Kybernetika 46 no. 5, 799-830, 2010

Realization of multivariable nonlinear systems via the approaches of differential forms and differential algebra

Jiangfeng Zhang, Claude H. Moog and Xiaohua Xia

Abstract:

In this paper differential forms and differential algebra are applied to give a new definition of realization for multivariable nonlinear systems consistent with the linear realization theory. Criteria for the existence of realization and the definition of minimal realization are presented. The relations of minimal realization and accessibility and finally the computation of realizations are also discussed in this paper.

Keywords:

nonlinear system, realization, differential ideal, differential form

Classification:

93B15, 93C10

References:

  1. E. Aranda-Bricaire, C. H. Moog and J.-B. Pomet: A linear algebraic framework for dynamic feedback linearization. IEEE Trans. Automat. Control 40 (1995), 127-132.   CrossRef
  2. Z. Bartosiewicz: A new setting for polynomial continuous-time systems, and a realization theorem. IMA J. Math. Control Inform. Theory 2 (1985), 71-80.   CrossRef
  3. F. M. Callier and C. A. Desoer: Linear System Theory. Springer, New York 1991.   CrossRef
  4. F. Celle and J. P. Gauthier: Realizations of nonlinear analytic input-output maps. Math. Systems Theory 19 (1987), 227-237.   CrossRef
  5. Y. Choquet-Bruhat, C. DeWitt-Morette and M. Dillard-Bleick: Analysis, Manifolds and Physics, Part I: Basics. Elsevier Science Publishers, Amsterdam 1981.   CrossRef
  6. G. Conte, C. H. Moog and A. M. Perdon: Nonlinear Control Systems. Lecture Notes in Control and Inform. Sci. 242, Springer, New York 1990.   CrossRef
  7. G. Conte, A. M. Perdon and C. H. Moog: The differential field associated to a general analytic nonlinear dynamical system. IEEE Trans. Automat. Control 38 (1993), 1120-1124.   CrossRef
  8. D. A. Cox, J. B. Little and D. O'Shea: Ideals, varieties, and algorithms. Second edition. Springer, New York 1996.   CrossRef
  9. P. E. Crouch and F. Lamnabhi-Lagarrigue: State space realizations of nonlinear systems defined by input output differential equations. In: Analysis and Optimization Systems (A. Bensousan and J. L. Lions, eds.), Lecture Notes in Control and Inform. Sci. 111, 138-149.   CrossRef
  10. P. E. Crouch and F. Lamnabhi-Lagarrigue: Realizations of input output differential equations. In: Recent Advances in Mathematical Theory of Systems, Control, Networks and Signal Processing II Proceeding MTNS-91, Mita Press 1992.   CrossRef
  11. P. E. Crouch, F. Lamnabhi-Lagarrigue and D. Pinchon: A realization algorithm for input output systems. Internat. J. Control 62 (1995), 941-960.   CrossRef
  12. E. Delaleau and W. Respondek: Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Systems Estim. Control 5 (1995), 1-27.   CrossRef
  13. M. C. Di Benedetto, J. Grizzle and C. H. Moog: Rank invariants of nonlinear systems. SIAM J. Control Optim. 27 (1989), 658-672.   CrossRef
  14. S. Diop: A state elimination procedure for nonlinear systems. In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori,D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 190-198.   CrossRef
  15. S. Diop and F. Fliess: Nonlinear observability, identification, and persistent trajectories. In: Proc. 30th CDC, Brighton 1991.   CrossRef
  16. M. Fliess: Realizations of nonlinear systems and abstract transitive Lie algebras. Bull. Amer. Math. Soc.\ (N. S.) 2 (1980), 444-446.   CrossRef
  17. M. Fliess: Some remarks on nonlinear invertibility and dynamic state feedback. In: Theory and Applications of Nonlinear Control Systems, also in: Proc. MTNS'85, (C. Byrnes and A. Lindquist, eds.), North Holland, Amsterdam 1986.   CrossRef
  18. M. Fliess: A note on the invertibility of nonlinear input output systems. Syst. Control Lett. 8 (1986), 147-151.   CrossRef
  19. M. Fliess: Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Autom. Control 35 (1990), 994-1001.   CrossRef
  20. M. Fliess and I. Kupka: Finiteness conditions for nonlinear input output differential systems. SIAM J. Control Optim. 21 (1983), 721-728.   CrossRef
  21. S. T. Glad: Nonlinear state space and input output descriptions using differential polynomials. In: New Trends in Nonlinear Control Theory, (J. Decusse, M. Fliess, A. Isidori and D. Leborgne, eds.), Lecture Notes in Control and Inform. Sci. 122 (1989), 182-189.   CrossRef
  22. M. Halas and M. Huba: Symbolic computation for nonlinear systems using quotients over skew polynomial ring. In: 14th Mediterranean Conference on Control and Automation, Ancona 2006.   CrossRef
  23. M. Halas: An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica 44 (2008), 1181-1190.   CrossRef
  24. R. Hartshorne: Algebraic Geometry. Springer, New York 1977.   CrossRef
  25. R. Hermann and A. J. Krener: Nonlinear controllability and observability. IEEE Trans. Automat. Control 22 (1977), 728-740.   CrossRef
  26. A. Isidori: Nonlinear Control Systems. Third edition. Springer, New York 1995.   CrossRef
  27. A. Isidori, P. D'Alessandro and A. Ruberti: Realization and structure theory of bilinear dynamical systems. SIAM J. Control 13 (1974), 517-535.   CrossRef
  28. N. Jacobson: Basic Algebra I. W. H. Freeman and Company, San Francisco 1974.   CrossRef
  29. B. Jakubczyk: Existence and uniqueness of realizations of nonlinear systems. SIAM J. Control Optim. 18 (1980), 455-471.   CrossRef
  30. B. Jakubczyk: Construction of formal and analytic realizations of nonlinear systems. In: Feedback Control of Linear and Nonlinear Systems. Lecture Notes in Control and Inform. Sci. 39, Springer 1982.   CrossRef
  31. B. Jakubczyk: Realization theory for nonlinear systems, three approaches. In: Alg. & Geom. Methods in Nonlin. Control. Theory. Springer 1986.   CrossRef
  32. I. Kaplansky: An Introduction to Differential Algebra. Hermann, Paris 1957.   CrossRef
  33. E. R. Kolchin: Differential Algebra and Algebraic Groups. Academic Press, New York 1973.   CrossRef
  34. S. Kobayashi and K. Nomizu: Foundations of Differential Geometry. Volume I. John Willey & Sons, New York 1963.   CrossRef
  35. U. Kotta, P. Kotta, S. Nomm and M. Tonso: Irreducibility conditions for continuous-time multi-input multi-output nonlinear systems. In: Proc. 9th International Conference on Control, Automation, Robotics and Vision (ICARCV 2006). Singapore 2006.   CrossRef
  36. U. Kotta, A. S. I. Zinober and P. Liu: Transfer equivalence and realization of nonlinear higher order input output difference equations. Automatica 37 (2001), 1771-1778.   CrossRef
  37. S. R. Kou, D. L. Elliot and T. J. Tarn: Observability of nonlinear systems. Inform. Control 22 (1973), 89-99.   CrossRef
  38. A. J. Krener and W. Respondek: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 197-216.   CrossRef
  39. C. H. Moog, Y. F. Zheng and P. Liu: Input-output equivalence of nonlinear systems and their realizations. In: 15th IFAC World Congress on Automatic Control, IFAC, Barcelona 2002.   CrossRef
  40. H. Nijmeijer and A. van der Schaft: Nonlinear Dynamical Control Systems. Springer, New York 1990.   CrossRef
  41. O. Ore: Linear equations in non-commutative fields. Ann. Math. 32 (1931), 463-477.   CrossRef
  42. O. Ore: Theory of non-commutative polynomials. Ann. Math. 34 (1933), 80-508.   CrossRef
  43. J. F. Ritt: Differential Algebra. American Mathematical Society, Providence 1950.   CrossRef
  44. J. Rudolph: Viewing input-output system equivalence from differential algebra. J. Math. Systems Estim. Control 4 (1994), 353-383.   CrossRef
  45. A. J. van der Schaft: Observability and controllability for smooth nonlinear systems. SIAM J. Control Optim. 20 (1982), 338-354.   CrossRef
  46. A. J. van der Schaft: On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory 19 (1987), 239-275.   CrossRef
  47. A. J. van der Schaft: Transformations of nonlinear systems under external equivalence. In: New Trends in Nonlinear Control Theory, Lecture Notes in Control and Information Sciences 122, Springer, New York 1989, pp. 33-43.   CrossRef
  48. A. J. van der Schaft: Representing a nonlinear state space system as a set of higher-order differential equations in the inputs and outputs. Syst. Control Lett. 12 (1989), 151-160.   CrossRef
  49. E. D. Sontag: Bilinear realizability is equivalent to existence of a singular affine differential i/o equation. Syst. Control Lett. 11 (1988), 190-198.   CrossRef
  50. H. S. Sussmann: Existence and uniqueness of minimal realizations of nonlinear systems. Math. Systems Theory 10 (1977), 263-284.   CrossRef
  51. Y. Wang and E. D. Sontag: Algebraic differential equations and rational control systems. SIAM J. Control Optim. 30 (1992), 1126-1149.   CrossRef
  52. Y. Wang and E. D. Sontag: Generating series and nonlinear systems: analytic aspects, local realizability and i/o representations. Forum Math. 4 (1992), 299-322.   CrossRef
  53. Y. Wang and E. D. Sontag: Orders of input/output differential equations and state-space dimensions. SIAM J. Control Optim. 33 (1995), 1102-1126.   CrossRef
  54. X. Xia, L. A. M\'arquez, P. Zagalak and C. H. Moog: Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38 (2002), 1549-1555.   CrossRef
  55. Y. Zheng and L. Cao: Transfer function description for nonlinear systems. J. East China Normal University (Natural Science) 2 (1995), 5-26.   CrossRef