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Abstract
Wearable devices make self-monitoring easier by the users, who usually tend to
increase physical activity and weight loss maintenance over time. But in terms of
behavior adaptation to these goals, these devices do not provide specific features
beyond monitoring the achievement of daily goals, such as a number of steps or miles
walked and caloric outtake. The purpose of this study is twofold. By analyzing a large
dataset of signals collected by these devices, we identify significant clusters of similar
behavior patterns related to user physical activities. We then examine specific patterns
of step count in the context of recommendation of habits that more likely give rise to
weight loss effects. The evaluation of the effectiveness of these personalized recom-
mendations, based on a comparative study, proves how a recommender system based
on the reinforcement learning paradigm is able to guarantee better performance for
this task by balancing the trade-off between long-term and short-term rewards.

Keywords Health recommender system · Human behavior · Data mining

1 Introduction

Wearable devices use proprietary algorithms that, by raw sensor signals and infor-
mation input by the user, can usually estimate steps, distance, calorie burn and hours
of sleep (Majumder et al. 2017; Kamišali et al. 2018). They are often considered as
cost-effective solutions to support weight loss strategies (Bravata et al. 2007).

Indeed, in the absence of specific diseases, such as hypothyroidism or dys-
thymia, or specific genetic factors, weight gain is most likely to occur due to the
increasing intake of food, especially of high energy density (Rolls et al. 2005), or
alterations of exercise regimens with respect to the one’s energy expenditure
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(Melanson et al. 2013). While the former is primarily caused by unbalanced diets or
high consumption of specific food (e.g., packaged snack foods), the latter is explained
most of the times by little physical activity. At low levels of physical activity, a sig-
nificant restriction in the food intake is needed to maintain a correct balance.

Over the long run, little physical activity negatively impacts the muscle mass and
physical performance (Konopka and Harber 2014). The muscle mass decline causes a
reduction of the metabolic rate, which regulates the physical and chemical processes
that happen naturally in our bodies in order to sustain life (Connolly et al. 1999).
In other words, as we begin to lose weight, the body responds to the weight loss by
reducing the metabolism, thereby slowing down further weight loss. So, an attempt to
decrease the food intake will result in our body trying to return the body to its original
weight. As the metabolism is slowed down, the caloric intake has to be even more
reduced to maintain weight loss. And it often corresponds to situations which have
less chances to be pursued for significant long periods, and more likely the lost weight
is gained back once the regime is interrupted (Swift et al. 2014; Romieu et al. 2017).

Contrary towhat onemight think, excessive physical activitymay generate compen-
satory behaviors (King et al. 2007), i.e., adjustments we may unconsciously make to
regain the calories we just burned. Individuals tend to adapt metabolically to increased
physical activity, with the result that the relationship with the energy expenditure is
not linear (Pontzer et al. 2016). In other words, larger amount of physical exercise
tends to reduce the resting metabolic rate. A deliberative compensatory response may
also stimulate the appetite in persons who gets a lot of exercise, increasing their food
intake and failing to lose as much weight as expected.

With respect to physical exercise, in order to prevent weight gain the American
College of Sports Medicine states that 150–250min/week of moderate intensity activ-
ity is effective (Jakicic et al. 2001). Similarly, a recent study suggests a duration of
45min with a frequency of three to five times per week (Chekroud et al. 2018). The
World Health Organization (World Health Organization 2010) suggests to increment
the time spent for physical activity to 300min/week with a combination of aerobic
and resistance training (e.g., walking and bicycle riding) for additional health benefits.
However, a single recommendation for the optimum amount of physical activity for
weight loss maintenance is still to be defined (Catenacci et al. 2008).

Human beings constantly adapt their behaviors to reach their goal settings. Activity
trackers enable us to track, monitor and store quantifiable outcomes about our habits,
especially in terms of physical activities, supporting this behavior adaptation (Oyibo
et al. 2018). This kind of ubiquitous sensing is an unprecedented way to study human
behaviors, both in the granularity of activities tracked and in the length of observation
period. The point is to become more aware of how much activity people are doing
so that they can make positive changes. Self-monitoring weight and physical activity
on a regular basis are two of the keys for long-term success at weight loss (Wing and
Phelan 2005).

This task of collecting and reporting laymen-friendly information, helping to better
comprehend the health status as inferred by the tracked activities, is one of the purposes
of the health recommender systems (Ricci et al. 2010; Wiesner and Pfeifer 2014). But
a simple reporting tool may not be enough to increase physical activity and improve
health on the long-term (Leijdekkers and Gay 2015; Lewis et al. 2015; Bravata et al.
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Fig. 1 Traditional apps associated with activity trackers tend to promote habits that increase daily step count
goals (a), whereas health recommender systems may suggest different patterns to improve health status (b)

2007; Jakicic et al. 2016a; Finkelstein et al. 2016). The recommendations should
include effective and tailored strategies to specifically translate physical activity to
health gains (Wiesner and Pfeifer 2014; Martin et al. 2015; Thomson et al. 2016). In
spite of the unquestioning value of these devices, a very few health recommenders
make use of the large amount of data collected on daily basis to provide this sort of
suggestions (Wiesner and Pfeifer 2014; Schäfer et al. 2017).

The principal assumption of this study is that multiple recommendation strategies
are feasible in the weight loss scenario, and they have to be continuously adapted to
recent and future behaviors undertaken by the user.Consumer-gradefitness trackers are
key players in the implementation of these strategies. But traditional recommendations
provided by fitness apps that monitor the activity by way of these devices, promoting
habits that increase daily step counts (see Fig. 1a) may not be optimal.

For instance, in the scenario of 150min/week recommendations, the physical activ-
ity goal can be reached in multiple short bouts, of 15min each, spread throughout the
week, or in just two 75-min close-together sessions of vigorous aerobic activity a
week, or any combination of the two. And specific sequences of activity patterns and
habits may provide better outcomes than others in specific circumstances, in terms of
noticeable weight loss.

Within this setting, we aim to address the following research question:

– RQ Based on patterns of physical habits collected solely from activity trackers,
can we provide personalized recommendations, which are able to improve the
chances of weight loss success in comparison with traditional strategies that aim
at maximizing the count of steps?

To answer this question, we conduct an exploratory and inferential data analysis on
a real-life dataset of signals extracted from consumer-grade activity trackers over an
extended period. The goal is to investigate the existence of repeated habits in the human
behavior and their potential relationship with weight alterations. An instance of a
health recommender system based on reinforcement learning evaluates the possibility
to exploit these patterns in the context of weight loss. The system relies solely on
the data collected from the trackers, without engaging the users in the self-report
assessment of their habits.

The paper is organized as follows. Section 2 reports relevant work on health rec-
ommender systems based on data extracted from consumer-grade wearable devices.
Sections 3 and 4 explore the dataset of signals considered in this study and pro-
vide insights on regular habits of user behavior. The proposed recommender system is
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introduced in Sect. 5, which is subjected of a comparative evaluation (Sect. 6). Finally,
Sect. 8 draws final conclusions and outlines future work.

2 Related work

In this section, we report on the research activity that covers both large-scale studies
on physical habits and different approaches to develop health recommender systems
by exploiting consumer-grade activity trackers’ functionality. The former are relevant
both for better understanding the positive correlation between physical activities and
health benefits when consumer-wearable activity trackers are employed. Additional
references are discussed in the second part of the section, which reports themost recent
research advancements in individualized exercise recommendations for weight loss.

2.1 Physical activity and wearable devices

Wearable devices have been used to measure the impact of physical activity on rel-
atively small groups of users in clinical studies (Pantelopoulos and Bourbakis 2008;
Jakicic et al. 2016b). Similar to our work to cluster people based on their activity,
Fukuoka et al. analyzed accelerometer data of wearable devices worn by 215 women
to identify clusters of people exhibiting different activity patterns, with special care
about characterizing inactive individuals (Fukuoka et al. 2018).

Pattern analysis investigations of physical activity over larger populations are not
easy to be carried out. Datasets consisting of significant amounts of accurate signals
related to the user habits sampled by medical equipment, or inferred by self-reported
studies, are not easy to build up and, in general, publicly accessible. By contrast,
consumer-level wearable devices, such as activity trackers, allow researchers to easily
reveal basic patterns of movements, energy expenditure or vital health readings. Those
outcomes may devise better ways to promote individual lifestyles and reduce activity
inequality within populations.

Althoff et al. (2017) evaluated the variations of the activity, in terms of daily steps,
between populations of different countries, measured through activity tracker apps
installed on smartphones. The authors were also able to study the obesity–activity
correlation, proving how a larger number of daily steps are associated with lower
levels of obesity. Basically, these observational population-scale studies attempt to
accurately infer causalities from longitudinal data and understand the causes of health
outcomes (Althoff 2017).

Researchers have analyzed traces from personal mobile devices to quantify how
physical activity is impacted by exogenous events. One such eventwas the introduction
of a new location-based augmented reality game “Pokemon Go” (Althoff et al. 2016;
Graells-Garrido et al. 2016). The researchers found that Pokemon Go’s introduction
resulted in increased activity levels. Another exogenous event that has been studied
was that of “walking challenges.” After studying 2500 walking competitions over a
year, Shameli et al. concluded that these competitions were associatedwith an increase
of activity, for the average user, by 23% (Shameli et al. 2017).
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A recent study proves how consumer-grade wearable activity trackers are not only
limited to provide insights into aggregated behavioral and demographic characteris-
tics, but they might be useful in personalized health monitoring (Lim et al. 2018). In
particular, the authors show how both resting heart rates and step counts are being
associated with cardiovascular and metabolic disease markers.

2.2 Health recommender systems and persuasive technologies

Personalized, adaptive goal setting allows changing recommended habits over time
based on prior individual behavior. It is a fundamental step toward weight loss strate-
gies tailored to the specific users, which constantly adapt to potential alterations of
the training program. Instead of traditional strategies that try to maximize the count of
steps, personalized recommendations formulate fitness goals accordingly to perform
physical activity more effectively.

Smyth and Cunningham propose a system that suggests tailored race plans for
marathon runners (Smyth and Cunningham 2018). It is based on a case-based reason-
ing paradigm, which attempts to find a suggestion by reusing and adapting a solution
from similar past input instances. The input instances are represented by a sequence of
average paces in the marathon, broken down into 5-km segments. The recommenda-
tions consist of a best achievable finish time for the specific personal fitness level and a
suitable marathon race plan to achieve it. A plan is considered as sequences of average
paces for segments. In spite of the specific category of people and the type of recom-
mended actions (i.e., marathon runners and average paces for segment, respectively),
unrelated to the weight loss, an evaluation on a large dataset of runners proves the
effectiveness in the training program and the prediction accuracy of finishing times.

With the pervasive purpose of providing low-effort suggestions that should enable
actual adoption by a large number of users, Berkovsky et al. explored adaptive per-
suasive technologies in the form of activity-motivating computer games to engage
players in physical activity (Berkovsky et al. 2012). The authors propose to associate
the rewards and incentives that inspire intrinsic motivation in the player, with physical
activity to be performed in the game. A framework for behavioral change support
based on a goal hierarchical catalog has been proposed in Reimer and Maier (2016).
The framework is based on the nudging theory (Baron 2010), which is believed to
help people move toward healthier habits. The goal catalog is being personalized to
the user behavior. The hierarchical catalog subdivides higher-level long-term goals,
such as reducing the body mass index (BMI), into short-term subgoals, such as “walk-
ing 10,000 steps” or “30-min swimming.” Multiple potential subgoals allow the users
to achieve the high-level goal by selecting among different strategies. The nudges
are used both to praise the good performances and to make suggestions or reminders
otherwise. The authors constantly monitor the user activities that better lead the users
toward their goals. A collaborative filtering approach generates recommendation in
terms of subgoals to pursue first to reach the goal. To the best of our knowledge,
recommender systems based on this framework are yet to be developed and evaluated.

MyBehavior app (Rabbi et al. 2015) is one of the first recommendation systems that
automatically generates health feedback from physical activity and food log data. It
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provides personalized suggestions by learning the user’s physical activity and dietary
behavior. It is based on the multi-armed bandit online optimization process, which
aims at influencing user behaviors by suggesting actions that maximize the calorie
loss. The app monitors frequent and infrequent behaviors, considering the former as
lower-effort to adopt and, therefore, yielding more chances of calorie loss compared
to healthy behaviors assumed in very infrequent routines. The pilot study involved 16
people over a 14-week period shows a significant alterations of behavior habits after
few weeks. Similar to the Rimer and Maier’s approach, the app requires to know the
current user activity mapped to a high-level categorization, with information about
the associated metabolic rates (Ainsworth et al. 2011). But consumer-grade activity
trackers do not include any inference engine for this task. If few of these activities
can be partially inferred by an additional recognition component on raw data from
motion sensors (Bulling et al. 2014), the user is asked to self-report them in all other
cases. Conversely, the food logging process is to be borne entirely by the user. Besides
the burden on the users for explicitly stating their physical and food habits, additional
investigations on the accuracy of the self-report measures of physical activity are
required (Baranowski 1988; Sallis and Saelens 2000).

In the context of prevention of chronic stress,Maier et al. (Maier et al. 2014; Reimer
et al. 2017) developed a smartphone app for continuous monitoring the user’s stress
level, giving warnings when it raises up to a certain threshold. The estimation of
the stress level is based on samples from an electrocardiography sensor. McDaniel
and Anwar’s smartphone app (McDaniel and Anwar 2017) and Vildjiounaite et al.
algorithm (Vildjiounaite et al. 2018) share similar goals by exploiting the smartphone’s
sensors. By constantly tracking user activities, these apps can alert people whomay be
overstressed and trigger interventions. In spite of correlations between stress levels and
weight alterations, these apps limit their scope to the identification and notification
of high stress levels, without personalized and positively reinforcing interventions
tailored to the user previous and current habits.

Reinforcement learning is a very effective tool to provide recommendations that
are informed by the past user behavior, thus effectively triggering behavioral changes.
It has proven effective in recommending digital items such as news (Zheng et al. 2018)
and music playlists (Liebman et al. 2015) but also in the medical domain in identi-
fying optimal clinical strategies from patients records (Zhao et al. 2009). However,
reinforcement learning has been used seldom in the context of recommending activity
routines to achieve a target health outcome.

Yom-Tov et al. (2017) experimented with a reinforcement learning approach on
a small group of patients with diabetes to encourage them to increase their physical
activity. Unlike our approach, their system focused on the one dimension—physical
activity—with the only goal of increasing it by sending motivational messages. Their
reinforcement learning approach was aimed at learning the most effective sequencing
of those messages to trigger a patient’s positive reaction.

CalFit (Zhou et al. 2018) is a fitness app that automatically sets and notifies users
with tailored daily step goals by exploiting a reinforcement learning approach adapted
to the context of physical activity interventions. It explicitly models a measure of
user’s self-efficacy, which represents the capabilities of each person to successfully
execute courses of actions. Achieving a goal increases the user’s self-efficacy, with a
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positive feedback to future behaviors and ambitious goals. But too far-reaching goals
might negatively affect the willingness to keep following the suggested actions. The
evaluation consists of 64 academic staff employees monitored over a 10-week period.
The authors prove how tailored goals increase the chance to see persons adhere to
the suggested activity levels during the last 4weeks. The short-term timespan of the
evaluation and the lack of measurements of weight alterations of the students call for
additional investigations of the proposed app.

Table 1 summarizes the reviewed approaches. They faced with the task of engaging
users in more physical activities, (Berkovsky et al. 2012; Reimer and Maier 2016),
healthier lifestyles (Rabbi et al. 2015), or improving physical performances (Smyth and
Cunningham 2018). However, none of them explicitly consider the weight dimension
during the recommendation process. In terms of algorithms, (Smyth and Cunning-
ham 2018) effectively implement a case-based approach for marathon runners which
explicitly represents state–action pairs, which is common to the proposed RL-based
approach. MyBehavior uses phone data to provide food and activity suggestions that
maximize the chances of achieving calorie loss goals by casting the problem to an
optimization process (Rabbi et al. 2015). It relays on logs of food intake and exer-
cises that cannot always be automatically inferred. But the concept of reward is taken
into consideration for learning the best strategies, similarly to our approach. Reimer
and Maier (2016) combines a hierarchical goal catalog and Collaborative filtering to
generate recommendation in terms of goals and subgoals to pursue. Human activity
recognition based on signals extracted from activity trackers or smartphones is usually
able to infer very basic activities, such as, walking, running and standing. Since we do
not deem this level of activities detailed enough for a exhaustive goal catalog, it has
not included in the state and action representation of the proposed RL-based approach.
Reinforcement learning has already been considered for the behavior change task by
CalFit (Zhou et al. 2018). The representation of the states resembles the one proposed
in our approach (that is, number of steps taken in a day), but the goal of the app is
to maximize the chances to see the users adhere to the suggested level of physical
activity. Hence, a direct correlation with the weight loss cannot be estimated.

In addition to that, the current findings need to be interpreted with caution due to
the relatively small number of real-world experiments, limited timespans and number
of participants.

3 Dataset of activities

In order to understand and analyze specific traits of human behavior and significant
and repeated habits, a large amount of digital traces is required, unless a laborious and
long-lasting exploratory data analysis on many surveyed participants is undertaken.

Our investigation is based on a large real-world dataset of 11,615 users collected
by consumer-grade health-monitoring devices manufactured by Nokia over a 1-year
time span, namely from Thursday March 31, 2016, to Friday March 31, 2017. As for
the demographic statistics, most of the users are in the 20–59 range of years, with
an almost equal sex ratio of females and males, (43.6% vs. 56.4%). The specific age
distribution is summarized in Fig. 2. The dataset includes samples from two categories
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Fig. 2 Age distribution of the
users

Table 2 Few samples of the
three considered signals for a
random user, where ST stands
for number of steps, SL for
hours of sleep and BMI for body
mass index

ST SL BMI

Day 1 4510 7.10 35.16

Day 2 3784 8.43 –

Day 3 4554 6.92 –

Day 4 3809 8.65 –

Day 5 5378 8.05 36.23

Day 6 3910 7.88 –

Day 7 4115 9.52 –

…

of devices: wristband activity trackers and digital scales. Few samples of the dataset
are reported in Table 2. Since each sample is generated by a specific sensor at a certain
timestamp, we can represent the sequence of samples from a sensor as a signal.

In the temporal investigation on human behaviors andweight alterations, we require
that a significant number of samples per signal occur sequentially. A typical signal
that is considered strictly correlated with weight, which also shows less sparsity char-
acteristics (as shown in Fig. 3), is the number of steps sst, which is derived by the
user’s motion adjusted for the height of the person. We suppose that an alteration of
the weight is feasible by affecting the behavior patterns related to the physical activity,
which has a proxy in the sst-signal sampled by the activity trackers.

Based on the bioelectrical impedance analysis, digital scales send a low electrical
current through one foot and reading the current with a sensor under the other foot
and monitor the current flowing through the lean mass, which is the most conductive
in the human body. By that measure, digital scales can calculate the BMI metric (also
named Quetelet index), the measurement of body fat based on height and weight.
It is defined as the ratio between the body mass and the square of the body height
and, therefore, is expressed in kg/m2-unit. It basically quantifies the amount of tissue
mass (muscle, fat and bone) in an individual. It is often considered an inexpensive and
easy-to-perform method of screening for weight category. According to the National
Heart, Lung, and Blood Institute (NHLBI) guidelines (Lung and Institute 2018), the
following categories are considered:

– less than 18.5: Underweight range.
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Fig. 3 The sparsity of signals captured by activity trackers for a few random users

– 18.5 to <25: Normal or healthy weight.
– 25.0 to <30: Overweight range.
– 30.0 or higher: Obese range.

The BMI is sampled by the sbmi signal. Digital scales are rarely used at daily basis;
therefore, the frequency of the samples is lower compared with the other signals.

Finally, the devices included in the dataset are also able to continuously moni-
tor the movements during sleep—also known as actigraphy—and assess sleep–wake
cycles. By a combination of accelerometers and heart rate data, they can give user
an estimate on how much hours are spent asleep ssl, sampled each day. Accumulated
literature proves how short sleep duration is associated with concurrent and future
obesity (Patel and Hu 2008). The American Academy of Sleep Medicine (AASM)
and Sleep Research Society (SRS) suggest seven or more hours per night on a regular
basis to promote optimal health (Watson et al. 2015). But there is no evidence that
specific patterns of hours spent asleep during the week promote weight loss. For this
reason, the proposed recommender system limits its scope to the physical activity
represented by the number of steps. For the sake of completeness, an investigation of
weekly sleep patterns is reported in the following sections.

The accuracy of activity andfitness trackers has been frequently evaluated in the past
(Evenson et al. 2015; Ferguson et al. 2015; Straiton et al. 2018). Generally, the studies
indicate higher validity for the relative measurement of physical activity measured by
the number of steps, with potential risks of steadily undercounting them in specific
circumstances, such as in slow, short or non-stereotypical gait patterns (Brodie et al.
2018). As for BMI, many variables might affect the results, including hydration levels,
recent exercise activity and underlying medical conditions. But different studies have
shown that bioelectrical impedance analysis is a fairly accurate method for estimating
body fat (Dehghan and Merchant 2008; Thibault and Genton 2014; Demura and Sato
2015). This study is focused on weight alterations instead of absolute measures. So,
we make the hypothesis that, on average, significant long-term alterations of weight
identified by tracking body fat changes over time can be recognized by sequences of
BMI samples, ignoring minor or single fluctuations of the measure.

As for basic descriptive statistics on the dataset, we have: μst = 6855.20 (σst =
3602.22), μsl = 7.13 (σsl = 1.47), μbmi = 27.07 (σbmi = 0.42). The total number
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of samples for the ST, BMI and SL signals in the dataset is 2,108,420, 445,444 and
1,353,261, respectively.

Appropriate steps, such as anonymization procedures, have been taken to ensure this
research followed fundamental ethical principles, e.g., the subjects cannot be identified
or exposed to risks or liabilities throughout the analysis and the evaluation. User
locations and further user data were also omitted by the dataset, whenever available,
limiting the input data to the above-mentioned signals and user age.

4 Data analysis

In order to devise recommender systems based on digital records of human behav-
ior obtained by activity trackers, the assumption that these behaviors can be easily
observed and matched one another has to be investigated.

Themethodology for investigating patterns of physical activity is suitable for signals
that consist of samples of daily activities, which last for extended periods (e.g., weeks).
The data have therefore identical sampling rate throughout the whole set of users,
which corresponds to the amount of physical activity performed during 1day.

The sequence of samples indexed in time order is a discrete signal. Hence, the
dataset consists of discrete time series D = { f (si )

u j (t)}, where si is the i-signal, t is the
day of sampling and u j is the monitored user.

An aspect to be taken into consideration for interpreting physical activity data is that
it is typically incomplete (Tang et al. 2018).Wrist-based devices are not steadily worn.
Some users are keener to use them when they go to the gym or for a run. Conventional
batteries may be fine for sensors and other very low power wearable devices, but
they struggle to keep up with the demands of more capable wearables such as fitness
bands and smartwatches. For these devices battery life is measured in days. As a result,
samples of the signals are often fragmented. Long sequences of uninterrupted samples
are less likely to be found. This also means that many temporal and frequency domain
analysis techniques that require a significant number of consecutive samples are not
suitable in our context. On the other hand, activity trackers may collect signals whose
samples may cover also several weeks without interruption. But clustering on the raw
time series is often unsatisfactory. Indeed, signals generated from two different users
have low chance to show any sort of similarity.

One way to address these issues is to investigate significant weekly patterns, which
is a reasonable short time frame if the signals about steps and sleep hours are sampled
per day. Indeed, social constraints on daily life, such as working hours or university
class schedules, usually impose a frequency and repetition of many of the activities
carriedout during theweek. In the scenarioswhere the signals are not regularly sampled
throughout extended periods, it is still possible to extract partial short-term consecutive
values.We should also expect a certain level of regularity in the occurrences of patterns,
especially if they all share the same starting day of the week. Formally, we define a
segment f̂ (si )

u j (t,�) as a single sequence of samples as follows:

f̂ (si )
u j

(t,�) =
{
f (si )
u j

(t ′) ∈ D|t ≤ t ′ < t + �
}

(1)
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Fig. 4 Macroaverages of the considered signals according to age demographic

where� is a time interval expressed in days. The concatenation of the segments forms
the original signal.

Signals monitored by activity trackers are influenced by the age of the user. For
instance, physical activity is known to decline with age (Doherty et al. 2017), and BMI
tends to increase and sleep range shrinks, which is consistent with the demographic
statistics from the dataset, as reported in Fig. 4. In order to reduce the complexity of
the analysis, the identification of the patterns and trends of user activities is performed
with no respect to the age of each user. For that reason, the signals are standardized
by means of the z-score function:

z(si )u j
(t) = f (si )

u j (t) − μ
(si )
u j

σ
(si )
u j

(2)

where μ
(si )
u j and σ

(si )
u j are the sample mean and standard deviation of the signal si for

the u j -user, respectively. Similar to Eq. 1, we can derive the standardized segment

ẑ(si )u j (t,�).

4.1 Clustering

In order to combine multiple similar segments and reduce the total number of different
patterns to analyze due to their high variability, a classification is performed on each
of the two input signals sst and ssl, that is, directly on their z-score segments. Since we
expect slow alterations of BMI, the sbmi samples will be subjected to amore traditional
trend analysis.

An unsupervised procedure uses the unlabeled input data to estimate the clas-
sification parameters and group the data in predefined K clusters. This kind of
partitioning-based clustering requires to specify the number of clusters to be gener-
ated in advance. A traditional analysis of the silhouette widths provides us an optimal
configuration of numbers of clusters (Mirkin 2011), namely four clusters for sst and
six clusters for ssl, respectively. The clustering output is a partition of the data so that
each segment ẑ(si )u j (t,�) belongs to exactly one cluster in:

C (si ) = {c(si )
1 , c(si )

2 , . . . , c(si )
K } (3)

The PAM Partitioning AroundMedoids (Kaufman and Rousseeuw 1990; Greenlaw
andKantabutra 2013) is an adaption of the k-meanswhich shows robust characteristics
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Fig. 5 Seven-day clusters’ medoids for signal segments related to step (a) and sleep (b) behaviors. On
y-axis the standardized measure (z-score) of the samples

in the presence of noise. This aspect is very relevant in our scenario, where devices
are not steadily worn by the users and daily samples may occasionally show partial
representations of the human activity. Onemore advantage is that the algorithmoutputs
one medoid ĉ(si )

k per cluster, which is the segment whose average dissimilarity to all
other segments in the cluster is minimal. This instance-based representation allows us
to better understand and visualize the patterns that each group of segments represents.

The within-class and between-class variabilities, subjected to minimization and
maximization, respectively, are formulated as follows:

Iw =
∣∣C(si )

∣∣∑
k=1

Nu∑
j=1

d2
(
ẑ(si )u j

(t,�), ĉ(si )
k

)
, if ẑ(si )u j

(t,�) ∈ c(si )
k

Ib =
∣∣C(si )

∣∣∑
k=1

∣∣∣c(si )
k

∣∣∣ d2
(
ĉ(si )
k , c̄(si )

)
(4)

where d is the distance between one segment and its cluster’s medoid, c̄(si ) is the
weighted average of the cluster centers and Nu is the number of users in the dataset.
Since the input signals are normalized by the z-score function,we consider a traditional
Euclidean distance for the d implementation.

4.1.1 Characterization of the clusters

The medoids for signals sst and ssl obtained by clustering are depicted in Fig. 5a and
b, respectively.

As for the step behaviors, three of the four patterns, namely c(sst)
1 , c(sst)

2 and c(sst)
4 ,

share similar but shifted attitudes during theworkweek. In these patterns, the increment
of the number of steps happens one day of the week. On the remain days, the steps
do not deviate significantly from the average. The segments which show increments
on Friday and Saturday are more likely associated with (20–39) age range, while
Thursday is preferred by adults in the (40–79) range, as reported in Table 3.
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Table 3 Average percentage difference of the medoids with respect to the age of the population

20–29 30–39 40–49 50–59 60–69 70–79 80–90

c(sst)1 − 6.55 − 0.88 − 0.08 2.63 3.16 8.42 − 2.99

c(sst)2 4.97 1.07 − 1.97 − 1.85 − 3.12 5.52 2.03

c(sst)3 − 10.38 − 2.27 5.80 − 0.97 6.10 − 5.36 19.38

c(sst)4 11.96 2.08 − 3.74 0.19 − 6.14 − 8.57 − 18.42

c
(ssl)
1 − 0.85 0.34 12.83 6.62 − 25.17 − 36.92 − 47.90

c
(ssl)
2 14.10 1.64 − 2.54 − 9.71 0.59 − 0.55 6.08

c
(ssl)
3 − 3.93 − 5.23 − 13.12 4.96 25.44 15.58 − 12.23

c
(ssl)
4 − 3.21 3.28 − 0.26 − 2.01 − 1.65 10.63 21.16

c
(ssl)
5 − 3.40 − 0.16 4.62 5.46 − 7.89 − 10.49 − 31.27

c
(ssl)
6 − 2.71 0.13 − 1.52 − 5.31 8.67 21.76 64.16

One medoid represents an opposite scenario, when the users do relatively more
steps on the beginning of the week and less on weekends (c(sst)

3 ). This last cluster
is being characterized by adults > 40 years old. The identified sleep patterns are
more diversified. Two patterns, namely c(ssl)

2 and c(ssl)
6 , represent people that spend

considerable less time sleeping during the weekends. If we look at the age distribution,
these two clusters better represent two categories of adults, (20–29) and (60–69),
respectively (Table 3).

Quite the opposite, medoids c(ssl)
1 and c(ssl)

5 are associated with attitudes toward
more resting on weekends, which are usually related to users > 40 years.

The cluster analysis allows us to investigate collective behaviors by grouping simi-
lar weekly patterns of daily sampled physical activity. Indeed, this exploratory mining
proves how significant patterns for the step dimensions can be obtained. But for deliv-
ering personalized recommendations of physical activity that take into consideration
unique patterns of user behaviors, grouping together several different signals into one
single approximate representation (or centroid) may not be the right choice in terms
of accuracy of the user profiles. Furthermore, unlabeled instances of user behaviors
might be available throughout the monitored period, some with very low frequencies
or with different offsets with respect to the first day of the week chosen in the analysis.
Section 5.2.1 introduces the specific representation of the user physical activity that
is considered during the recommendation process.

4.2 Trend identification

One additional investigation of the dataset aims at identifying significant upward
(downward) trends, i.e., when a sequence of samples of one signal consistently
increases (decreases) over a period of time in statistical terms, regardless if the trend is
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Table 4 Four-week segment trend analysis: ↑ upward trends, ↓ trends and the rest of the segments (↔)
that have not been classified with a trend

sig ↓-trend ↑-trend ↔-trend

sst 10,493 (6.32%) 10,258 (6.18%) 145,274(87.5%)

ssl 2674 (4.04%) 2138 (3.23%) 61,316 (92.64%)

sbmi 1873 (35.83%) 1028 (19.66%) 2326 (44.51%)

linear or not. This investigation does not take into consideration potential correlations
between signals.

Mann–Kendall test (Gilbert 1987) is a nonparametric test for trend analysis which
makes no restriction on the distribution of the values. For evaluating the validity of the
null hypothesis (i.e., no trend), the statistics are based on the sign of differences, not
directly on the values of the samples. For this reason, it is less affected by potential
outliers in the rawdata. These trends are classifiedupwardor downward for time frames
of four weeks (4�). For instance, a downward trend for a four-week interval extracted
from the user’s BMI signal is interpreted as a statistically significance decrease in her
BMI in that timespan.

Table 4 reports the number of segments that have been attributed to a upward
or downward trend with respect to the overall four-week segments extracted from
the dataset. A relatively higher number of downward trends (35.83% vs. 19.55%)
are discovered on BMI signals, which is expected by users who decide to buy and
extensively use activity trackers.

But there is no significant trend difference between the number of four-week seg-
ments characterized by a consistent increment of the number of steps or hours spent
asleep with respect to segments showing a reduction. In addition, a high percentage of
segments are not characterized by any tendency, namely 87.5% and 92.64% , for sst
and ssl, respectively. In other words, while there exists a significance variance in these
patterns by considering periods of 7days or less, it is less likely that people assume
steady upward or downward trends which last 1month for the sst and ssl signals.

5 A health recommender system

One of the principal roles of health recommender systems is encouraging users to
perform behaviors that more likely bear positive effects and conversely discourage
them from negative actions. In the weight loss scenario, users tend to select effective
exercise strategies that lead to states with greatest value. Typically, this happens by
following regular physical routines, which are often associatedwith the positive effects
in terms of BMI reduction. Fitness smartphone apps support users by monitoring their
physical activity in terms of steps taken or runs made. The user is able to explore past
achievements and achievements still to come to reach personal goals.

Reinforcement learning (RL) is an area ofmachine learningwhose goal is to develop
algorithms that adjust the actions of agents in such away that positive rewards are being
maximized over a long term (Sutton and Barto 1998). The actions are determined by a
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Fig. 6 In reinforcement
Learning, the agent takes actions
in the environment and receives
an observation, which is
typically represented by a
reward and a state, that are fed
back into the agent

policy learned by exploring a state–action space. Therefore, it is reasonable to assume
an analogy between an action and the amount of physical activity the user decides to
perform in order to maximize the long-term reward measured by BMI reductions.

The proposed health recommender systemmonitors the recent user physical activity
in terms of number of daily steps over a number of days and suggests a range of steps
to be taken in the near future in order to maximize the chances to lose weight. The
RL approach is instantiated on the dataset of activities (Sect. 3) and learns the best
strategies in terms of steps to be suggested given the recent activity of the user.

5.1 Reinforcement learning

Reinforcement learning is often considered as an effective approach to solve real-
world decision-making problems. Figure 6 shows the standard RL setting where the
agent interacts within the environment over a number of discrete time steps. At each
time step, the agent examines the current state and selects an action from some set of
possible actions according to its search strategy, named policy. Since in most of the
cases training sets consisting of state–action data are not available, the RL makes use
of a reward, that is, an estimate return for good and bad behavior as a result of the last
taken actions.

A naive approach for ensuring the optimal action is taken at any given time is
to simply choose the action which the agent expects to provide the greatest reward,
which corresponds to a greedy policy. The problem with greedy strategies is related to
suboptimal solutions. The benefits of a specific behavior adopted for a short periodmay
show different benefits if it is assumed for long periods. A cleverer recommendation,
which is usually implemented in RL strategies, would take into consideration the chain
of actions eventually leading to reward and the potential reward expected in the future.
The RL’s task is to maximize the long-term cumulative reward.

The interaction of the agent with the environment affects the learning, and vice
versa. Specific actions determined by the agent’s policy select the future states. The
reward obtained from these states determines the future strategy. For this reason,
many strategies include a trade-off between exploration, where the agents gather more
information that might lead them to better decisions in the future, and exploitation,
where they make the best decision given current information. Section 5.2.3 details the
approach used in the proposed recommender to balance between the two paradigms.
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The RL process is parameterized by a tuple (S,A, T , r , γ ), where:

– S is the set of environment states.
– A(S) is the function that returns the available actions in the s state.
– The probabilities of transition from one state to another (T ).
– The reward function r(S) → R that estimates the immediate utility of being in a
certain state.

– γ is the discount factor, which takes on values in (0, 1) and has the effect of valuing
the influence of short-term and long-term rewards. Hence, the rewards received tn
steps in the future are worth less than rewards received now, by a factor of γ tn .

The goal of RL approaches is to derive a policy π that describes how to act in each
state as a result of the acquired experience. The policy takes the form of a function
π(S × A) → R. An optimal policy maximizes the total discounted expected reward,
formally

∑∞
t=0 γ r(st ), by determining the probability of taking the a action in the

s state. One popular approach to determine the policy π is Q-learning (Watkins and
Dayan 1992). Intuitively, the Q-value is referred to as the state–action value that is
iteratively estimated by exploring the state space or, more formally, the expected
discounted reward for executing action a at state s by following the policy π . The goal
in Q-learning is to estimate the Q-values for an optimal policy.

At the beginning, the Q-values are being initialized to an arbitrary constant. Assum-
ing fixed intervals of real time, at each step, given the current state, the algorithm
chooses one action and evaluates the state that it has led to. If it has led to an unde-
sirable outcome, the Q-value of that action from that state is reduced, so that other
actions will have greater chances next time the state is re-evaluated. Similarly, if the
reward is positive, it is more likely to choose the same action on that state in the future.

The Bellman equation (Watkins and Dayan 1992) expresses the relationship
between the action value of a state st and the action values of its successor states
st+1, st+2, etc. The equation approximates the expected future discounted reward.
The state–value function can be decomposed into immediate reward and discounted
value of successor state given a certain policy. After the selection of the at -action,
the environment responds with the reward feedback rt , by which the mean reward of
action a can be estimated as follows:

Q(st+1, at ) ← Q(st , at ) + α

[
rt (s) + γ max

a′∈A(st+1)
Q(st+1, a

′) − Q(st , at )

]
(5)

where α ∈ [0, 1) is the learning rate, which determines to what extent newly acquired
evidence overrides previously acquired knowledge.

It is important to note that, even for identical environments, the value function
changes depending on the policy. This is because the value of the state changes depend-
ing on how one acts, since the way she acts in that particular state affects how much
reward we expect to see.

123

Author's personal copy



F. Gasparetti et al.

Fig. 7 Given the current state which represents the recent user physical activity in terms of number of steps,
we aim at recommending a range of steps to take in the near future

5.2 RL-based health recommendation

For implementing the RL paradigm to our context, the following definitions are
required:

– A finite set of states S and available actionsA related to the user behaviors tracked
by the wearable devices.

– An estimation of the utility of taking specific actions in a certain state.

In our scenario,we are faced repeatedlywith a choice amongvarious ranges of volumes
of physical activity to perform.The result of this activity provides the userwith a reward
in terms of health benefits, i.e., weight loss. In theRL paradigm, the amount of physical
activity performed by the user corresponds to the action, as depicted in Fig. 7. Given
the current state which represents the recent user physical activity in terms of number
of steps, we aim at recommending actions to maximize the expected total reward over
some time period. In the rest of the section states, actions and rewards are formally
introduced.

5.2.1 Representations of states and actions

The state at step t refers to whatever information is available to the algorithm at
step t about its environment. In order to collect the largest number of behaviors,
the two categories of signals sst and sbmi are subjected of equal-frequency data
binning which groups the samples with similar values into one of the five bins
B(si ) = {b(si )

1 , b(si )
2 , . . . , b(si )

5 }, where every bin has the same number of samples.
The number of bins is determined by a hyperparameter optimization described in
Sect. 6. The binning is calculated on a per-user basis and on the z-score representation
of the signals (see Sect. 4). Table 5 reports the bins of a specific user extracted from
the dataset.

A fixed-sized sliding window of�(sst) consecutive days is considered for extracting
the available set of states. The window slides across the time series, one day at a
time. The states are therefore represented by a bin representation of the segment
f̂ (sst)
u j (t,�(sst)). In other words, the original data values are replaced by a fixed value
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Table 5 Binning intervals for one user extracted from the dataset

b(st)1 and a1 b(st)2 and a2 b(st)3 and a3 b(st)4 and a4 b(st)5 and a5

0–3904 3905–5706 5707–7353 7354–9518 9519–20,275

b(bmi)
1 b(bmi)

2 b(bmi)
3 b(bmi)

4 b(bmi)
5

0–26.90 26.91–27.20 27.21–27.48 27.49–27.81 27.82–29.19

Fig. 8 Binning (b) of the daily sampled signal related to the number of steps (a). The sequence of bins
constitutes the RL state (c). The (st) superscript has been omitted for brevity

representative of the bin interval they fall in. Figure 8 shows the result of the binning
on the original daily sampled signal (b), and the state consisting of the sequence of
bin ids associated with a certain range of taken steps.

More formally, the RL state is defined as a sequence of �(sst) samples, as follows:

S ≡ B(st) × B(st) × · · · × B(st) (6)

The actions that the user can take consist on the number of steps taken the day just
after the selected window. Since the step signal of the user is subjected to data binning,
it is reasonable to assume that a recommended actions are represented by one of the
available bins in B(st). So, each action corresponds to a range of steps that the user
may take, that is:

A ≡ B(st) (7)

Since we have five bins, A consists of five actions: {a1, a2, a3, a4, a5}, where a1-action
represents the number of steps in the range identified by the b1 bin, and so on (Table 5
shows this equivalence). Every day the user is provided with recommendations for the
upcoming period which consist of a numerical range of steps to take.

By monitoring the user activity, it is possible to build up a state–action knowledge
base, which represents the range of steps taken after each single period identified by
a state. Figure 9 depicts the binning representation of the step signal of the user, that
is, the state < b(st)

2 , b(st)
3 , b(st)

3 , b(st)
2 , b(st)

5 , b(st)
1 > and the a4 action determined by the

b(st)
4 -range of steps taken by the user.
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Fig. 9 How states, actions and rewards are determined

5.2.2 Definition of reward

Rewards are determined by positive or negative alterations of the weight when the user
takes specific actions in certain states. BMI signals are usually available occasionally,
every time the user decides to use a smart weight scale. Hence, timely rewards follow-
ing each actions cannot be sampled, and state–action pairs with an associated BMI
variation sampled right before and after the state are limited. For this reason, for each
pair of consecutive BMI samples, all the state–action pairs between the samples are
extracted and associated with the related positive or negative BMI alteration.

In the example depicted in Fig. 9, the user generates two BMI samples, 27.65 and
27.33, over a period of 10 days. The sliding window generates several state–action
pairs. The two BMI samples are subjected to data binning, so b(bmi)

4 and b(bmi)
3 are the

two corresponding intervals according to Table 5. Since we have a one-bin BMI drop,
we suppose that the physical activity performed by the user in that period may have
contribute to the reduction. The three state–action pairs falling within the period are
extracted and associated with a positive reward.

Hence, each state–action pair extracted within the timespan related to a BMI vari-
ation is considered to be relevant for the weight loss goal. It is being assigned to a
positive (r = 1) or negative reward (r = −1) according to the BMI alteration. Less
significant gain or loss alterations of the BMI (less than 1%) are not considered. The
largest allowed timespan between two BMI samples is set to �(bmi) and is determined
by tuning (see Sect. 6).

Once the reward function is defined, the Q-learning algorithm can be executed
over the physical activity and BMI measures of a population of users over a period
of time. The output consists of a policy represented by a Q-table. For each state, the
table indicates the actions with highest cumulative (or long-term) reward, which may
considerably differ from immediate rewards. Thevalues are determinedby theBellman
equation (Eq. 5). The RL execution usually consists of a number of episodes. In each
episode the agent begins the exploration in one random state and performs a sequences
of steps toward the terminal state, which represents the goal of the exploration. At each
step the Bellman equation is computed and the Q-table updated. Since our setting does
not have any terminal state, every episode consists of a fixed number of steps, starting
with a random state.
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Fig. 10 A partial Q-table built during the execution of the RL algorithm

The computed Q-table in Fig. 10 suggests that the best action to be taken in the
state < b(st)

2 , b(st)
3 , b(st)

3 , b(st)
2 , b(st)

5 , b(st)
1 > is a2, which represents a number of steps

in the 3905–5707 range (according to the user’s bins in Table 5).

5.2.3 Exploration versus exploitation

The ability of the recommender of suggesting behaviors that favorably affect the
weight loss depends on the effectiveness of the system to explore and learn patterns
of behavior from the available data. A good exploration strategy capitalizes on both
the acquisition of new information (exploration) and the maximization of reward by
taking advantage of previous knowledge at the same time (exploitation). Q-learning
does not specify what the action should actually be taken in each state. A traditional
greedy strategy in RL always chooses the best decision a according to the current Q-
values, that is, argmaxa Q(s, a). But uncertain environment knowledge prevents from
maximizing the long-term reward because suggested actions may not be optimal.

In order to balance opportunity-seeking and advantage-seeking, the approach con-
siders the Boltzmann strategy over Q-values, where the probability of selecting action
a in state s is defined as follows:

π(a|s) = Pr{at = a|st = s} = e
q(s,a)

τ

∑
a′∈A(s) e

q(s,a′)
τ

(8)

where τ > 0 is the temperature specifying how randomly values should be chosen that
is repeatedly lowered by a constant factor ατ ∈ (0, 1). When τ is high, the exploration
is favored by choosing the actions with a nearly random strategy. As the temperature
is reduced, the highest-valued actions are more likely to be chosen (exploitation), with
the best actions always chosen when τ is closed to the zero value.
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6 Evaluation

The evaluation process is set in a comparative framework by considering various
recommendation approaches.

The initial dataset of 11,615 users (Sect. 3) has been subjected to a tenfold cross-
validation. The data consisting of 379,794 state–action pairs are partitioned into
equally sized segments or folds, and nine of them are used for training the recom-
menders, and one is left out for test. In order to evaluate the recommendation accuracy,
the reinforcement learning is therefore trained offline on the fixed batch of training
data consisting of state–action pairs, with the actual reward obtained by potential BMI
alterations.

(R) Our baseline is a standard randompolicy,where an equal probability is assigned
to each available action in A.

(MP) The approach is based on the RL state representation of the human behavior.
But instead of exploring different sequences of states that might bring to better
conditions, they limit the selection of the next action according to the current
state. It recommends the most common action in the dataset given a certain
state. Since the dataset consists of users who are supposed to regularly use and
monitor their activities to improve their health status, we expect that this strat-
egy reasonably recommends good actions to users. In terms of classification
of the right action given an input instance, the MP approach corresponds to
the Zero Rule algorithm, which relies on the frequency of targets and predicts
the majority target category.

(G) It is similar to the MP strategy, but instead of the most common action in the
dataset, the selection is based on the frequency of success, that is, the times
that the given state–action pair has led to a negative alteration of weight. It is
a typical greedy strategy that tries to maximize the reward without acquiring
new knowledge.

(AT) A second baseline simulates the kind of recommendation of fitness mobile
apps. Many users use mobile apps that collect data from fitness trackers and
help them developing exercise routines with achievable, slightly challenging
goals based on daily averages. In this scenario, one user shall be deemed to
meet the app recommendations if she increases the number of steps per day
with respect to the steps taken on average in the previous NAT days. This
simulation is implemented in the AT recommender with NAT = 3.

(RL) The proposed approach based on RL.

The hyperparameter optimization based on a traditional grid search on a distinct
validation dataset determined the tuning of the model, with the optimal configuration
reported in Table 6. A 6-day pattern analysis of the RL states achieves a slightly better
performance in terms of recommendation accuracy compared to the 7-day timespan
considered in the clustering analysis.

In our scenario, the usefulness of one recommendation is determined by the achiev-
able cumulative reward in terms of effective weight alterations after having considered
the suggested actions. Offline RS evaluations measure the accuracy of recommenda-
tions without the involvement of actual users but using existing real-world data as
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Table 6 Quantitative parameters
and references Number of bins = 5: Sect. 5.2.1

α = 0.30: Eq. 5 (learning rate)

γ = 0.90: Eq. 5 (discount factor)

�(sst) = 6: Eq. 6 (sliding window size)

�bmi = 11: Sect. 5.2.2 (largest timespan for BMI variations)

1000 episodes: Sect. 5.1 (RL training episodes)

ground truth (Shani and Gunawardana 2011). Good performances are attributed to RS
that match the ground truth, especially when the recommendations are of user interest.

More specifically, the dataset is apportioned into training and test sets. After the
initial learning phase on the training set, for each state in the test set, we collect the
recommended actions (in terms of range of steps) from each considered approach.
The actions are the compared with the action actually taken by the user. State–action
instances are also been attributed to BMI positive or negative alterations. The per-
formances depend on how many actions match the ground truth in case of negative
alternations of BMI.

We indicatewithW (↓,=) andW (↑,=) the number of test state–action pairs thatmatch
the recommendations, which are characterized by a weight loss and gain alteration,
respectively. Likewise, the metrics W (↓,�=) and W (↑,�=) indicate the number of test
state–action pairs that do not match the recommendations.

We can cast the evaluation to the traditional set-based measures of precision and
accuracy, as follows:

Pr = W (↓,=)

W (↓,=) + W (↓,�=)
(9)

Acc = W (↑,=) + W (↓,=)

W (↑,=) + W (↓,=) + W (↑,�=) + W (↓,�=)
(10)

In other words, when the user undertakes an action that proves to be beneficial for
weight loss, but the recommender system fails to match it, the precision is negatively
affected. The accuracy metric seeks to measure how much the recommender is able
to match the actions that influence the user BMI on overall. If it is less significant for
the weight loss purpose, it gives us an additional dimension to the performance of the
algorithms in terms of prediction of good and bad actions. If the recommender is able
to identify actions that have the chance to increase the weight, they might however be
notified to the user, who can proactively alter her behavior accordingly to avoid them.
A recent study proves the associations between mortality risk and BMI levels below
18.5 kg/m2 (Bhaskaran et al. 2018), so recommendations for gaining weight cannot
be totally ignored.

For statistical validation, Wilcoxon signed-ranks test on each pair of classifiers at
confidence level of 0.01 has been computed to reject the null hypothesis (i.e., two
algorithms perform equally well).
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Fig. 11 Precision and accuracy measures of the recommendation on the test set

Figure 11 reports the outcomes of the experimental evaluation. Obvious results are
to be found in the baseline (R): the random approach chooses one of the five available
actions, gaining 20% of success on average.

In terms of percentage difference of precision averaged over the 10 folds, the pro-
posedRL-based recommender, which selects candidate actions by analyzing the recent
activity patterns, reaches the highest increments, namely 20.06%, 72.12%and 46.24%,
in comparison with MP, G and AT approaches. Increments of accuracy show compa-
rable increments.

But a significant observation is related to the recommendations provided by tra-
ditional apps associated with activity trackers (AT), which follow a locally optimal
choice, similar to a greedy strategy; therefore, they often obtain suboptimal outcomes
in terms of weight loss. Whenever the user decides to adhere to that strategy, trying to
steadily increment the count of steps every day, the chances of success decrease.

A sort of wisdom of the crowd is manifested when the recommendations are based
on the most common action given the current state (MP). Regardless the past behavior
of users, themost popular strategy suggests valid routines towardweight loss one-third
of the times, with higher accuracy with respect to purely greedy strategies.

These performance estimates on the considered real-world dataset confirm that
weight loss personalized strategies can be devised by taking into consideration behav-
ior patterns related to the physical activity, which has a proxy in the count of steps
sampled by the consumer-grade activity trackers.

7 Limitations

Our work has some limitations which we summarized below.

Limited explanatory power Our study has only a partial view over the multitude of
factors that impact health outcomes and, specifically, loss or gain of body weight.
While physical activity is hugely important for overall health and controlling weight,
other factors including food consumption,medications and overall physical andmental
health conditions, play a major role. Important confounders are not limited to the
personal sphere of the individuals under study but also pertain the context around
them. Ideally, social influence and environmental factors (e.g., weather, access to
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amenities, exogenous events) should be considered. Gathering data that are both high
dimensional and large scale is challenging, not least because of the privacy issues
that collecting very granular data entails. Our work makes a first step in that direction
by considering three dimensions (sleep, activity and weight) that are rarely studied
jointly, and does so on a rather large population. In the future, additional studies are
needed to bring important determinants of bodyweight into the equation. As additional
environmental or human dimensions become available through wearable sensors or
self-reports, the state spaces can be extended with more configurations.

Incomplete data The restricted set of signals used in our model is also a limitation,
mainly caused by the nature of the data collection process. The information gathered
from commercial activity trackers deployed “in thewild” is naturally noisy and incom-
plete: the signal is rarely observable for long and uninterrupted periods of time. To
partially tackle this intrinsic limit, we proposed to investigate significant weekly pat-
terns instead of focusing on longer periods of time. Our experimental results show that
this approach is effective, yet it misses important temporal signals such as seasonality
and other long-term patterns of the temporal traces.

RepresentativenessAnalyzing the behavior of the customer base of a consumer product
introduces also a problem of representativeness. The cohort of owners of wearable and
tracking devices is a self-selected sample of people which might not be representative
of the global population. Users of popular wearables and tracking apps tend to be
biased toward young, more affluent, gender-skewed populations.

Causality Our study is purely observational. Our method relies on longitudinal data
only and it is evaluated in an offline fashion, with no actual recommendation given to
real users. This is themost common setup adopted bymost studies in the recommender
system domain, primarily because it is often not possible to get direct access to the
user base to deliver interventions and to monitor their effects over time. As a result,
our framework has a good predictive power—it is able to anticipate which sequences
of actions lead to the desired outcome—but it cannot speak to the underlying causal
processes that lead to weight loss. To partly address this shortcoming, one could
experiment with statistical frameworks for causal modeling and possibly corroborate
the findings from the large-scale study with small-scale experiments conducted with
volunteers.

8 Conclusions

Contemporary technology provides us an unprecedented opportunity for the use of
consumer-grade activity trackers to both collect wealthy of data and investigate the
many aspects of the user behavior. An exploratory cluster analysis revealed some
significant patterns in terms of physical activity and type of sleep. The outcomes were
achieved from a real-life dataset of signals collected over an extended period of time
(1 year). A novel health recommender system based on the reinforcement learning
paradigm has been introduced to prove that specific patterns of physical activity, in
terms of step count, are also useful in the weight loss scenario. Whereas reinforcement
learning, case-based reasoning andoptimization techniques have alreadybe considered
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for improving people’s personal habits and attitudes, to the best of our knowledge none
of these paradigms have been evaluated in a real-world scenario related to weight loss.
Potential benefits can be obtained if the proposed RL-based approach is implemented
in fitness apps, for providing less challenging routines which, however, show effects
on weight loss maintenance over time.

The suggestions provided by the recommender are tailored to the particular behavior
of the user, but they do not take into consideration individual characteristics, such as the
exercise capacity, specific health risks, current medical conditions or, longer simply,
the age.

Future work shall consider stereotype-based user profiling to identify different
clusters of people with similar characteristics. For each cluster, a recommendation
substrategy is being conceived by the subset of data that better characterize the users
in the cluster. For instance, if the population is categorized by age into adolescents,
adults and elders; we can expect different physical activity behaviors between groups
in terms of frequency, intensity and continuity. By separately training the RL approach
on each subset of the population, we can expect more tailored strategies based on the
singular characteristics of individuals.
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