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Abstract
Workflow enacting systems are a popular tech-
nology in business and e-science alike to flex-
ibly define and enact complex data processing
tasks. Since the construction of a workflow for
a specific task can become quite complex, efforts
are currently underway to increase the re-use of
workflows through the implementation of spe-
cialized workflow repositories. While existing
methods to exploit the knowledge in these repos-
itories usually consider workflows as an atomic
entity, our work is based on the fact that work-
flows can naturally be viewed as graphs. Hence,
in this paper we investigate the use of graph
kernels for the problems of workflow discovery,
workflow recommendation, and workflow pat-
tern extraction, paying special attention on the
typical situation of few labeled and many un-
labeled workflows. To empirically demonstrate
the feasibility of our approach we investigate
a dataset of bioinformatics workflows retrieved
from the website myexperiment.org.1

1 Introduction
Workflow enacting systems are a popular technology in
business and e-science alike to flexibly define and enact
complex data processing tasks. A workflow is basically
a description of the order in which a set of services have to
be called with which input in order to solve a given task.
Since the construction of a workflow for a specific task can
become quite complex, efforts are currently underway to
increase the re-use of workflows through the implementa-
tion of specialized workflow repositories.

Driven by specific applications, a large collection of
workflow systems have been prototyped such as Taverna
[Oinn et al., 2004] or Triana [Taylor et al., 2006].

As the high numbers of workflows can be generated
and stored relatively easily it becomes increasingly hard to
keep an overview about the available workflows. Workflow
repositories and websites such as myexperiment.org
tackle this problem by offering the research community the
possibility to publish and exchange complete workflows.
An even higher amount of integration has been described
in the idea of developing a Virtual Research Environment
(VRE, [Fraser, 2005]).

Due to the complexity of managing a large repository
of workflows, data mining approaches are needed to sup-

1This paper also appears at the Workshop on Service-Oriented
Knowledge Discovery (SoKD 2010)

port the user in making good use of the knowledge that is
encoded in these workflows. In order to improve the flexi-
bility of a workflow system, a number of data mining tasks
can be defined:

Workflow recommendation: Compute a ranking of the
available workflow with respect to their interesting-
ness to the user for a given task. As it is hard to for-
mally model the user’s task and his interest in a work-
flow, one can also define the task of finding a measure
of similarities on workflows. Given a (partial) work-
flow for the task the user is interested in, the most sim-
ilar workflows are then recommended to the user.

Metadata extraction: Given a workflow (and possibly
partial metadata), infer the metadata that describes the
workflow best. As most approaches for searching and
organizing workflow are based on descriptive meta-
data, this task can be seen as the automatization of the
extraction of workflow semantics.

Pattern extraction: Given a set of workflows, extract a set
of sub-patterns that are characteristic for these work-
flow. A practical purpose of these patterns is to serve
as building block for new workflows. In particular,
given several sets of workflows, one can also define
the task of extracting the most discriminative patterns,
i.e. patterns that are characteristic for one group but
not the others.

Several approaches to these problems exists in the data
mining literature, in particular on machine learning for rec-
ommender systems [Goderis, 2008]. However, existing
methods usually consider workflows as an atomic entity,
using workflow meta data such as its usage history, textual
descriptions (in particular tags), or user-generated quality
labels as descriptive attributes. While these approaches can
deliver high quality results, they are limited by the fact that
all these attributes require either a high user effort to de-
scribe the workflow (to use text mining techniques), or a
frequent use of each workflow by many different users (to
mine for correlations).

Figure 1 shows the evolution of information about a
workflow over its lifetime. In the construction phase,
mainly technical information about the workflow itself is
generated. Possibly starting from a workflow pattern, sev-
eral versions of a workflow are generated and tested. In the
submission phase, the workflow is made public for possible
re-use. Here, the owner gives a more or less detailed de-
scription about the purpose of the workflow and about the
task that it is supposed to achieve. In the final phase, the
re-use of the workflow by different users begins, generat-
ing information about workflow usage, such as correlations
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Figure 1: Workflow data: over the lifetime of a workflow
(horizontal axis), information on different levels of gener-
ality is generated (vertical axis)

with usage of other workflows. User possibly vote on the
quality of the workflow.

In this paper we are interested in supporting the user in
constructing the workflow and reducing the manual effort
of workflow tagging. The reason for the focus on the early
phases of workflow construction is that in practice it can
be observed that often users are reluctant to put too much
effort into describing a workflow; they are usually only in-
terested in using the workflow system as a means to get
their work done. A second aspect to be considered is that
without proper means to discover existing workflows for
re-use, it will be hard to receive enough usage information
on a new workflow to start up a correlation-based recom-
mendation in the first place.

To address these problems, we have opted to investigate
solutions to the previously described data mining tasks that
can be applied in the common situation of many unlabeled
workflows, using only the workflow description itself and
no meta data. Our work is based on the fact that work-
flows can be viewed as graphs. We will demonstrate that
by the use of graph kernels it is possible to effectively ex-
tract workflow semantics and use this knowledge for the
problems of workflow recommendation and metadata ex-
traction. The purpose of this paper is to answer the follow-
ing questions:

Q1: How good are graph kernels at performing the tasks
of workflow recommendation without explicit user in-
put? We will present an approach that is based on ex-
ploiting workflow similarity.

Q2: Can appropriate meta data about a workflow be ex-
tracted from the workflow itself? What can we infer
about the semantics of a workflow and its key char-
acteristics? In particular, we will investigate the task
of tagging a workflow with a set of user-defined key-
words.

Q3: How good does graph mining perform at a descriptive
approach of workflow analysis, namely the extraction
of meaningful graph patterns?

The remainder of the paper is structured as follows:
Next, we will discuss related work in the area of work-
flow systems. In Section 3, we give a detailed discus-
sion of representation of workflows and the associated
metadata. Section 4 will present the approach of us-
ing graph kernels for workflow analysis. The approach
will be evaluated on 4 distinct learning tasks on a dataset
of bioinformatics workflows retrieved from the website
http://myexperiment.org in Section 5. Section 6
concludes.

2 Related Work
Since workflow systems are getting more complicated, the
development of effective discovery techniques particularly
for this field has been addressed by many researcher dur-
ing the last years. Public repositories that enables sharing
of workflows are widely used both in business and scien-
tific communities. While first steps toward supporting the
user have been made, there is still a need to improve ef-
fectiveness of discovery methods and support the user in
navigating in the space of available workflows. A detailed
overview of different approaches for workflow discovery is
given by Goderis [Goderis, 2008].

Most approaches are based on simple search functional-
ities and consider workflow as an atomic entity. Searching
over workflow annotation like titles, textual description or
discovery on the basis of user profiles belongs to basic ca-
pabilities of such academic repositories as myExperiment
[Roure, 2009], BioWep 2, Kepler 3 or commercial systems
like Infosense and Pipeline Pilot.

In [Goderis et al., 2009] a detailed study about cur-
rent practices in workflow sharing, re-using and retrieval
is presented. To summarize, the need to take into account
structural properties of workflows in the retrieval process
was underlined by several users. The authors demonstrate
that existing techniques are not sufficient and there is still
a need for effective discovery tools. In [Goderis et al.,
2006] retrieval techniques and methods for ranking discov-
ered workflows based on graph-subisomorphism matching
are presented. Coralles [Corrales et al., 2006] proposes
a method for calculating the structural similarity of two
BPEL (Business Process Execution Language) workflows
represented by graphs. It is based on error correcting graph
subisomorphism detection.

Apart from workflow sharing and retrieval, the design of
new workflows is an immense challenge to users of work-
flow systems. It is both time-consuming and error-prone,
as there is a great diversity of choices regarding services,
parameters, and their interconnections. It requires the re-
searcher to have specific knowledge in both his research
area and in the use of the workflow system. Consequently,
it is preferable for a researcher to not start from scratch, but
to receive assistance in the creation of a new workflow.

A good way to implement this assistance is to reuse or re-
purpose existing workflows or workflow patterns (i.e. more
generic fragments of workflows). An example of workflow
re-use is given in [Goderis, 2008], where a workflow to
identify genes involved in tolerance to Trypanosomiasis in
East African cattle was reused successfully by another sci-
entist to identify the biological pathways implicated in the
ability of mice to expel the Trichuris Muris parasite.

In [Goderis et al., 2005] it is argued that designing new
workflows by reusing and re-purposing previous workflows
or workflows patterns has the following advantages:

• Reduction of workflow authoring time

• Improved quality through shared workflow develop-
ment

• Improved experimental provenance through reuse of
established and validated workflows

• Avoidance of workflow redundancy

2http://bioinformatics.istge.it/biowep/
3https://kepler-project.org/



While there has been some research comparing work-
flow patterns in a number of commercially available work-
flow management systems [Van Der Aalst et al., 2003] or
identifying patterns that describe the behavior of business
processes [White, March 2004], to the best of our knowl-
edge there exists no work to automatically extract patterns.
A pattern mining method for business workflows based on
calculation of support values is presented in [Thom et al.,
2007]. However, the set of patterns that was used was de-
rived manually based on an extensive literature study.

3 Workflows
A workflow is a way to formalize and structure complex
data analysis experiments. Scientific workflows can be de-
scribed as a sequence of computation steps together with
predefined input and output that arise in scientific problem-
solving. Such definition of workflow enables sharing anal-
ysis knowledge within scientific communities in conve-
nient way. Since we want to provide the user with sug-
gestions about possibly interesting workflows, we need to
be able to compare workflows available in existing VREs
with the one that the user has. That implies that workflows
need a consistent representation.

3.1 Example: myExperiment.org
We consider the discovery of similar workflow in the con-
text of a specific VRE called myExperiment [Roure et al.,
2008], MyExperiment has been developed to support shar-
ing of scientific objects associated with an experiment. It
is a collaborative environment where scientists can safely
publish their workflows and experiment plans, share them
with groups and find those of others. MyExperiment is de-
signed to make it easy for scientists to contribute to a pool
of scientific workflows, build communities and form rela-
tionships. Its goal is to enable scientists to share and reuse
workflows, reduce the time-to-experiment, and avoid rein-
vention.

Figure 2 shows a workflow view in myExperiment. Each
stored workflow is created by a specific user, is associated
with a workflow graph, and contains metadata and certain
statistics such as the number of downloads or rating. We
split all available information about a workflow into four
different groups: the workflow graph, textual data, user in-
formation, and workflow statistics. Next we will character-
ize each group in more detail. Graph properties of work-
flow are detailed described in 4

3.2 Textual Data
Each workflow in myExperiment has a title and a descrip-
tion text and contains information about the creator and
date of creation. Furthermore, the associated tags anno-
tate workflow by several keywords that facilitate search-
ing for workflows and provide more precise results. Ad-
ditionally, for workflows in Taverna format myExperiment
displays visual previews, detailed information about single
workflow components, such as type of inputs and outputs,
number and type of certain processors.

3.3 User Information
MyExperiment was created not only as an environment for
sharing workflows, but also as a social infrastructure for
the researchers. The social component is realized by reg-
istration of users and allowing them to create profiles with
different kind of personal information, details about their
work and professional life. The members of myExperiment

can form complex relationships with other members, such
as creating or joining user groups or giving credit to others.
All this information can be used in order to find the groups
of users having similar research interests or working in re-
lated projects. In the end, this type of information can be
used to generate the well known correlation-based recom-
mendations of the type “users who liked this workflow also
liked the following workflows...”.

3.4 Workflow Statistics
As statistic data we consider information that is changing
with the time, such as the number of views or downloads or
the average rating. Statistic data can be very useful for pro-
viding a user with a workflow he is likely to be interested
in. As we do not have direct information about user prefer-
ences, some of the statistics data, e.g. number of downloads
or rating, can be considered as a kind of quality measure.

4 A Graph Mining Approach to Workflow
Analysis

The characterization of a workflow by metadata alone is
challenging because neither of these features give an in-
sight into the underlying sub-structures of the workflow.
It is clear that users do not always create a new workflow
from scratch, but most likely re-use old components and
sub-workflows. Hence, knowledge of sub-structures is im-
portant information to characterize a workflow completely.

The common approach to represent objects for a learning
problem is to describe them as vectors in a feature space.
However, when we handle objects that have important sub-
structures, such as workflows, the design of a suitable fea-
ture space is not trivial. For this reason, we opt to follow a
graph mining approach.

4.1 Frequent Subgraphs
Frequent subgraph discovery has received intense and still
growing attention, since it has a wide range of applications
areas. Frequently occurring subgraphs in a large set of
graphs could represent important motifs in the data. Given
a set of graphs G, the support of a graph G (S(G)) is de-
fined as the fraction of graphs in G in which G occurs. The
problem of finding frequent patterns is defined as follows:

Given a set of graphs G and minimum support Smin.
We want to find all connected subgraphs G that occur fre-
quently enough (i.e. S(G) >= Smin) over the entire set of
graphs. The output of the discovery process may contain a
large number of such patterns.

4.2 Graph Kernels
Graph kernels, as originally proposed by [Gaertner et al.,
2003; Kashima and Koyanagi, 2002] provide a general
framework for handling graph data structures by kernel
methods. Different approaches for defining graph kernels
exist.

A popular representation of graphs that is used for ex-
amples in protein modeling and drug screening are kernels
based on cyclic patterns [Horváth et al., 2004]. However,
these are not applicable to workflow data, as workflows are
by definition acyclic (because an edge between services A
and B represents the relation “A must finish before B can
start”).

To adequately represent the decomposition of workflows
into functional substructures, we apply the following ap-
proach: the set of graphs is searched for substructures (sub-
trees) that occur in at least a given percentage (support)



Figure 2: MyExperiment: workflow with associated metadata.

of all graphs. Then, the feature vector is composed of the
weighted counts of the substructures. The substructures are
sequences of labeled vertices that were produced by graph
traversal. The length of a substructure is equal to the num-
ber of vertices in it. This family of kernels is called Label
Sequence Kernels. The main difference among the kernels
lies in how graphs are traversed and how weights are in-
volved in computing a kernel. According to the extracted
substructures, these are kernels based on walks, trees or
cycles. In our work we used the kernels based on ran-
dom walks with exponential weights proposed by Gärtner
et al. [Gaertner et al., 2003]. Since workflows are directed
acyclic graphs, in our special case the hardness results of
[3] (such random walks can not be enumerated in gen-
eral case) no longer hold and we actually can enumerate
all walks. This allows us to explicitly generate the feature
space representation of the kernels by defining the attribute
values for every substructure (walk). For each substructure
s in the set of graphs, let k be the length of the substructure.
Then, the attribute λs is defined as:

λs =
βk

k!
(1)

(and thus generate the explicit finite set of features di-
rectly).

if the graph contains the substructure s and λs = 0 else.
Here β is a parameter that we have optimized by cross-
validation.

The graph kernel between graphs G1 and G2 is now de-
fined as

k(G1, G2) =
∑

s∈sub(G1)∩sub(G2)

λs

where the sum runs over all substructures s that are present
in both G1 and G2. Note that if for a finite set of d sub-
structures s1, . . . , sd we define

λ(G) = (
√
λs11{s1∈G}, . . . ,

√
λsd1{sd∈G})

this is equivalent to

k(G1, G2) = λ(G1)
Tλ(G2).

A very important advantage of graph kernels approach
for the discovery task is that distinct substructures can pro-
vide an insight into the specific behavior of the workflow.

4.3 Graph Representation of Workflows
A workflow can be formalized as a directed acyclic la-
beled graph. The workflow graph has two kind of nodes:
regular nodes representing the computation operations and
nodes defining input/output data structure. A set of edges
shows information and control flow between the nodes.
More formally, a workflow graph can be defined as a tu-
ple W = (N,T ), where:
N = {C, I,O}
C = finite set of computation operations,
I/O = finite set of inputs or outputs
T ⊆ N × N = finite set of transitions defining control

flow.
Labeled graphs contain an additional source of infor-

mation. There are several alternatives to obtain node la-
bels. On the one hand, users often annotate single work-
flow components by a combination of words or abbrevia-
tions. On the other hand, each component within workflow
system has a signature and an identifier associated with it,
e.g. in web-service WSDL format. User created labels suf-
fer from subjectivity and diversity, e.g. the same node rep-
resenting the same computational operation can be labeled
in very different way. The first alternative again assumes
some type of user input, so we opt to use the second alter-
native.

Figure 3 shows an example of such transformation ob-
tained for a Taverna workflow [Oinn et al., 2004]. While
the left pictures shows a user annotated components the



Figure 3: Transformation of Taverna workflow to the work-
flow graph.

right picture presents workflow graph on the next abstrac-
tion level.

5 Evaluation
In this section we illustrate the use of workflow structure
and graph kernels in particular for workflow discovery and
pattern extraction. We evaluate results on a real-world
dataset of Taverna workflows. However, the same approach
can be applied to other workflow systems, as long as we can
obtain meaningful consistent labels from workflows.

5.1 Dataset
For the purposes of this evaluation we used a corpus of 300
real-world bioinformatics workflows retrieved from myEx-
periment [Roure et al., 2008]. We chose to restrict our-
selves to workflows that were created in Taverna work-
bench [Oinn et al., 2004] in order to simplify the format-
ting of workflows. Since the application area of myExper-
iment is restricted to bioinformatics, we may be sure that
there are sets of similar workflows there. The user feed-
back about similarity of workflow pairs is missing. Hence,
we used semantic information to obtain workflows similar-
ity. We made the assumption that workflows targeting the
same tasks are similar. Under this assumption we used the
cosine similarity of the vector of tags assigned to the work-
flow as a proxy for the true similarity. An optimization over
the number of clusters resulted in 5 groups shown in Table
1. These tags indeed impose a clear structuring with few
overlaps on the workflows.

5.2 Workflow Recommendation
In this section, we address Question Q1: How good are
graph kernels at performing the tasks of workflow recom-
mendation without explicit user input? The goal is to re-
trieve workflows that are ”close enough” to a user’s con-
text. Therefore, we need to be able to compare workflows
available in existing VREs with the user’s one. As simi-
larity measure we use graph kernel, which is equivalent to
the cosine distance between the feature vectors consisting
of the weighted counts of the frequent subgraphs.

We compare our approach based on graph kernels to
several techniques representing the current state of the art

[Goderis et al., 2006]: matching of workflow graphs based
on the size of the maximal common subgraph (MCS) and
a method that considers a workflow as a bag of services.
In addition to these techniques we also consider a standard
text mining approach, whose main idea is that workflows
are documents in XML format. The similarity of a work-
flow pair is then calculated as the cosine distance between
the respective word vectors.

In our experiment we predict if two workflows belong
to the same cluster. Table 2 summarizes the average per-
formances of a leave-one-out evaluation for the four ap-
proaches. It can be seen that graph kernels clearly outper-
form all other approaches in accuracy and recall. For preci-
sion, MCS performs best, however, at the cost of a minimal
recall. The recall of graph kernels ranks second and is close
to the value of MCS.

Therefore, we conclude that graph kernels are suitable
for the task of workflow recommendation based only on
graph structure without explicit user input.

5.3 Workflow Tagging
We are now interested in Question Q2 of extraction of
appropriate metadata from workflows. As a prototypical
piece of metadata, we investigate user-defined tags.

20 tags were selected that occur in at least 3% of all
workflows. We use tags as proxies that represent the real-
world task that a workflow can perform. Selected tags
present 20 different classification problems. For each tag
we would like to predict if it describes an given work-
flow. To do that we utilize graph kernels representation of
workflow. We tested two algorithms: SVM and k-Nearest
Neighbor. Table 3 shows results of tags prediction evalu-
ated by 2-fold cross validation over 20 keywords. It can
be seen that an SVM with graph kernels can predict the se-
lected tags with high AUC and precision, while a Nearest
Neighbor approach using graph kernels to define the dis-
tance achieves a higher recall.

We can conclude that the graph representation of work-
flow contains enough information to predict appropriate
metadata.

5.4 Pattern extraction
Finally, we investigate question Q3, which deals with the
more descriptive task of extracting meaningful patterns
from sets of workflows that are helpful in the construction
of new workflows.

We address the issue of extracting patterns that are par-
ticularly important within a group of similar workflows in
several steps. First, we use a linear SVM to build a clas-
sification model based on the graph kernels. This model
identifies all workflows which belong to the same group
against workflows from other groups. Then we search for
features having high weight value which the model con-
siders as important. We performed such pattern extraction
targeting consequently each workflow group. A 10-fold ac-
curacy shows that this classification can be achieved with
high accuracy, values ranging between 81.3% and 94.7%,
depending on the class. However, we are more interested
in the most significant patterns, which we determine based
on the weight that was assigned by the SVM (taking dif-
ferent standard deviation into account). Examples of such
patterns are described below.

Figure 4 shows an example of workflow patterns and the
same pattern inside of one of workflows that it occurs in. It
was considered as important for classifying workflow from



Group Size Most frequent tags Description
1 30% localworker, example, mygrid Workflows using local scripts.
2 29% bioinformatics, sequence, protein, Sequence similarity search

BLAST, alignment, similarity, using the BLAST algorithm
structure, search, retrieval

3 24% benchmarks Benchmarks WFs.
4 6.7% AIDA , BioAID, text mining, Text mining on biomedical texts using

bioassist, demo, biorange the AIDA toolbox and BioAID web
services

5 6.3% Pathway, microarray, kegg Molecular pathway analysis using the
Kyoto Encyclopedia of Genes and
Genomes (KEGG)

Table 1: Characterization of workflow groups derived by clustering.

Method Accuracy Precision Recall
Graph Kernels 81.2± 10.0 71.9± 22.0 38.3± 21.1
MCS 73.9± 9.3 73.5± 24.7 4.8± 27.4
Bags of services 73.5± 10.3 15.5± 20.6 3.4± 30.1
Text Mining 77.8± 8.31 67.2± 21.5 31.2± 25.8

Table 2: Performance of workflow discovery.

group 2, which consists of workflows using the BLAST
algorithm to calculate sequences similarity. The presented
pattern is a sequence of components that are needed to run
a BLAST service.

This example shows that graph kernels can be used to
extract useful patterns. These patterns then can be recom-
mended to the user during creation of a new workflow.

6 Conclusions
Workflow enacting systems have become a popular tool for
the easy orchestration of complex data processing tasks.
However, the design and management of workflows are a
complex tasks. Machine learning techniques have the po-
tential to significantly simplify this work for the user.

In this paper, we have discussed the usage of graph ker-
nels for the analysis of workflow data. We argue that graph
kernels are a good tool for the analysis of workflow data
in the practical important situation where no meta data is
available. This is due to the fact that the graph kernel
approach allows to take decompositions of the workflow
into its important substructures into account while allow-
ing an flexible integration of these information contained
into these substructures into several learning algorithms.

We have evaluated the use of graph kernels in the fields
of workflow similarity prediction, metadata extraction, and
pattern extraction. A comparison of graph-based work-
flow analysis with metadata-based workflow analysis in the
field of workflow quality modeling showed that metadata-
based approaches outperform graph-based approaches in
this application. However, it is important to recognize that
the goal of the graph-based approach is not to replace the
metadata-based approaches, but to serve as an extension
when no or few metadata is available.
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