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NEW HYBRID CONJUGATE GRADIENT METHOD FOR
NONLINEAR OPTIMIZATION WITH APPLICATION TO
IMAGE RESTORATION PROBLEMS

Youcef Elhamam Hemici, Samia Khelladi and Djamel Benterki

The conjugate gradient method is one of the most effective algorithm for unconstrained
nonlinear optimization problems. This is due to the fact that it does not need a lot of storage
memory and its simple structure properties, which motivate us to propose a new hybrid con-
jugate gradient method through a convex combination of βRMIL

k and βHS
k . We compute the

convex parameter θk using the Newton direction. Global convergence is established through the
strong Wolfe conditions. Numerical experiments show the superior efficiency of our algorithm to
solve unconstrained optimization problem compared to other considered methods. Applied to
image restoration problem, our algorithm is competitive with existing algorithms and performs
even better when the level of noise in the image is significant.
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1. INTRODUCTION

The conjugate gradient method remains one of the most widely used iterative techniques
for solving linear systems and nonlinear optimization problems due to its efficiency,
numerical stability and versatility across different domains of science and engineering.

In this paper, we are interested in solving unconstrained optimization problems in
the form {

min f(x)

x ∈ Rn,
(1)

where f : Rn −→ R is a continuously differentiable function.

The nonlinear conjugate gradient methods are efficient to solve problem (1), especially
for large scale problems. So, the classical conjugate gradient method is given by:

xk+1 = xk + αkdk, (2)
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where xk is the current iterate point, αk > 0 is the stepsize which can be found by one
of the line search methods and dk is the search direction defined by:

d0 = −g0, dk+1 = −gk+1 + βkdk, for k ≥ 0, (3)

where gk = ∇f(xk) is the gradient of f at xk and βk is a scalar conjugacy coefficient.
The choice of the parameter βk in the conjugate gradient method determines the search
direction dk which leads to different variants of the conjugate gradient method.

In recent years, researchers have continued to explore and refine the conjugate gra-
dient method, proposing new βk to address specific problem characteristics and compu-
tational challenges.

Some of the well known parameters βk are those of Hesteness–Steifel (HS) [15],
Fletcher and Reeves (FR) [13], Polak–Ribiere–Polyak (PRP) [21, 22], Conjugate Descent
(CD) [12], Liu–Storey (LS) [17], Dai–Yuan (DY) [6, 7] and Rivaie–Mustafa–Ismail–Leong
(RMIL) [24]. Hager and Zhang gave a good survey of nonlinear conjugate gradient meth-
ods in [14].

The formulas of the βk mentioned above are:

βHS
k =

gTk+1yk

dTk yk
, βFR

k =
∥gk+1∥2

∥gk∥2
, βPRP

k =
gTk+1yk

∥gk∥2
, βCD

k = −∥gk+1∥2

gTk dk
,

βLS
k = −

gTk+1yk

gTk dk
, βDY

k =
∥gk+1∥2

dTk yk
, βRMIL

k =
gTk+1yk

∥dk∥2
.

Where yk = gk+1 − gk and ∥ · ∥ denotes the Euclidean norm.
Many researchers proposed new families and combinations of the conjugate gradient

methods, specifically the hybrid methods. The idea of the hybrid methods is to combine
the standard conjugate gradient methods and exploit the attractive features of each of
one and to avoid the jamming phenomenon. This combination can be convex or non-
convex. Among these hybrid methods, we can cite those proposed by Dalladji et al. [8]
and Mtagulwa and Kaelo [20], Djordjevic [9, 10], Ben Hanachi et al. [3], Yang et al.
[28], Rivaie et al. [25] and the families of conjugate methods proposed by Sellami and
Chaib [26, 27].

Recently, a great contribution in the area of conjugate gradient methods and its
application has been done by Andrei in [2].

The aim of this paper is to propose an efficient conjugate gradient method for non-
linear optimization using a new parameter βk which leads to a new descent direction.

The contents of the remaining part of this paper are organized as follows. In sec-
tion 2, we give the new formula of βk and describe the corresponding algorithm. In
addition, we present a complete analysis of the descent condition of the obtained direc-
tion then, we show the global convergence of the new algorithm using the strong Wolfe
line search. Section 3 includes numerical experiments on the obtained algorithm based
on our new parameter βk on several unconstrained optimization problems compared to
other considered methods, using the well known test functions in the literature and an
image processing problems called image restoration problems. Finally, we end with a
conclusion in section 4.
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2. NEW HYBRID CONJUGATE GRADIENT METHOD AND DESCRIPTION OF
THE CORRESPONDING ALGORITHM

Based on the previously mentioned hybridization ideas and considering the good nu-
merical performance of the RMIL and HS algorithms, we present in this section a new
formula of βk which is a convex combination of βRMIL

k and βHS
k . Our new parameter

βk, denoted by βRMILHS
k is given as follows:

βRMILHS
k = (1− θk)β

RMIL
k + θkβ

HS
k . (4)

So, we can write

dk+1 = −gk+1 + βRMILHS
k dk, (5)

where θk is a scalar parameter which satisfies 0 ≤ θk ≤ 1.
To compute the stepsize αk, of (2), we use the strong Wolfe conditions, given by:

f(xk + αkdk) ≤ f(xk) + ραkg
T
k dk (6)∣∣gTk+1dk

∣∣ ≤ −σgTk dk, (7)

where 0 < ρ < σ < 1
2 .

It is obvious that, if θk = 0, then βRMILHS
k = βRMIL

k and if θk = 1, then βRMILHS
k =

βHS
k .
On the other hand, if 0 < θk < 1, then βRMILHS

k is proper convex combination of
βRMIL
k and βHS

k .
Having in view the formulas of βRMIL

k and βHS
k , the relation (4) becomes

βRMILHS
k = (1− θk)

gTk+1yk

∥dk∥2
+ θk

gTk+1yk

dTk yk
. (8)

Hence the relation (5) becomes

dk+1 = −gk+1 + (1− θk)
gTk+1yk

∥dk∥2
dk + θk

gTk+1yk

dTk yk
dk. (9)

As known, if the point xk+1 is close enough to a local minimizer x∗, then the Newton
direction is the best direction to follow.

The parameter θk is chosen such that the search direction dk+1 aligns with the Newton
direction. So, assuming that the inverse of the hessian ∇2f(xk+1) exists at each iterative
point xk+1 for the objective function f . We are going to choose the parameter θk such
that the search direction dk defined by (5), satisfies the condition of Newton’s direction,
i. e.,

−∇2f(xk+1)
−1gk+1 = dk+1 = −gk+1 + βRMILHS

k dk. (10)
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Replacing βRMILHS
k by its formula (4) and multiplying (10) by sTk∇2f(xk+1), where

sk = xk+1 − xk, we obtain

−sTk gk+1 = −sTk∇2f(xk+1)gk+1+(1−θk)β
RMIL
k sTk∇2f(xk+1)dk+θkβ

HS
k sTk∇2f(xk+1)dk.

(11)
Using the secant condition ∇2f(xk+1)sk = yk, (11) becomes:

−sTk gk+1 = −yTk gk+1 + (1− θk)β
RMIL
k yTk dk + θkβ

HS
k yTk dk. (12)

From (12) and with some simple algebraic manipulations, we define θk as follows:

θk =


θNT
k if 0 < θNT

k < 1,

0 if θNT
k < 0,

1 if θNT
k > 1,

(13)

where

θNT
k =

−sTk gk+1 + yTk gk+1 − βRMIL
k yTk dk

(βRMIL
k − βHS

k )yTk dk
. (14)

2.1. Algorithm RMILHS

The algorithm corresponding to our parameter βk is given as follows:

Begin algorithm
Step 0: Given a starting point x0 and a parameter ε > 0.
Step 1: Set k = 0 and compute d0 = −g0.
Step 2: If ∥gk∥ ≤ ε, Stop; else go to Step 3.
Step 3: Find the stepsize αk ∈]0, 1] (using strong Wolfe conditions (6) and (7)).
Step 4: Compute xk+1 = xk + αkdk.
Step 5: Compute gk+1 = ∇f(xk+1), yk = gk+1 − gk, sk = xk+1 − xk.
Step 6: Compute θk = θNT

k (using (14) and (13)).
Step 7: Compute βk = βRMILHS

k = (1− θk)β
RMIL
k + θkβ

HS
k (using (8)).

Step 8: If | gTk+1gk |≥ 0.2∥gk+1∥ (restart criterion of Powell [23])
then set dk+1 = −gk+1 and αk+1 = 1,
else compute dk+1 = −gk+1 + βkdk.

Step 9: Let k = k + 1 and go to Step 2.
End algorithm.

2.2. Convergence Analysis

Throughout this section, we make the following assumptions:

(i) The level set L = {x ∈ Rn : f(x) ≤ f(x0)} is bounded, which means that there
exists a constant M < ∞, such that

∥x∥ ≤ M, for all x ∈ L.



New hybrid conjugate gradient method for nonlinear optimization 539

(ii) In a neighborhood N of L, the function f is continuously differentiable and its
gradient ∇f(x) is Lipschitz continuous, it means that exists 0 < L < ∞ such that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x, y ∈ N . (15)

Under these assumptions, there exists a constant µ ≥ 0, where

∥∇f(x)∥ ≤ µ, for all x ∈ L. (16)

To establish the sufficient descent condition, we introduce the following theorem.

Theorem 2.1. Let the sequences {gk} and {dk} be generated by the RMILHS algo-
rithm. Then, the search direction satisfies the sufficient descent condition:

gTk d
RMILHS
k ≤ −c∥gk∥2, for all k. (17)

P r o o f . From the RMILHS algorithm, we know that if the restart criterion of Powell
holds, then dk = −gk and (17) holds.

So, we assume that Powell criterion doesn’t hold. Then, we have

| gTk+1gk |< 0.2∥gk+1∥2. (18)

The following proof is by induction.
If k = 0, then gT0 d0 = −∥g0∥2, so (17) holds.
Next, for k > 0 we have

dk+1 = −gk+1 + βRMILHS
k dk,

which can be written as

dk+1 = −(θkgk+1 + (1− θk)gk+1) + ((1− θk)β
RMIL
k + θkβ

HS
k )dk

= θk(−gk+1 + βHS
k dk) + (1− θk)(gk+1 + βRMIL

k dk).

It follows that:
dk+1 = θkd

HS
k+1 + (1− θk)d

RMIL
k+1 . (19)

Multiplying (19) by gTk+1 from the left side, we get

gTk+1dk+1 = θkg
T
k+1d

HS
k+1 + (1− θk)g

T
k+1d

RMIL
k+1 . (20)

Firstly, if θk = 0, dk coincides with descent direction of Rivaie et al., dRMIL
k+1 =

−gk+1 + βRMIL
k dk, where they proved in [25] that

gTk+1d
RMIL
k+1 ≤ −c1∥gk+1∥2, for all k. (21)

Now, if θk = 1, dk coincides with descent direction of Hesteness-Steifel, dHS
k+1 =

−gk+1 + βHS
k dk, where Djordjevic proved in [10] that

gTk+1d
HS
k+1 ≤ −c2∥gk+1∥2, (22)
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with

c2 =
1− 2.2σ

1− σ
, and σ <

5

11
.

Finally, if 0 < θk < 1, then there exist scalars λ1 and λ2, such that

0 < λ1 ≤ θk ≤ λ2 < 1. (23)

From the formula (20) and using (23), we conclude

gTk+1dk+1 ≤ λ1g
T
k+1d

HS
k+1 + (1− λ2)g

T
k+1d

RMIL
k+1 . (24)

Let c = λ1c2 + (1− λ2)c1, then from (21), (22) and (24) we finally get

gTk+1dk+1 ≤ −c∥gk+1∥2.

□

Lemma 2.2. Suppose that assumptions (i) and (ii) hold. Consider common iterate (2),
where dk is a descent direction (5) and αk is determined by the strong Wolfe line search
(6) and (7). Then, the Zoutendjik condition

∑
k≥0

(gTk dk)
2

∥dk∥2
< ∞, (25)

holds.

P r o o f . The proof follows directly from [29]. □

Theorem 2.3. Consider the RMILHS conjugate gradient method and suppose that
assumptions (i), (ii) and (17) hold. Then either gk = 0 for some k, or

lim
k→∞

inf ∥gk∥ = 0. (26)

P r o o f . Suppose that gk ̸= 0, for all k. Then we have to prove (26).
Suppose, on the contrary, that (26) doesn’t hold. Then there exists a constant t > 0,

such that
∥gk∥ ≥ t, for all k. (27)

Let D be the diameter of the level set L.
From the formula of βRMILHS

k we get

∣∣βRMILHS
k

∣∣ ≤ ∣∣βRMIL
k

∣∣+ ∣∣βHS
k

∣∣ = ∣∣gTk+1yk
∣∣

∥dk∥2
+

∣∣∣∣∣gTk+1yk

dTk yk

∣∣∣∣∣ . (28)

Further, using the second strong Wolfe condition (7), we get

yTk dk = gTk+1dk − gTk dk ≥ (σ − 1)gTk dk = −(1− σ)gTk dk > 0, (29)
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which gives
1

yTk dk
≤ 1

−(1− σ)gTk dk
. (30)

The direction dk satisfies (17), so it holds:

−gTk dk ≥ c∥gk∥2,

which implies using (27) that

−1

gTk dk
≤ 1

c∥gk∥2
≤ 1

ct2
. (31)

So, from (31) the formula (30) satisfies

1

yTk dk
≤ 1

−(1− σ)gTk dk
≤ 1

(1− σ)ct2
. (32)

Now, using (15) and (16), we get∣∣gTk+1yk
∣∣ ≤ ∥gk+1∥ ∥gk+1 − gk∥ ≤ µL∥xk+1 − xk∥ ≤ µL∥sk∥ ≤ µLD. (33)

Then, from (32) and (33), we have

βHS
k =

gTk+1yk

yTk dk
≤ µLD

(1− σ)ct2
. (34)

On the one hand and using (15), we have

yTk dk ≤ ∥yk∥ ∥dk∥ ≤ L ∥sk∥ ∥dk∥ = Lαk∥dk∥2,

then

∥dk∥2 ≥ 1

Lαk
yTk dk. (35)

So, using (29) and (17) the formula (35) becomes

∥dk∥2 ≥ − 1

Lαk
(1− σ)gTk dk ≥ 1

Lαk
(1− σ)c∥gk∥2.

Using (27), we get
1

∥dk∥2
≤ Lαk

(1− σ)c∥gk∥2
≤ Lαk

(1− σ)ct2
. (36)

From (33), (36) and the formula of βRMIL
k , we obtain

∣∣βRMIL
k

∣∣ = ∣∣gTk+1yk
∣∣

∥dk∥2
≤ µL2D

(1− σ)ct2
αk. (37)

Now, from (28), (34) and (37) we get

| βRMILHS
k |≤ µLD

(1− σ)ct2
(Lαk + 1). (38)
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Next, we are going to prove as in [9] that there exists α∗ > 0, such that

αk ≥ α∗ > 0, for all k.

Suppose, on the contrary, that there isn’t an α∗, such that αk ≥ α∗ > 0. Then there
exists an infinite subsequence αk = γjk , k ∈ K1 such that

lim
k∈K1

αk = 0.

Then
lim
k∈K1

γjk−1 = 0, (39)

i. e.,
lim
k∈K1

jk − 1 = ∞.

Now, from (6) we get

f(xk + γjkdk)− f(xk) ≤ δγjkgTk dk, (40)

f(xk + γjk−1dk)− f(xk) > δγjk−1gTk dk, (41)

where δ < 1. From (41), we have

f(xk + γjk−1dk)− f(xk)

γjk−1
> δgTk dk. (42)

Using (39) and passing to the limit of (42), we conclude that

gTk dk ≥ δgTk dk. (43)

But, our method satisfies the sufficient descent, so gTk dk ≤ 0.
Also, 0 < δ < 1, so, the relation (43), is correct only if gTk dk = 0. Then, from the

second strong Wolfe condition (7), we get that gTk+1dk = 0, which correspond to the
exact line search. So, we have a contradiction.

Now,we can write

∥dk+1∥ ≤ ∥gk+1∥+ | βRMILHS
k | ∥dk∥. (44)

As sk = αkdk, we write dk =
sk
αk

. So, from (16) and (38), we have

∥dk+1∥ ≤ µ+
µLD

(1− σ)ct2
(Lαk + 1)

∥sk∥
αk

.

Since αk ≥ α∗ and ∥sk∥ ≤ D, it follows that

∥dk+1∥ ≤ µ+
µLD2(Lα∗ + 1)

α∗(1− σ)ct2
= Cste, (45)
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which gives ∑
k≥1

1

∥dk∥2
= ∞. (46)

On the other hand, from (17), (27) and from the Zoutendijk condition (25), it results
that

c2t4
∑
k≥0

1

∥dk∥2
≤

∑
k≥0

c2∥gk∥4

∥dk∥2
≤

∑
k≥0

(gTk dk)
2

∥dk∥2
< ∞,

which contradicts (46). Therefore, (27) doesn’t hold.

Then, lim
k→∞

inf ∥gk∥ = 0. This completes the proof. □

3. NUMERICAL EXPERIMENTS

In this section, we will study the effectiveness of our algorithm (RMILHS) on two
parts. In this first part, we consider an unconstrained optimization problem of the form
(1). To show the effectiveness and to measure the convergence behavior of our algorithm
(RMILHS), we applied it on a set of test functions taken from [1] in comparing with
some existing methods, namely HSFR method [10], LSCD method [9] and LSDY
method [28]. We take several dimensions, from n = 10 to n = 10000 and we considered
the precision ε = 10−6.

We used Matlab language on HP laptop with Intel(R) Core(TM) i5-6300U CPU @
2.40 GHz processor and 8GB RAM memory and Windows 8.1.

We applied here the iterations number, CPU time and the gradient evaluations. The
performance profile of Dolan and Moré [11] offers a systematic means to evaluate and
compare the performance of a set of solvers S on a set P of problems. Assuming np

problems and ns solvers, for each problem p and solver s, they define tp,s the computing
time required to solve problem p by solver s. A need of reference point for comparisons.
They evaluate the performance of solver s on problem p against the optimal performance
achieved by any solver on the same problem using the performance ratio

rp,s =
tp,s

min{tp,s : s ∈ S}
.

They suppose that a parameter rM ≥ rp,s for all chosen p, s, and rp,s = rM if and
only if solver s does not solve problem p. Define

ρs(τ) =
1

np
size{p ∈ P : log2 rp,s ≤ τ},

where ρs(τ) is the probability for solver s ∈ S that the performance ratio rp,s is within a
factor τ ∈ R of the best possible ratio. The function ρs is the (cumulative) distribution
function for the performance ratio. The value of ρs(0) is the probability that the solver
will win over the rest of the solvers. Table 1 represents several test functions that
are used in this experiments for different dimensions and different choices of the initial
points.
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Test function Dimension Initial point
Raydan 1 10, 100, 500, 1000, 2000 (1, . . . , 1)
Raydan 2 10, 100, 500, 1000, 3000 (4, . . . , 4)
Diagonal 4 10, 100, 500, 1000, 10000 (1, . . . , 1)
Extended Woods 10, 100, 500, 1000, 10000 (2, . . . , 2)
HIMMELBG 10, 100, 500, 1000, 10000 (1.5, . . . , 1.5)
Extended Block-Diagonal 1 10, 100, 500, 1000, 10000 (1, . . . , 1)
Prod1 10, 100, 500, 1000, 10000 (1, . . . , 1)
Extended Maratos 10, 100, 500, 1000, 10000 (0.1, . . . , 0.1)
Pertubed Quadratic 10, 100, 500, 1000, 10000 (0.5, . . . , 0.5)
Extended White and Holst 10, 100, 500, 1000, 10000 (1.5, . . . , 1.5)
Diagonal 2 10, 100, 500, 1000, 10000 (1, 1

2 , . . . ,
1
n )

POWER 10, 100, 500, 1000, 10000 (1, . . . , 1)
Hager 10, 100, 500, 1000, 5000 (1, . . . , 1)
DENSCHNA 10, 100, 500, 1000, 10000 (1, . . . , 1)
HIMMELBC 10, 100, 500, 1000, 10000 (1, . . . , 1)
Extended TET 10, 100, 500, 1000, 2000 (0.1, . . . , 0.1)
Extended Cliff 10, 100, 500, 1000, 5000 (1, . . . , 1)
Tridia 10, 100, 500, 1000, 10000 ( 1n , . . . ,

1
n )

Diagonal 5 10, 100, 500, 1000, 3000 (1.1, . . . , 1.1)
ARWHEAD 10, 100, 500 (1, . . . , 1)
QUARTC 10, 100, 500, 1000, 10000 (2, . . . , 2)

Tab. 1. The test functions and their dimensions with the initial

points.

In the second part, we applied our algorithm to image restoration problems with the
use of the two-phase scheme.

As known, images can get corrupted due to various factors including noise during
acquisition. In this part, we are going to deal with restorations of an image corrupted
by impulse noise problems. Impulse noise is one of the most common noise models,
where only a portion of the pixels is contaminated by the noise and the information
on the true values of these pixels is completely lost. Chan et al. [5] have applied the
two-phase scheme to restore a corrupted image. Several researchers have used these two
phases to make conjugate gradient algorithms capable of restoring images corrupted by
impulse noise, even though the noise ratio is high or even reaches 90% [16, 18, 19].

The two-phase scheme applied can be briefly described as follows. In the first phase,
we use adaptive median filter to detect noisy pixels. In the second phase the noise from
the corrupted pixels is removed by solving the following smooth problem (47) proposed
by Cai et al.[4]. We used our proposed RMILHS algorithm to solve the problem (47),
in comparison with HSFR, LSCD and LSFR methods.

Let X be an image of size M -by-N and A = {1, 2, . . . ,M} × {1, 2, . . . , N} be the
index set of the image X. We minimize Fα(u) where

Fα(u) =
∑

(i,j)∈B

2
∑

(m,n)∈Vi,j\B

φα(ui,j − ym,n) +
∑

(m,n)∈Vi,j∩B

φα(ui,j − um,n)

 , (47)
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Fig. 1. Performance profile based on the iteration number.
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Fig. 2. Performance profile based on the CPU time.
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Fig. 3. Performance profile based on gradient evaluations.

in which B ⊂ A, the set of indices of the noise pixels detected from the first phase and
η its number of elements. Vi,j = {(i, j− 1), (i, j+1), (i− 1, j), (i+1, j)} is the set of the
four closest neighbors for the pixel at pixel location, for all (i, j) ∈ A, and yi,j be the
observed pixel value of the image at pixel location (i, j). Also φα(t) is an edge-preserving
functional which is chosen as φα(t) =

√
t2 + α, in our tests we set α = 100. We use the

peak signal to noise ratio (PSNR), defined by

PSNR = 10 log10
2552

1
MN

∑
i,j

(
xr
i,j − x∗

i,j

)2 ,
where xr

i,j and x∗
i,j denote the pixel values of the restored image and the original one,

respectively. We tested Lena (512× 512), Man (512× 512) and Pepper (512× 512). We
also set the stopping criteria as

Itr > 300 or
|Fα(uk)− Fα(uk−1)|

Fα(uk)
≤ 10−4.

The noise levels of the salt-and-pepper noise used are as follows: 30%, 50%, 70%, and
90%.

In the following figures (Fig. 4 and Fig. 5), we present the most significant results of
the noisy images which correspond to 70% and 90%.
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Fig. 4. The original images, the noisy images with 70%

salt-and-paper noise and the restored images by RMILHS , HSFR,

LSCD and LSFR.
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Fig. 5. The original images, the noisy images with 90%

salt-and-paper noise and the restored images by RMILHS , HSFR,

LSCD and LSFR.
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Images
Methods
Ratio

RMILHS
ITER CPU PSNR

HSFR
ITER CPU PSNR

LSCD
ITER CPU PSNR

LSFR
ITER CPU PSNR

Lena

30%
50%
70%
90%

21 11.34 38.07
24 18.23 35.53
29 27.02 32.22
34 44.07 27.21

21 11.09 38.07
24 18.18 35.53
29 27.10 32.22
34 43.88 27.21

19 10.42 38.06
22 16.82 35.50
26 23.00 32.21
44 57.73 27.07

19 10.41 38.06
22 16.79 35.50
26 22.87 32.21
44 57.73 27.07

Man

30%
50%
70%
90%

22 16.25 34.46
23 18.66 32.02
29 29.53 29.04
39 49.07 25.02

22 14.64 34.46
23 18.49 32.02
29 27.53 29.04
39 49.58 25.02

19 10.43 34.43
22 16.88 32.00
27 24.79 29.06
49 58.29 24.96

19 10.49 34.43
22 16.87 32.00
27 22.57 29.06
49 58.49 24.96

Pepppers

30%
50%
70%
90%

23 16.28 34.08
25 19.64 32.37
30 32.79 29.93
37 51.58 25.96

23 16.25 34.08
25 19.92 32.37
30 31.83 29.93
37 51.70 25.96

19 13.11 34.15
23 20.28 32.33
29 33.16 29.91
51 70.91 25.77

19 12.96 34.15
23 18.32 32.33
29 31.12 29.91
51 71.58 25.77

Tab. 2. Numerical results for image restoration problem.

The obtained results of the Table 2 are converted into a bar chart so that the subtle
differences can be seen better.
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Fig. 6. PSNR Comparison for different methods and images.

3.1. Commentaries

Concerning the first part, based on the performance profiles depicted in Figures 1, 2
and 3 for the number of iterations, CPU time and gradient evaluations, respectively,
we can say that our new approach employing βRMILHS

k is more efficient than the other
considered conjugate gradient methods.
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For the second part, the numerical results cited in Table 2, Figures 4, 5 and 6 show
the superiority of the LSCD and LSFR approaches compared to our RMILHS approach.
We observe either an equality or a slight increase in the number of iterations or compu-
tation time in RMILHS compared to LSCD, LSFR, and HSFR. On the other hand, our
approach RMILHS and also HSFR offer a better PSNR compared to LSCD and LSFR.

4. CONCLUSION

We have proposed a new parameter βk, which is the convex combination of βRMIL
k and

βHS
k . We have provided proof of the global convergence of the algorithm under the strong

Wolfe line search. The performance of the proposed new method is significantly better
than other existing conjugate gradient methods, namely HSFR, LSCD and LSFR, for
unconstrained optimization problems. On the other hand, applied to restoration image
problems, our method is competitive with the considered methods and it is even better
when the image’s noise is higher.
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