirical Methods in Natural Language Processing.Association for Computational Linguistics,2011:1535-1545. [30]ETZIONI O,CAFARELLA M ,BANKO M.Open information extraction.https://doi.org/10.1142/S2425038416300032 [31]BATISTA D S,MARTINS B,SILVA M J.Semi-supervised boot- strapping of relationship extractors with distributional semantics[C]∥2015 Conference on Empirical Methods in Natural Language Processing.Association for Computational Linguistics,Lisbon,Portugal,2015:499-504. [32]BRIN S.Extracting patterns and relations from world wide web[C]∥WebDB Workshop at 6th International Conference on Extending Database Technology (WebDB’98).1998:172-183. [33]AGICHTEIN E,GRAVANO L.Snowball:Extracting relations from large plain-text collections[C]∥fifth ACM conference on Digital libraries.ACM,2000:85-94. [34]罗甫林,黄鸿,刘嘉敏,等.基于半监督稀疏流形嵌入的高光谱影像特征提取.电子与信息学报,2016,38(9):2321-2329. [35]MADAAN A,MITTAL A,RAMAKRISHNAN G,et al.Numerical relation extraction with minimal supervision[C]∥Thirtieth AAAI Conference on Artificial Intelligence.2016. [36]NICKEL M,MURPHY K,TRESP V,et al.A Review of Relational Machine Learning for Knowledge Graphs.Proceedings of the IEEE,2015,104(1):11-33. [37]黄卫春,徐力,熊李艳,等.基于信息增益的 Web 人物关系抽取.计算机应用研究,2016,33(8):2286-2289. [38]HASEGAWA T,SEKINE S,GRISHMAN R.Discovering relations among named entities from large corpora[C]∥Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics.Association for Computational Linguistics,2004:415. [39]ZHU J,NIE Z,LIU X,et al.StatSnowball:a statistical approach to extracting entity relationships[C]∥18th International Conference on World Wide Web.ACM,2009:101-110. [40]秦兵,刘安安,刘挺.无指导的中文开放式实体关系抽取.计算机研究与发展,2015,52(5):1029-1035. [41]AGGARWAL N,BUITELAAR P.Wikipedia-based distribu- tional semantics for entity relatedness[C]∥2014 AAAI Fall Symposium Series.2014. [42]ZOBEL J,MOFFAT A.Exploring the similarity space.Acm Sigir Forum,1998,32(1):18-34. [43]TOUTANOVA K,CHEN D,PANTEL P,et al.Representing Text for Joint Embedding of Text and Knowledge Bases[C]∥EMNLP.2015:1499-1509. [44]刘明辉,王磊,党林阁,等.非确定先验信息的贝叶斯网结构学习方法.计算机工程,2010,36(5):165-167. [45]SHAW C A,CAMPBELL I M.Variant interpretation through Bayesian fusion of frequency and genomic knowledge.Genome medicine,2015,7(1):4. [46]COUSSEMENT K,BENOIT D F,ANTIOCO M.A Bayesian approach for incorporating expert opinions into decision support systems:A case study of online consumer-satisfaction detection.Decision Support Systems,2015,79(C):24-32. [47]张振海,王晓明,党建武,等.基于专家知识融合的贝叶斯网络结构学习方法.计算机工程与应用,2014,50(2):1-4. [48]MARCHEGGIANI D,TITOV I.Discrete-state variational auto encoders for joint discovery and factorization of relations.Transactions of the Association for Computational Linguistics,2016(4):231-244. [49]韩立岩,周芳.基于 DS 证据理论的知识融合及其应用.北京航空航天大学学报,2006,32(1):65-68. [50]宋亚飞,王晓丹,雷蕾 .基于直觉模糊集的时域证据组合方法研究.自动化学报,2016,42(9):1322-1338. [51]SHAFER G.A mathermatical theory of evidence .Princeton,NJ:Princeton University Press,1976. [52]郭强,关欣,潘丽娜,等.一种基于条件证据网络的多源异类知识融合识别方法.控制与决策,2015,30(12):2153-2160. [53]屈强,刘中晅,陈波.基于修正倒数型距离贴近度的传感器数据模糊加权融合法.计算机工程,2016,42(5):313-316. [54]XIE N,WANG W,MA B.et al.Research on an Agricultural Knowledge Fusion Method for Big Data.https://www.researchgate.net/publication/277962505_Research_on_an_Agricultural_Knowledge_Fusion_Method_for_Big_Data. [55]陈云翔,蔡忠义,张诤敏,等.基于证据理论和直觉模糊集的群决策信息集结方法.系统工程与电子技术,2015,37(3):594-598. [56]Wikipedia.Knowledge graph..https://en.Wikipedia.org/wiki/ Knowledge _Graph. [57]HASNAIN A,DUNNE N,DECKER S.Knowledge Processing with Big Data and Semantic Web Technologies.2015. [58]WALKINGSHAW A D,ALEKSANDROVSKY B L,VAN-HOFF A A,et al.Generating an Implied Object Graph Based on User Behavior:U.S.Patent Application 14/691,370.2015-4-20. [59]LI Y,MARTINEZ O,CHEN X,et al.In a World That Counts:Clustering and Detecting Fake Social Engagement at Scale[C]∥25th International Conference on World Wide Web.Internatio-nal World Wide Web Conferences Steering Committee,2016:111-120. [60]SHADBOLT N,BERNERS-LEE T,HALL W.The semantic web revisited.IEEE Intelligent Systems,2006,21(3):96-101. [61]BERNERS-LEE T,CHEN Y,CHILTON L,et al.Tabulator:Exploring and Analyzing linked data on the Semantic Web[C]∥Proceedings of the 3rdInternational Semantic Web User Interac-tion Workshop.2006. [62]HANNEMANN J,KETT J.Linked Data and Libraries. .http://www.ifla.org/ files/hq/papers/ ina76/149-hannemann-en.pdf [63]MALMSTEN M,李雯静.将图书馆目录纳入语义万维网.数据分析与知识发现,2009,3(3):3-7. [64]SUMMERS,ANTOINE,ISAAC,等.LCSH,SKOS和关联数据.数据分析与知识发现,2009,3(3):8-14. [65]SCHMACHTENBERG M ,BIZER C .Linking Open Data cloud diagram.http://lod-cloud.net/. [66]WANG C,MARSHALL A,ZHANG D,et al.ANAP:an integrated knowledge base for Arabidopsis protein interaction network analysis.Plant physiology,2012,158(4):1523-1533. [67]BRANDO M M,DANTAS L L,SILVA FILHO M C.AtPIN:Arabidopsis thaliana protein interaction network..Bmc Bioinformatics,2009,10(1):1-7. [68]SAIER JR M H,REDDY V S,TAMANG D G,et al.The transporter classification database.Nucleic acids research,2013,42(1):251-258. [69]DAI X,ZHAO P X.psRNATarget:a plant small RNA target analysis server.Nucleic Acids Research,2011(39):155-159. [70]BARRETT T,WILHITE S E,LEDOUX P,et al.NCBI GEO:archive for functional genomics data sets-update.Nucleic acids research,2012,41(1):991-995. |
[1] | LU Liang, KONG Fang. Dialogue-based Entity Relation Extraction with Knowledge [J]. Computer Science, 2022, 49(5): 200-205. |
[2] | XU Jin. Construction and Application of Knowledge Graph for Industrial Assembly [J]. Computer Science, 2021, 48(6A): 285-288. |
[3] | LYU Jin-na, XING Chun-yu , LI Li. Video Character Relation Extraction Based on Multi-feature Fusion and Fine-granularity Analysis [J]. Computer Science, 2021, 48(4): 117-122. |
[4] | HANG Ting-ting, FENG Jun, LU Jia-min. Knowledge Graph Construction Techniques:Taxonomy,Survey and Future Directions [J]. Computer Science, 2021, 48(2): 175-189. |
[5] | HOU Tong-jia, ZHOU Liang. Chinese Ship Fault Relation Extraction Method Based on Bidirectional GRU Neural Network and Attention Mechanism [J]. Computer Science, 2021, 48(11A): 154-158. |
[6] | ZHANG Shi-hao, DU Sheng-dong, JIA Zhen, LI Tian-rui. Medical Entity Relation Extraction Based on Deep Neural Network and Self-attention Mechanism [J]. Computer Science, 2021, 48(10): 77-84. |
[7] | YU Yi-lin, TIAN Hong-tao, GAO Jian-wei and WAN Huai-yu. Relation Extraction Method Combining Encyclopedia Knowledge and Sentence Semantic Features [J]. Computer Science, 2020, 47(6A): 40-44. |
[8] | QIAN Xiao-mei,LIU Jia-yong,CHENG Peng-sen. Distant Supervised Relation Extraction Based on Densely Connected Convolutional Networks [J]. Computer Science, 2020, 47(2): 157-162. |
[9] | CHEN Xiao-jun, XIANG Yang. Construction and Application of Enterprise Risk Knowledge Graph [J]. Computer Science, 2020, 47(11): 237-243. |
[10] | MA Jian-hong, LI Zhen-zhen, ZHU Huai-zhong, WEI Zi-mo. Entity and Relationship Joint Extraction Method of Feedback Mechanism [J]. Computer Science, 2019, 46(12): 242-249. |
[11] | LI Hao, LIU Yong-jian, XIE Qing, TANG Ling-li. Distant Supervision Relation Extraction Model Based on Multi-level Attention Mechanism [J]. Computer Science, 2019, 46(10): 252-257. |
[12] | MA Xiao-jun, GUO Jian-yi, XIAN Yan-tuan, MAO Cun-li, YAN Xin and YU Zheng-tao. Entity Hyponymy Acquisition and Organization Combining Word Embedding and Bootstrapping in Special Domain [J]. Computer Science, 2018, 45(1): 67-72. |
[13] | LI Ying, HAO Xiao-yan and WANG Yong. N-ary Chinese Open Entity-relation Extraction [J]. Computer Science, 2017, 44(Z6): 80-83. |
[14] | LV Zhao-jin, SHEN Li-wei and ZHAO Wen-yun. Scenario-oriented Location Method of Android Applications [J]. Computer Science, 2017, 44(2): 216-221. |
[15] | LIU Kai, FU Hai-dong, ZOU Yu-wei and GU Jin-guang. Chinese Medical Weak Supervised Relation Extraction Based on Convolution Neural Network [J]. Computer Science, 2017, 44(10): 249-253. |
|