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DISTRIBUTED DUAL AVERAGING ALGORITHM
FOR MULTI-AGENT OPTIMIZATION WITH COUPLED
CONSTRAINTS

Zhipeng Tu and Shu Liang

This paper investigates a distributed algorithm for the multi-agent constrained optimiza-
tion problem, which is to minimize a global objective function formed by a sum of local convex
(possibly nonsmooth) functions under both coupled inequality and affine equality constraints.
By introducing auxiliary variables, we decouple the constraints and transform the multi-agent
optimization problem into a variational inequality problem with a set-valued monotone map-
ping. We propose a distributed dual averaging algorithm to find the weak solutions of the
variational inequality problem with an O(1/

√
k) convergence rate, where k is the number of

iterations. Moreover, we show that weak solutions are also strong solutions that match the
optimal primal-dual solutions to the considered optimization problem. A numerical example is
given for illustration.

Keywords: distributed optimization, coupled constraints, dual averaging, variational in-
equality, multi-agent networks
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1. INTRODUCTION

Multi-agent (distributed) optimization has attracted significant attention in recent years,
which has arisen in broad application fields within the information sciences and engi-
neering, such as multi-agent coordination, distributed localization, and packet rout-
ing [3, 24, 30, 32]. Many distributed algorithms have been investigated for smooth and
nonsmooth convex optimizations [12,18,38].

Distributed optimization with coupled constraints is challenging, since the feasible
region of one agent’s variable is influenced by that of other agents. To deal with only
coupled equality constraints or inequality constraints, various algorithms are applicable
such as gradient-decent algorithms [31], local primal-dual perturbed subgradients algo-
rithms [5], and operator splitting methods [36]. Moreover, there have been some works
proceeding two kinds of coupled constraints together. For instance, [14] constructed a
distributed continuous-time algorithm by virtue of a projected primal-dual subgradient
dynamics, while [15] adopted the extragradient method with a fixed stepsize to find the
exact optimal solutions with the help of two rounds of communication per iteration.
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The existing methods cannot be extended easily to distributed nonsmooth optimization
with coupled constraints.

Variational inequality provides a broad and unified setting for optimization and equi-
librium problems, which serves as a promising and practical tool. For example, differen-
tiable constrained optimization problems can be transformed into variational inequality
problems with single-valued mappings [9, 13], and then many effective solvers are avail-
able [1,2,33]. Nonetheless, many difficulties occur for nonsmooth optimization problems
with coupled constraints. First of all, the subdifferentials of nonsmooth functions are
set-valued, which yields variational inequalities with set-valued mappings. Further in-
vestigation about the equivalence between their strong solutions and weak solutions is
needed. In addition, coupled constraints have to be decoupled in the transformed varia-
tional inequality problem so that distributed algorithms can be designed over multi-agent
networks.

The dual averaging method (DA), which takes averages of subgradients, was firstly
presented by Nesterov in [22] along with applications in finding weak solutions to the
variational inequality problems with single-valued mappings. Further, a distributed-
DA algorithm for convex optimization without coupled constraints was developed and
analyzed in [8]. Later, Nesterov proposed the dual subgradient method with averag-
ing (DSMA) [23], which has a similar name, while it actually takes averages of primal
variables and dual variables. And then, a distributed-DSMA algorithm for convex opti-
mization with coupled constraints was proposed and it achieved O(ln k/

√
k) convergence

rate [16]. To our interests, the dual averaging method has remarkable performance of
convergence in nonsmooth problems, and it leads to decentralized policies that can be
used over networks.

In this paper, we propose a discrete-time distributed algorithm for the distributed
nonsmooth convex optimization problem with coupled constraints by developing
a variational-inequality-based approach with Nesterov’s dual averaging method. The
main contributions are as follows.

• By decoupling the constraints, we transform the distributed nonsmooth convex op-
timization problem with coupled constraints into a variational inequality problem
with a set-valued monotone mapping, which may provide a new way for solving
complicated distributed optimization problems.

• We extend existing results to the set-valued case, and show that the weak solu-
tions and strong solutions to the obtained variational inequality problem are the
same. We also extend the Nesterov’s dual averaging method for general variational
inequality problems.

• We propose a particular distributed algorithm and obtain the convergence rate of
O(1/

√
k), which matches the optimal convergence rate of the first-order methods

for nonsmooth convex optimization.

The remainder of this paper is organized as follows. Section 2 provides necessary
notations, definitions, and preliminaries, while Section 3 formulates a distributed opti-
mization problem with coupled constraints. Then Section 4 presents the main results,
including three theorems. Section 5 provides a numerical example for illustration, and
finally, Section 6 gives some concluding remarks.
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2. MATHEMATICAL PRELIMINARIES

In this section, we introduce preliminaries about optimization, variational inequality,
graph theory, and Nesterov’s dual averaging scheme.

2.1. Notations

Notations R≤0, R≥0, and R denote the sets of nonpositive, nonnegative, and all real
numbers, respectively. Rn denotes the set of n-dimensional real column vectors. Let 0n
and 1n be the column vectors with n components being zero and one, respectively. Let
col{x1, . . . , xN} be the column vector stacked with x1, . . . , xN . Furthermore, ⟨·, ·⟩ and
∥·∥ denote the Euclidean inner product and Euclidean norm in Rn. Rp×q denotes the set
of real number matrices with p rows and q columns. For M ∈ Rp×q, notations rank(M),
ker(M), M⊤, and M† denote the rank, kernel, transpose, and generalized inverse of M ,
respectively. Let In be the identity matrix in Rn×n. ⊗ denotes the Kronecker product
for two matrices.

2.2. Some preliminaries on optimization

A nonempty set Ω ⊂ Rn is said to be convex if λx′ + (1− λ)x ∈ Ω for any x, x′ ∈ Ω and
λ ∈ [0, 1]. The normal cone to Ω at the point x ∈ Ω is

NΩ(x) := {v ∈ Rn| ⟨v, x′ − x⟩ ≤ 0,∀x′ ∈ Ω}.

On a convex set Ω ⊂ Rn, a function f : Ω → R is said to be convex if f(λx′ + (1 −
λ)x) ≤ λf(x′) + (1 − λ)f(x) and m-strongly convex if f(λx′ + (1 − λ)x) ≤ λf(x′) +
(1− λ)f(x)− m

2 λ(1− λ)∥x− x′∥2 for any x, x′ ∈ Ω and λ ∈ [0, 1]. f is called proper if
f(x) > −∞ for any x ∈ Ω and f(x0) < +∞ for some x0 ∈ Ω. The subdifferential of a
(possibly nonsmooth) convex function f at x ∈ Ω is defined by

∂f(x) := {g ∈ Rn | f(x′) ≥ f(x) + ⟨g, x′ − x⟩ , ∀x′ ∈ Ω}.

Given a convex function f : Ω → R, for any x, x′ ∈ Ω and any g ∈ ∂f(x), g′ ∈ ∂f(x′),
the following two results hold

⟨x− x′, g − g′⟩ ≥ 0, (1)

Dg
f (x

′, x) := f(x′)− f(x)− ⟨g, x′ − x⟩ ≥ 0. (2)

Let f be a vector-function from a convex set Ω ⊂ Rn to Rm. The subdifferential of
f at x ∈ Ω is defined by

∂f(x) := {G ∈ Rm×n |f(x′)− f(x)−G(x′ − x) ⪰ 0m, ∀x′ ∈ Ω},

where v ⪰ 0m means that all components of the vector v are nonnegative.
The (extended-valued) indicator function of the convex set Ω ⊂ Rn is defined as [4]

IΩ(x) :=
{

0 if x ∈ Ω
+∞ if x /∈ Ω

,
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and its subdifferential is ∂IΩ(x) = NΩ(x). The projection operator is defined as

ΠψΩ(z, α) := argmin
x∈Ω

{
⟨z, x⟩+ 1

α
ψ(x)

}
, α > 0, (3)

where ψ : Ω → R≥0 is an arbitrary strongly convex and nonnegative function. In this

paper, we take ψ(x) = 1
2∥x∥

2. The projection ΠψΩ(z, α) is α−Lipschitz continuous [8],
that is, for any pair z, z′ ∈ Ω,

∥ΠψΩ(z, α)−ΠψΩ(z
′, α)∥ ≤ α∥z − z′∥. (4)

2.3. Variational inequality problems with set-valued mappings

Let Ω be a closed convex subset in Rn with nonempty interior, and F : Ω → 2R
n

be a
set-valued mapping. For any x ∈ Ω, F (x) is a set in Rn. The graph of the operator F
is defined as

G(F ) := {(x, y) |x ∈ Ω, y ∈ F (x)}.

An operator F is said to be monotone if for any (x, y), (x′, y′) ∈ G(F ),

⟨x− x′, y − y′⟩ ≥ 0. (5)

Furthermore, F is called maximal monotone if it is impossible to find a pair (x, y) not
belonging to G(F ) such that the extended mapping x 7→ F (x) ∪ {y} is monotone.

Lemma 2.1. Let f be a lower semi-continuous, proper, and convex function. Then ∂f
is maximal monotone [26].

A variational inequality problem, denoted by the pair VI(domain, operator), is the
classical problem that

find x∗ ∈ Ω and y∗ ∈ F (x∗), such that

⟨y∗, x− x∗⟩ ≥ 0, ∀x ∈ Ω.
(6)

A point x∗ satisfying (6) is called a strong solution to the VI(Ω, F ) [21]. In addition, a
point x∗ is called a weak solution if

⟨y, x− x∗⟩ ≥ 0, ∀x ∈ Ω, ∀y ∈ F (x). (7)

The merit function that measures the distance between a point x and the weak solution
set is defined as

V(x) := sup{⟨y′, x− x′⟩ |x′ ∈ Ω, y′ ∈ F (x′)}. (8)

Lemma 2.2. For any vector x ∈ Ω, V(x) ≥ 0. x∗ is a weak solution to the variational
inequality problem if and only if V(x∗) = 0 [22].
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2.4. Some preliminaries on graph theory

An undirected graph is denoted as G(V,E), where V = {1, . . . , N} is the set of nodes,
representing the set of agents, and E ⊂ V×V is the set of edges. Let AN = [aij ] ∈ RN×N

be the adjacency matrix of G such that aij = aji. If (i, j) ∈ E, then node i and
node j can exchange information, and aij = 0 otherwise. Denote by Ni ⊂ V the
neighbors of node i. We also assume that there are no self-loops, that is aii = 0.
The graph Laplacian matrix is LN = DN − AN , where DN = [dij ] ∈ RN×N is a

diagonal matrix with dii =
∑N
j=1 aij . A path between nodes i and j is defined as a

sequence of edges (i, i1), (i1, i2), . . . , (ik, j) ∈ E with distinct nodes il ∈ V. The graph is
connected if there exists a path between any pair of distinct nodes i and j. Specifically,
if the undirected graph G is connected, then LN = L⊤

N ≥ 0, rank(LN ) = N − 1, and
ker(LN ) = {k1N : k ∈ R}.

2.5. Dual averaging method

Given Ω ⊂ Rn and a single-valued mapping F : Ω → Rn, Nesterov’s dual averaging
scheme [22] for computing a weak solution to the VI(Ω, F ) is

x[k + 1] := ΠψΩ

(
k∑
s=1

F (x[s]), αk

)
, (9)

where αk is a stepsize. An important result of the dual averaging scheme is as follows.

Lemma 2.3. For any non-increasing sequence {αk}∞k=0 of positive stepsizes, and for
any x∗ ∈ Ω,

K∑
k=1

⟨F (x[k]), x[k]− x∗⟩ ≤
K∑
k=1

αk−1∥F (x[k])∥2

2
+
ψ (x∗)

αK
. (10)

3. PROBLEM FORMULATION

Consider a network of N agents described by an undirected graph G(V,E). For each
i ∈ V, the ith agent has a local decision variable xi ∈ Rni , a local feasible set Ωi ⊂ Rni ,
a local objective function fi : Rni → R, and local constraint functions gi : Rni →
Rp,hi : Rni → Rq. Notice that each agent can not have access to other agents’ objective
functions and constraints. N agents over the network cooperatively solve the following
optimization problem

min
x∈Ω

f(x) := f1(x1) + f2(x2) + · · ·+ fN (xN ),

s.t. g(x) := g1(x1) + g2(x2) + · · ·+ gN (xN ) ≤ 0p,

h(x) := h1(x1) + h2(x2) + · · ·+ hN (xN ) = 0q,

(11)

where x = col{x1, . . . , xN} ∈ Rn, n =
∑N
i=1 ni and Ω = Ω1 × · · · × ΩN . Problem

(11) considers local constraints, coupled inequality constraints, and coupled equality
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constraints together, which is more general than those in [5, 7, 8, 17, 31, 34–36, 39, 40].

If the coupled equality constraints are specified as
∑N
i=1(xi − ri) = 0, then problem

(11) reduces to the conventional resource allocation problem. If the coupled equality
constraints are specified as xi = xj ,∀i, j ∈ V, then problem (11) reduces to the optimal
consensus problem. Moreover, the following assumptions are adopted.

Assumption 3.1.

1) For each i ∈ V, Ωi is compact and convex; fi and gi are convex, Lipschitz continuous,
and possibly nonsmooth; hi(xi) = Aixi + bi for Ai ∈ Rq×ni and bi ∈ Rq.

2) The problem (11) has at least one finite optimal solution.

3) The strong Slater’s constraint qualification satisfies, that is, there exists x̂ ∈ rint(Ω)
such that g(x̂) < 0p and h(x̂) = 0q, where rint(Ω) is the relative interior of the
convex set Ω.

4) The graph G is undirected and connected.

Assumptions 1) and 2) are common in distributed constrained optimization problems
[14], while we do not assume the smoothness of the objective function as in [5] and [15].
The Slater condition 3) is sufficient for a zero duality gap as well as for the existence of
a dual optimal solution [11]. 4) is widely used in distributed optimization [37], and it
plays an important role in our problem transformation and analysis.

4. MAIN RESULTS

In this section, we first transform the constrained distributed optimization problem
into a variational inequality problem with a set-valued monotone mapping. Then we
prove that weak solutions to the obtained variational inequality problem are also strong
solutions. Finally, we give a distributed algorithm based on Nesterov’s dual averaging
scheme with guaranteed convergence to an optimal primal-dual solution.

4.1. Transformation to variational inequality problem

For notational simplicity, define

θi (xi) =

[
gi (xi)
hi (xi)

]
, λ =

[
λg

λh

]
∈ Θ := Rp≥0 × Rq.

Then the coupled constraints can be rewritten as

θ(x) := θ1 (x1) + θ2 (x2) + · · ·+ θN (xN ) ∈ Θ̃ := Rp≤0 × {0q} .

The corresponding Lagrange dual problem of (11) is

max
λ∈Θ

min
x∈Ω

L(x, λ) := f(x) + λ⊤θ(x). (12)

Assign (xi, λi, wi) to each agent i, where (xi, λi) is a primal-dual variable pair and wi ∈
Rp+q is an auxiliary variable. Define λ = col{λ1, . . . , λN},w = col{w1, . . . , wN},η =
col{x,λ,w}. The following theorem transforms the constrained optimization problem
into a variational inequality problem.
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Theorem 4.1. Under Assumption 3.1, x∗ ∈ Ω is an optimal solution to problem (11)
if and only if there exist w∗ and λ∗ such that η∗ = col{x∗,λ∗,w∗} is a strong solution
to the VI(Λ,F ):

find η∗ ∈ Λ and y∗ ∈ F (η∗), s.t. ⟨y∗,η − η∗⟩ ≥ 0, ∀η ∈ Λ, (13)

where
Θ = Θ× · · · ×Θ ⊂ R(p+q)N , Λ = Ω×Θ× R(p+q)N ,

F (η) =

 col (∂fi (xi) + ∂θi (xi)λi)
N
i=1

− col (θi (xi))
N
i=1 − LN ⊗ Ip+qw

LN ⊗ Ip+qλ

 . (14)

P r o o f . Under the Slater condition in Assumption 3.1, the optimal dual set is nonempty.
According to the KKT condition [28], x∗ ∈ Ω is an optimal solution to problem (11) if
and only if there exists a multiplier λ∗ such that

0 ∈ ∂L
∂x

(x∗, λ∗) +NΩ(x
∗) (15a)

0 ∈ ∂L
∂λ

(x∗, λ∗)−NΘ(λ
∗) (15b)

λ∗ ∈ Θ, θ (x∗) ∈ Θ̃, (15c)

where ∂
∂x and ∂

∂λ are the partial subdifferential. Thus, we only need to show that (15)
holds if and only if

0 ∈

 ∂f1 (x
∗
1)

...
∂fN (x∗N )

+

 ∂θ1 (x
∗
1)λ

∗
1

...
∂θN (x∗N )λ∗N

+

 NΩ1
(x∗1)
...

NΩN
(x∗N )

 , (16a)

0 ∈

 θ1 (x
∗
1)

...
θN (x∗N )

+


∑
j∈N1

a1j
(
w∗

1 − w∗
j

)
...∑

j∈NN
aNj

(
w∗
N − w∗

j

)
−

 NΘ (λ∗1)
...

NΘ (λ∗N )

 , (16b)

0 =


∑
j∈N1

a1j
(
λ∗1 − λ∗j

)
...∑

j∈NN
aNj

(
λ∗N − λ∗j

)
 . (16c)

Equations in (16) can be rewritten in a compact form as

0 ∈ F (η∗) +NΛ(η
∗), (17)

which is equivalent to the variational inequality (13).
Suppose (16) holds. Equation (16c) is equivalent to LN⊗Ip+qλ = 0, and the solution

is λ∗ = 1N⊗λ∗ ∈ R(p+q)N , where λ∗ ∈ Rp+q. In other words, λ1 = · · · = λN = λ∗. Then
(16a) becomes 0 ∈ ∂fi (x

∗
i )+∂θi (x

∗
i )λ

∗+NΩi
(x∗i ) ,∀i = 1, . . . , N , and its compact form

is (15a). Equation (16b) is θi (x
∗
i ) +

∑
j∈Ni

aij
(
w∗
i − w∗

j

)
∈ NΘ (λ∗) ,∀i = 1, . . . , N .
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Since G is connected,
∑N
i=1

∑
j∈Ni

aij
(
w∗
i − w∗

j

)
= 0. Consequently,

∑N
i=1 θi (x

∗
i ) ∈

NΘ(λ
∗), which implies (15b). Thus, (15) holds.

Conversely, suppose (15) holds. Let λ∗ = 1N ⊗ λ∗. Then (16c) holds. Also, (15a)
yields 0 ∈ ∂fi (x

∗
i ) + ∂θi (x

∗
i )λ

∗ + NΩi
(x∗i ) ,∀i = 1, . . . , N . Thus, (16a) holds. (15b)

yields 0 ∈
∑N
i=1 θi (x

∗
i ) − NΘ(λ

∗). Let P = IN − 1
N 1N1⊤

N , and we have 1⊤
NP = 0.

Consider the following linear equation

LN ⊗ Ip+qw = −P ⊗ Ip+q

 θ1 (x
∗
1)

...
θN (x∗N )

 . (18)

Let Q =

LN ⊗ Ip+q| − P ⊗ Ip+q

 θ1 (x
∗
1)

...
θN (x∗N )


 be the augmented matrix obtained

by appending the columns of two matrices. Since 1⊤
NQ = 0, rank(Q) ≤ N − 1. On

the other hand, rank(Q) ≥ rank(LN ) = N − 1. Thus rank(Q) = N − 1 = rank(LN ⊗
Ip+q). According to Rouché–Capelli theorem [29], the equation (18) has infinitely many
solutions, and we take arbitrary one as w∗. Then θ1 (x

∗
1)

...
θN (x∗N )

+ LN ⊗ Ip+qw
∗ −

 NΘ (λ∗1)
...

NΘ (λ∗N )


=

 θ1 (x
∗
1)

...
θN (x∗N )

− P ⊗ Ip+q

 θ1 (x
∗
1)

...
θN (x∗N )

−

 NΘ (λ∗)
...

NΘ (λ∗)


=

1

N
1N1⊤

N ⊗ Ip+q

 θ1 (x
∗
1)

...
θN (x∗N )

−

 NΘ (λ∗)
...

NΘ (λ∗)



=
1

N


∑N
i=1 θi (x

∗
i )−NΘ (λ∗)
...∑N

i=1 θi (x
∗
i )−NΘ (λ∗)

 ∋ 0N .

(16b) holds, and thus, (16) is proved. □

Remark 4.2. The auxiliary variablew = col{w1, . . . , wN} is introduced to decouple the
constraints (15b) with the help of graph Laplacian matrix LN . In this way, distributed
algorithms can be designed over multi-agent networks.

4.2. Strong and weak solutions

In this subsection, we further show that weak solutions to the variational inequality
problem (13) are also strong ones so that it is sufficient to solve the original optimization
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problem by computing only weak solutions to the transformed variational inequality
problem.

Theorem 4.3. Under Assumption 3.1, the following statements hold.

1) The set-valued mapping F : Λ → 2R
(1+2p+2q)N

defined in (14) is a maximal monotone
operator.

2) Moreover, any strong solution η∗ to the VI(Λ,F ) (13) is the same as its weak solution
η̃∗, that is,

Find η̃∗ ∈ Λ : ⟨y,η − η̃∗⟩ ≥ 0, ∀η ∈ Λ, ∀y ∈ F (η). (19)

P r o o f . 1) Since fi and gi are convex, their subdifferentials ∂fi(xi) and ∂gi(xi) are
nonempty sets. As a result, F is generally a set-valued mapping.

Firstly, let us prove the monotonicity. For any (η,y), (η′,y′) ∈ G(F ), any u ∈
∂f(x),u′ ∈ ∂f(x′),v = col{vg,vh} ∈ ∂θ(x),v′ ∈ ∂θ(x′), we have

⟨η′ − η,y′ − y⟩ = ⟨x′ − x,u′ − u⟩+
〈
w′ −w, LN ⊗ Ip+q(λ

′ − λ)
〉

−
〈
λ′ − λ, LN ⊗ Ip+q(w

′ −w)
〉
+

N∑
i=1

〈
λi, D

vi

θi
(x′i, xi)

〉
+
〈
λ′i, D

v′
i

θi
(xi, x

′
i)
〉
,

(20)

where the lth component of the column vector Dvi

θi
(·, ·) is D

v
(l)
i

θ
(l)
i

(·, ·) defined in (2). To

be specific, 〈
λi, D

vi

θi
(x′i, xi)

〉
=
〈
λgi , D

vg
i

gi
(x′i, xi)

〉
+
〈
λhi , D

vh
i

hi
(x′i, xi)

〉
≥ 0,

because of λgi ∈ Rp≥0, D
vg
i

gi
(x′i, xi) ≥ 0 and D

vh
i

hi
(x′i, xi) = 0. Also,

〈
λ′i, D

v′
i

θi
(xi, x

′
i)
〉
≥ 0.

Since fi is convex, ⟨x′ − x,u′ − u⟩ ≥ 0. Since LN is a symmetric matrix,〈
w′ −w, LN ⊗ Ip+q(λ

′ − λ)
〉
=
〈
λ′ − λ, LN ⊗ Ip+q(w

′ −w)
〉
.

Then ⟨η′ − η,y′ − y⟩ ≥ 0. Thus, F is monotone.

Next, we prove the maximality. Take another monotone operator F̃ such that F ⊂ F̃ .
It suffices to prove that given any η ∈ Λ and any ỹ = col{ỹ1, ỹ2, ỹ3} ∈ F̃ (η), there

holds ỹ ∈ F (η), that is, ỹ1 ∈ ∂xL(x, λ), ỹ2 = − col (θi (xi))
N
i=1 − LN ⊗ Ip+qw, and

ỹ3 = LN ⊗ Ip+qλ. Define b := ỹ2+col (θi (xi))
N
i=1+LN ⊗ Ip+qw, c := ỹ3−LN ⊗ Ip+qλ.

We need to prove that

ỹ1 ∈ ∂xL(x, λ), b = 0, c = 0.

Since ỹ belongs to F̃ (η) and F ⊂ F̃ , it follows from the monotonicity of F̃ that

⟨η − η′, ỹ − y′⟩ ≥ 0,
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for all η′ ∈ Λ,y′ := col{y′
1,y

′
2,y

′
3} ∈ F (η′). By the definitions of b and c,

⟨x− x′, ỹ1 − y′
1⟩+ ⟨w −w′, c⟩+

〈
λ− λ′, b− col (θi (xi))

N
i=1 + col (θi (x

′
i))

N
i=1

〉
≥ 0,

(21)
for all x′ ∈ Ω,λ′ ∈ Θ,w′ ∈ W,y′

1 ∈ ∂xL(x′, λ′). Taking λ′ = λ and w′ = w in (21)
yields

⟨x− x′, ỹ1 − y′
1⟩ ≥ 0, ∀y′

1 ∈ ∂xL(x′, λ).

Since ∂xL is maximal monotone by Theorem 4.7.1 in [25], ỹ1 ∈ ∂xL(x, λ). Taking
x′ = x,λ′ = λ+ t1b,w

′ = w + t2c in (21) with t1, t2 > 0 yields

−t1∥b∥2 − t2∥c∥2 ≥ 0,

which indicates b = 0 and c = 0. Thus, F is maximal monotone.

2) Let η∗ be a strong solution to the VI(Λ,F ). It holds that

⟨y∗,η − η∗⟩ ≥ 0, ∀η ∈ Λ, ∃ y∗ ∈ F (η∗).

Since F is monotone,

⟨y,η − η∗⟩ ≥ ⟨y∗,η − η∗⟩ ≥ 0, ∀η ∈ Λ, ∀y ∈ F (η).

Thus, η∗ is a weak solution to the VI(Λ,F ).

Conversely, let η̃∗ be a weak solution to the VI(Λ,F ). Recall that the indicator
function IΛ(η) of the convex set Λ is a lower semi-continuous proper convex function.
Thus, NΛ(η) = ∂IΛ(η) is a maximal monotone operator according to Lemma 2.1. By
the definition of the normal cone, η̃∗ is also a weak solution to the VI(Λ,NΛ). Let
H = F + NΛ, and then H is maximal monotone according to the Rockafellar Sum
Theorem [27]. Further, η̃∗ is also a weak solution to the VI(Λ,H), that is,

⟨y − 0,η − η̃∗⟩ ≥ 0, ∀(η,y) ∈ G(H).

Since H is maximal monotone, 0 ∈ H(η̃∗). Consequently, for any ỹ∗ ∈ F (η̃∗), we have
−ỹ∗ ∈ NΛ(η̃

∗), which implies

⟨ỹ∗,η − η̃∗⟩ ≥ 0, ∀η ∈ Λ.

Therefore, η̃∗ is a strong solution to the VI(Λ,F ). □

Remark 4.4. When fi and gi are smooth, F in (14) becomes a single-valued mapping.
This is the case of the original Nesterov’s dual averaging method for variational inequality
problem in [22]. We further deal with the distributed nonsmooth optimization problem
that yields a variational inequality problem with the set-valued mapping F . In such
case, Theorem 4.3 plays a key role in extending the Nesterov’s dual averaging method
for general variational inequality problems.
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Algorithm 1 Dual Averaging Algorithm for Distributed Nonsmooth Convex Optimiza-
tion with Coupled Constraints (DDA)

Input: The bounded sets Ω, Θ̂,W ; the number of iterations K; the communication

graph G; a strongly convex and nonnegative function ψ; a constant γ > 0, the

stepsize base α̂0=1.

Initialization: All variables xi[1], λi[1], wi[1], s
1
i [1], s

2
i [1], s

3
i [1] equal to 0, i = 1, . . . , N .

1: for k = 0 : K − 1 do

2: for i = 1 : N do

3: take arbitrary u ∈ ∂fi (xi[k]) , v ∈ ∂θi (xi[k]);

4: s1i [k + 1] = s1i [k] + u+ vλi[k] ;

5: s2i [k + 1] = s2i [k]− θi (xi[k])−
∑
j∈Ni

aij (wi[k]− wj [k]);

6: s3i [k + 1] = s3i [k] +
∑
j∈Ni

aij (λi[k]− λj [k]);

7: αk = γα̂k, α̂k+1 =
(
α̂k + α̂−1

k

)−1
;

8: xi[k + 1] = ΠψΩi
(s1i [k + 1], αk);

9: λi[k + 1] = Πψ
Θ̂
(s2i [k + 1], αk);

10: wi[k + 1] = ΠψW (s3i [k + 1], αk);

11: end for

12: end for

Output: x̄i[K] = 1
K

∑K
k=1 xi[k], i = 1, . . . , N.

4.3. Algorithm design and convergence results

In this subsection, we present Algorithm 1 by applying Nesterov’s dual averaging scheme.

In our algorithm, the restricted set of λi is

Θ̂ =
{
λ ∈ Θ|∥λ∥ ≤ f(x̂)− q̃

ζ
+ δ
}
,

where x̂ is a Slater vector of (11); q̃ = minx∈Ω L(x, λ̃) is the dual function value for

arbitrary λ̃ ∈ Θ; δ > 0 is arbitrary; ζ = mini=1,...,p+q{−θ(i)(x̂)}, where (i) denotes the
ith component. The restricted set of wi is

W = {w ⊂ Rp+q|∥w∥ ≤ N + 1√
N

Dθ

ρ2
},

where ρ2 is the second smallest eigenvalue of the Laplacian matrix LN and

Dθ = max
i

{max
xi∈Ωi

{∥θi(xi)∥}}.

The update rules in Algorithm 1 can be rewritten in a compact form as

s[k + 1] = s[k] + y[k], y[k] ∈ F (η[k]), (22a)
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η[k + 1] = Πψ
Λ̂
(s[k + 1], αk), (22b)

η̄[K] =
1

K

K∑
k=1

η[k], (22c)

where
Θ̂ = Θ̂× · · · × Θ̂ ⊂ Θ, Λ̂ = Ω× Θ̂×W ⊂ Λ.

Theorem 4.5. Under Assumption 3.1, the following statements hold.

1) The solutions to the VI(Λ̂,F ) are the same as the solutions to the VI(Λ,F ).

2) The limit of the running average sequence {η̄[K]} generated by (22) is the solution
to V(η) = 0 with the convergence rate

V(η̄[K]) ≤ 1

Kα̂K

(
D

γ
+
γκ2

2

)
, (23)

where the merit function V was defined in (8), D and κ are constants satisfying

D ≥ max{ψ(η)|η ∈ Λ̂}, κ ≥ max{∥y∥|η ∈ Λ̂,y ∈ F (η)}.

3) Let η̄∗ = col{x̄∗, λ̄
∗
, w̄∗} be the limit of the sequence {η̄[K]} generated by (22).

Then x̄∗ is an optimal solution to problem (11).

P r o o f . 1) It has been shown in [19] that the optimal dual solution λ∗ of (12) satisfies

∥λ∗∥ ≤ f(x̂)− q̃

ζ
, (24)

and thus, λ∗ lies in Θ̂. Consider the following saddle-point problem

max
λ∈Θ̂

min
x∈Ω

L(x, λ) = f(x) + λTθ(x). (25)

Both (12) and (25) have the same optimal dual solution λ∗ and attain the same optimal
objective value. Then we consider the problem (25), instead of the original Lagrange
dual problem (12).

In the proof of Theorem 4.1, we just mention the existence of w∗. Actually, we can
give the general solution to the equation (18) as

w∗ = (LN ⊗ Ip+q)
†
(
−P ⊗ Ip+q col (θi (xi))

N
i=1

)
+ 1N ⊗w0, (26)

where w0 ∈ Rp+q. The eigenvalues of the Laplacian matrix LN are labeled so that ρN ≥
· · · ≥ ρ2 ≥ ρ1 = 0, and the corresponding eigenvectors are denoted by us, s = 1, . . . , N .
U = (u1, . . . , uN ) is an orthogonal matrix. From [10], the generalized inverse of LN can
be expressed as

L†
N = Udiag(1/ρN , 1/ρN−1, . . . , 1/ρ2, 0)U

⊤.
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Since xi lies in the compact set Ωi and the function θi is continuous,

Dθ = max
i

{max
xi∈Ωi

{∥θi(xi)∥}}

is finite and can be evaluated. Then

∥w∗|w0=0∥ ≤ ∥ (LN ⊗ Ip+q)
† ∥2∥P ⊗ Ip+q col (θi (xi))

N
i=1 ∥ ≤ N + 1√

N

Dθ

ρ2
,

where ∥ · ∥2 denotes the l2 norm of the matrix. Without loss of generality, we can
restrict w to the bounded set W = {w ⊂ Rp+q|∥w∥ ≤ N+1√

N

Dθ

ρ2
} such that there still

exists w ∈W satisfying (18).

2) Since Ωi, Θ̂ and W are compact and convex, Λ̂ is also compact and convex. Then
the function V(η) is well-defined. It follows from Lemma 2.2 that V(η) ≥ 0 for any

η ∈ Λ̂. Note that the average η̄[K] lies in the set Λ̂, since Λ̂ is convex and η[k] ∈ Λ̂ for
all k. By calculations,

V(η̄[K]) = sup
{
⟨y, η̄[K]− η⟩ |η ∈ Λ̂,y ∈ F (η)

}
= sup

{〈
y,

1

K

K∑
k=1

η[k]− η

〉
|η ∈ Λ̂,y ∈ F (η)

}

=
1

K
sup

{
K∑
k=1

⟨y,η[k]− η⟩ |η ∈ Λ̂,y ∈ F (η)

}
(a)

≤ 1

K
sup

{
K∑
k=1

⟨y[k],η[k]− η⟩ |η ∈ Λ̂,y[k] ∈ F (η[k])

}
(b)

≤ 1

K

(
K∑
k=1

αk−1∥y[k]∥2

2
+ max

{
ψ (η)

αK
|η ∈ Λ̂

})

≤ 1

K

(
K∑
k=1

αk−1κ
2

2
+

D

αK

)
(c)
=

1

Kα̂K

(
γκ2

2
+
D

γ

)
K→∞−→ 0,

(27)

where (a) is due to the monotonicity of F , (b) follows from (10) in Lemma 2.3, and (c)

holds because of the update rule of α̂k. Since Λ̂ is a compact set, as well as fi and gi
are Lipschitz continuous, D and κ are finite.

3) By the second part of this theorem, V(η̄∗) = 0. According to Lemma 2.2, the

solutions to V(η) = 0 are the same as the weak solutions to the VI(Λ̂,F ), which are also
the solutions to the VI(Λ,F ). By Theorem 4.3, the weak solutions to the variational
inequality problem are the same as its strong solutions, and then η̄∗ is also a strong
solution to the VI(Λ,F ) (13). Finally, as Theorem 4.1 states, the strong solutions to
the variational inequality problem are corresponding to the optimal solutions to the
optimization problem. Thus, x̄∗ is an optimal solution to the optimization problem
(11). □
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Remark 4.6.

1) Our Algorithm 1 is distributed since the ith agent only needs local data xi, λi,
∂fi (xi), ∂θi (xi), and neighbors’ information λj , wj , j ∈ Ni.

2) By the upper bound of V(η̄[K]) in (23), the optimal choice of γ is
√
2D/κ.

3) As in calculating the projection operator Π, we take ψ(x) = 1
2∥x∥

2, and thus, xi[k+

1] = ΠψΩi
(s1i [k + 1], αk) turns out to be xi[k + 1] = PΩi

(−αks1i [k + 1]), where PΩi

denotes the Euclidean projection of a vector onto the set Ωi. In the same way,
λi[k + 1] = Πψ

Θ̂
(s2i [k + 1], αk) turns out to be λi[k + 1] = PΘ̂(−αks2i [k + 1]), and

wi[k + 1] = ΠψW (s3i [k + 1], αk) turns out to be wi[k + 1] = PW (−αks3i [k + 1]).

4) The choice of α̂k is inspired by [22], which yields the bounds:

√
2k − 1 ≤ 1

α̂k
≤ 1

1 +
√
3
+
√
2k − 1, k ≥ 1.

Since α̂K ∝ O(1/
√
K), V(η̄[K]) ∝ O(1/

√
K). Thus, Algorithm 1 achieves a con-

vergence rate of O(1/
√
K). Note that this convergence rate is optimal for general

nonsmooth convex optimization and cannot be further improved [20].

5. SIMULATION

This section gives a numerical example to show the convergence of our DDA algorithm
and show the advantage of our algorithm over the state-of-the-art MDBD algorithm [6].

Consider the optimization problem (11) with

fi(xi) = aix
2
i + bi|xi − ci|, Ωi = [−0.6, 0.6],

gi(xi) = dix
2
i + ei,

hi(xi) = uixi + vi,

(28)

over a 6-agent network. The objective functions are nonsmooth. The inequality con-
straints describe an elliptic region, and the equality constraints characterize an affine
subspace. The coefficients of this problem, as shown in Table 1, are chosen so that there
exists at least one finite optimal solution. Note that the vector s = [0, 0, 0,−0.5, 0, 0]
satisfies the Slater condition in Assumption 3.1. An undirected circle graph for the
network topology is given, whose adjacency matrix is assume to be

A =


0 0.5 0 0 0 0.5
0.5 0 0.5 0 0 0
0 0.5 0 0.5 0 0
0 0 0.5 0 0.5 0
0 0 0 0.5 0 0.5
0.5 0 0 0 0.5 0

 .

We take γ = 20. With 100000 iterations in 0.1084 seconds, our algorithm obtains an
approximate solution

x̄[100000] = [0.444760, 0.270539, 0.100033,−0.129843,−0.159883,−0.426349]
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i ai bi ci di ei ui vi

1 0.4 0.5 0.3 0.2 -0.3 0.6 0.5
2 0.5 0.3 0.2 0.3 -0.6 0.4 -0.3
3 0.7 0.2 0.1 0.8 -0.2 0.1 -0.2
4 0.6 0.7 0 0.5 -0.5 -0.6 -0.3
5 0.8 0.6 -0.1 0.8 -0.3 -0.6 -0.4
6 0.4 0.8 -0.2 0.4 -0.4 -0.8 -0.2

Tab. 1: Coefficients in the example.

with f(x̄[100000]) = 0.627477, g(x̄[100000]) = −2.12889, and h(x̄[100000]) = −1.06167×
10−5. The trajectories of outputs and function values are shown in Figure 1a and 1b,
which confirms that our DDA algorithm converges. Moreover, limk→∞ g(x̄[k]) < 0 and
limk→∞ h(x̄[k]) = 0 indicate that our solution is feasible. MATLAB CVX is a tradi-
tional toolbox for solving convex optimization problems numerically, and we use it to
get the exact solution x∗, whose six-significant-figure form is

x∗
6SF = [0.444767, 0.270543, 0.100000,−0.129845,−0.159884,−0.426357].

f(x∗
6SF ) = 0.627455, g(x∗

6SF ) = −2.12889, and h(x∗
6SF ) = −4.1411×10−10. CVX spent

2.2420 seconds on solving the problem and is time-consuming. ∥x̄[100000] − x∗∥ =
3.516× 10−5 and the trajectory of the optimality gap ∥x̄[k]− x∗∥ is shown in Figure 2,
which indicates that x̄[k] → x∗, as k → ∞.

In addition, we compare our DDA algorithm with the Distributed Mirror Descent
algorithm with Bregman Damping (MDBD) [6] which is the state-of-the-art algorithm to
solve distributed nonsmooth constrained optimization problems. As shown in Figure 2,
the optimality gap of the DDA algorithm is less than the MDBD algorithm, which
indicates that our DDA algorithm is better.

(a) Trajectories of x̄i (b) Trajectories of function values

Fig. 1: Trajectories of outputs and function values of the DDA algorithm
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Fig. 2: The comparison between our DDA algorithm and the MDBD algorithm.

6. CONCLUSION

This paper investigated a distributed optimization problem with nonsmooth convex
functions and coupled constraints. Firstly, we transformed the problem into a varia-
tional inequality problem with a set-valued mapping. Then we proposed a distributed
algorithm based on Nesterov’s dual averaging method and obtained the sublinear con-
vergence rate of O(1/

√
k). With the help of a large number of developed methods

in variational inequality problems, we will study more general distributed optimiza-
tion problems. Future study includes extending the method to directed communication
graphs.

ACKNOWLEDGEMENT

This work is supported in part by Shanghai Municipal Science and Technology Major Project
under grant 2021SHZDZX0100 and in part by the National Natural Science Foundation of
China under grant 61903027.

(Received June 24, 2022)

REFERENCES

[1] A. Auslender and R. Correa: Primal and dual stability results for variational inequalities.
Comput. Optim. Appl. 17 (2000), 117–130. DOI:10.1023/A:1026594114013

[2] A. Auslender and M. Teboulle: Projected subgradient methods with non-Euclidean dis-
tances for non-differentiable convex minimization and variational inequalities. Math.
Program. 120 (2009), 27–48. DOI:10.1007/s10107-007-0147-z

[3] D. P. Bertsekas and J.N. Tsitsiklis: Parallel and Distributed Computation: Numerical
Methods. Prentice hall Englewood Cliffs, NJ 1989.

[4] J.M. Borwein and Q. J. Zhu: Techniques of Variational Analysis. Springer Science and
Business Media, New York 2004.

https://doi.org/10.1023/A:1026594114013
https://doi.org/10.1007/s10107-007-0147-z


Distributed dual averaging algo. for multi-agent optimization with coupled constraints 443
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[19] A. Nedić and A. Ozdaglar: Approximate primal solutions and rate analysis for dual
subgradient methods. SIAM J. Optim. 19 (2009), 1757–1780. DOI:10.1137/070708111

[20] Y. Nesterov: Introductory Lectures on Convex Optimization: A Basic Course. Springer
Science and Business Media, 2003.

https://doi.org/10.1109/TAC.2014.2308612
https://doi.org/10.1109/tac.2023.3244995
https://doi.org/10.1109/TCNS.2015.2399191
https://doi.org/10.1109/TAC.2011.2161027
https://doi.org/10.1109/cdc.2008.4739339
https://doi.org/10.1137/090770102
https://doi.org/10.1109/TAC.2017.2752001
https://doi.org/10.1109/TAC.2019.2912494
https://doi.org/10.1109/TCYB.2019.2933003
https://doi.org/10.1109/TAC.2015.2416927
https://doi.org/10.1016/j.automatica.2016.02.019
https://doi.org/10.1137/070708111


444 Z.P. TU AND S. LIANG

[21] Y. Nesterov: Dual extrapolation and its applications to solving variational inequalities
and related problems. Math. Program. 109.2-3 (2007), 319-344. DOI:10.1007/s10107-006-
0034-z

[22] Y. Nesterov: Primal-dual subgradient methods for convex problems. Math. Program.
120 (2009), 221–259. DOI:10.1007/s10107-007-0149-x

[23] Y. Nesterov and V. Shikhman: Dual subgradient method with averaging
for optimal resource allocation. Europ. J. Oper. Res. 270 (2018), 907–916.
DOI:10.1016/j.ejor.2017.09.043

[24] M. Rabbat and R. Nowak: Distributed optimization in sensor networks. In: Proc. 3rd
International Symposium on Information Processing in Sensor Networks, 2004, pp. 20–27.

[25] S. B. Regina and A. Iusem: Set-Valued Mappings and Enlargements of Monotone Oper-
ators. Springer, New York 2003.

[26] R.T. Rockafellar: Characterization of the subdifferentials of convex functions. Pacific J.
Math. 17 (1966), 497–510. DOI:10.2140/pjm.1966.17.497

[27] R.T. Rockafellar: On the maximality of sums of nonlinear monotone operators. Trans.
Amer. Math. Soc. 149 (1970), 75–88. DOI:10.1090/S0002-9947-1970-0282272-5

[28] A. Ruszczynski: Nonlinear Optimization. Princeton University Press, 2011.

[29] I. R. Shafarevich and A.O. Remizov: Linear Algebra and Geometry. Springer Science
and Business Media, 2012.

[30] Z. Tu and W. Li: Multi-agent solver for non-negative matrix factorization based on
optimization. Kybernetika 57 (2021), 60–77. DOI:10.14736/kyb-2021-1-0060

[31] L. Xiao and S. Boyd: Optimal scaling of a gradient method for distributed resource
allocation. J. Optim. Theory Appl. 129 (2006), 469–488. DOI:10.1007/s10957-006-9080-1

[32] L. Xiao, S. Boyd, and S. J. Kim: Distributed average consensus with least-
mean-square deviation. J. Parallel Distributed Comput. 67 (2007), 33–46.
DOI:10.1016/j.jpdc.2006.08.010

[33] J. C. Yao: Variational inequalities with generalized monotone operators. Math. Oper.
Res. 19 (1994), 691–705. DOI:10.1287/moor.19.3.691

[34] P. Yi, Y. Hong, and F. Liu: Distributed gradient algorithm for constrained optimization
with application to load sharing in power systems. Systems Control Lett. 83 (2015),
45–52. DOI:10.1016/j.sysconle.2015.06.006

[35] P. Yi, Y. Hong, and F. Liu: Initialization-free distributed algorithms for optimal resource
allocation with feasibility constraints and application to economic dispatch of power sys-
tems. Automatica 74 (2016), 259–269. DOI:10.1016/j.automatica.2016.08.007

[36] P. Yi and L. Pavel: A distributed primal-dual algorithm for computation of generalized
Nash equilibria via operator splitting methods. In: 2017 IEEE 56th Annual Conference
on Decision and Control, IEEE 2017, pp. 3841–3846. DOI:10.1109/cdc.2017.8264224

[37] X. Zeng, S. Liang, Y. Hong, and J. Chen: Distributed computation of linear matrix
equations: An optimization perspective. IEEE Trans. Automat. Control 64 (2018), 1858–
1873. DOI:10.1109/TAC.2018.2847603

[38] X. Zeng, P. Yi, and Y. Hong: Distributed continuous-time algorithm for constrained
convex optimizations via nonsmooth analysis approach. IEEE Trans. Automat. Control
62 (2016), 5227–5233. DOI:10.1109/TAC.2016.2628807

https://doi.org/10.1007/s10107-006-0034-z
https://doi.org/10.1007/s10107-006-0034-z
https://doi.org/10.1007/s10107-007-0149-x
https://doi.org/10.1016/j.ejor.2017.09.043
https://doi.org/10.2140/pjm.1966.17.497
https://doi.org/10.1090/S0002-9947-1970-0282272-5
https://doi.org/10.14736/kyb-2021-1-0060
https://doi.org/10.1007/s10957-006-9080-1
https://doi.org/10.1016/j.jpdc.2006.08.010
https://doi.org/10.1287/moor.19.3.691
https://doi.org/10.1016/j.sysconle.2015.06.006
https://doi.org/10.1016/j.automatica.2016.08.007
https://doi.org/10.1109/cdc.2017.8264224
https://doi.org/10.1109/TAC.2018.2847603
https://doi.org/10.1109/TAC.2016.2628807


Distributed dual averaging algo. for multi-agent optimization with coupled constraints 445

[39] Y. Zhang and M. Zavlanos: A consensus-based distributed augmented Lagrangian
method. In: 2018 Conference on Decision and Control, IEEE 2018, pp. 1763-1768.
DOI:10.1109/cdc.2018.8619512

[40] M. Zhu and S. Mart́ınez: On distributed convex optimization under inequal-
ity and equality constraints. IEEE Trans. Automat. Control 57 (2011), 151–164.
DOI:10.1109/TAC.2011.2167817

Zhipeng Tu, Key Laboratory of Systems and Control, Institute of Systems Science, Chi-
nese Academy of Sciences, Beijing, 100190. P.R. China.

e-mail: tuzhipeng@amss.ac.cn

Shu Liang, Department of Control and Engineering, Tongji University, Shanghai 201804.
P.R. China.

e-mail: sliang@tongji.edu.cn

https://doi.org/10.1109/cdc.2018.8619512
https://doi.org/10.1109/TAC.2011.2167817

	Introduction
	Mathematical Preliminaries 
	Notations
	Some preliminaries on optimization
	Variational inequality problems with set-valued mappings
	Some preliminaries on graph theory
	Dual averaging method

	Problem Formulation
	Main results
	Transformation to variational inequality problem
	Strong and weak solutions
	Algorithm design and convergence results

	Simulation
	Conclusion

