Web Based Management with Lua

Edison Ishikawa Noemi Rodriguez
ishikawa@ime.eb.br noemi@inf.puc-rio.br
Departamento de Engenharia de Sistemas — IME Departamento de Informética — PUC/Rio
Praca Gen. Tibircio, 80, Praia Vermelha Rua M. S. Vicente 225, Gavea
22290-270 — Rio de Janeiro — RJ 22453-900 — Rio de Janeiro — RJ
Abstract

This paper describes an environment, based on the programming language Lua, for the de-
velopment of web based management applications. The paper discusses the main features of
the environment and presents an example web based application, LuaWebMan. LuaWebMan
provides a set of example management tools, but its more interesting feature is support for
dynamic extensibility; the user can redefine and extend the functionality of the tool through
the management application itself.

keywords:

web based management, scripting languages, extensibility

1 Introduction

Management applications typically run on machines with powerful graphical and processing fa-
cilities. While this makes sense in the context of large corporate networks, it may be too high
a demand on smaller environments. With the growth of network use in small companies and
groups, lighter management solutions have become a necessity. The world wide web is a natu-
ral place to look for a solution; it offers a standard graphical interface on any platform where a
HTML browser is available. The web paradigm separates processing (done at a server machine)
from visualization (conducted through a browser), allowing any machine on a network to act as a
management console.

However, development of web based network management applications is not trivial. Conver-
sion of reports or graphs to HTML format is simple, but that does not, in general, answer the
needs of administrators; often, direct access to the managed devices and services is required. This
requirement can be met through the use of dynamic web pages.

Network management needs are highly specific to groups or corporations. Different goals,
such as maximum performance or maximum security, may imply in different requirements as to
consolidated data and statistics. Once again, this may be no problem for large corporations,
who may have a specific application built according to their needs. Besides being expensive, this
requires a very precise idea of the managed network and of the management needs in the intended
lifescope of the management tool. For a more exploratory approach, it is important to have tools
which allow easy construction of specific management applications. If an interpreted language is
used as a basis for this construction, it is also possible to dynamically extend the management
application with new functionality. This approach, which allows a basic application to be designed
and distributed and specific facilities to be added as needed, has been used in several platforms
for management application development [Sch97, RLMS98, RM95].

In this paper, we present an environment for the development of web based management
applications. This environment is based on the interpreted language Lua [IFC96], and uses only
standard web technology. This allows resulting applications to be used through any standard
web browser. The paper also presents a sample application, LuaWebMan, which was built to
evaluate the development environment. One of the main goals of this evaluation was to verify
whether a web based application could provide a degree of extensibility similar to what can be
provided by a management application with a conventional architecture. So, besides integrating
some common management facilities, LuaWebMan can be customised by the user (typically a
system administrator), with the dynamic integration of new scripts and menu items. Many system
administrators have some programming background. This is acknowledged in LuaWebMan by
allowing extensions to be developed in the same environment that is used for managing the
network.

Section 2 discusses the different kinds of web based network management applications currently
available. In section 3, we present our development environment. Section 4 describes LuaWebMan.
Finally, section 5 contains some final remarks and points for future work.

2 Web Based Management Architectures

Current web based network management applications can be classified according to their func-
tionality, which is closely related to their implementation [Ste97, Ish98]. This classification leads
to the following groups:

Group 1 HTML formatting applications
Group 2 Embedded applications
Group 3 Gateway applications

Applications in the first group do not have direct access to the source of management informa-
tion (typically, SNMP agents); basically, they convert information made available through the use
of conventional management tools to HTML format. After that, this information can be accessed
through a browser. This kind of aplication is very simple, but useful, however they suffer with
the lack interactivity with management agents. Examples are management platforms providing
tools for HTML report generation. Also in this category are applications that dynamically access
databases generated by management applications.

The second group refers to systems where each managed device runs its own HTTP server.
The HTTP server acts as an agent, directly generating the requested (MIB) information. In
this category falls all web based management applications that comes embeded in a network
equipment, such as a router. Nowadays most vendors offer this functionality as a plus. For
instance, an application that falls in this category is ClickStart [Com97], developed by Cisco to
configure and monitor its own line of ISDN routers. This kind of application is good to manage
one equipament, once per time. To manage two or more equipaments as a set is necessary an
application that’s able to comunicate with other management agents than only itself.

In the third group of applications, the HT'TP server acts as a gateway between agents (SNMP
or other) and HTTP clients. In this case, the HT'TP server runs scripts which access interactively
arbitrary agents, one or more per time, typically using SNMP. LuaWebMan is an example of third
group aplication. A good related work to cite is IntraSpection. Like LuaWebMan, it’s a third
group aplication, developed by AsanteTecnologies [Tec97]. However, IntraSpection portability
is restrict to Windows NT plataform and is not extensible to support private MIBs or other
functionalities, rather than agregating personality modules written in C for third part vendors.

SNMP/HTTP gateways

A SNMP/HTTP gateway could be implemented in a number of ways, for example, extending
a conventional network management application to act as a HTTP server. However, the use of
standard CGI programs offers a series of advantages, such as the portability of the applications
across several implementations of the HT'TP server. This is the reason why ISAPI (Internet Server
Application Program Interface) from Microsoft and others proprietary tecnologies wich extends
the HT'TP server were not considered to implement LuaWebMan. The goal in this work is to
be close to standards. Using standards the application has more chance to get portability across
hardware and software plataforms.

The architecture of a management application based on CGI programs is shown in Figure 1.
A standard WWW browser acts as a management application window, and accesses a HTTP
server (using HTTP). According to the client’s selection, the HTTP server activates a specific
CGI program, which, if necessary, sends requests to SNMP agents using the SNMP protocol.

server

management station managed device

1CGI
NP

_

CGl programs

Figure 1: Management application based on a SNMP/HTTP gateway

As in conventional management applications, in this architecture the computation related
to management activity is concentrated in a single machine, the HTTP server. However, the
management activity itself can take place anywhere on the network, through a standard HTML
browser. The standard graphical facilities made available with WWW can be used directly in the
management application, with no need to generate specific graphical interfaces. Moreover, this
approach takes advantage of all the existing SNMP support.

3 The Lua Management Platform

Lua [IFC96, IFC] is a general purpose configuration language developed at PUC-Rio. Lua in-
tegrates in its design data-description facilities, reflexive facilities, and familiar imperative con-
structs. On the traditional side, Lua is a procedural language with usual control structures (whiles,
ifs, etc.), function definitions with parameters and local variables, and a Pascal-like syntax. On
the less traditional side, Lua provides functions as first order values, and dynamically created as-
sociative arrays (called tables in Lua) as a single, unifying data-structuring mechanism. Garbage
collection is also provided.

Tables are values that can be indexed not only by integers, but by strings, reals, tables, and
function values. As an example, the sequence of commands

sysUpTime = {}
sysUpTime{"ObjectId"} = 3
sysUpTime{"Type"} = "TimeTicks"
sysUpTime{"Access"} = "ReadWrite"

sysUpTime{"Description"} = "The time since the network
management portion of the system was last reinitialized"

creates an empty table and adds arbitrary fields to this table. Tables can also be created directly
with some values, as in:

llipll s llicmpll s lltcpll s lludp

mib2={"system", "interfaces", "at", egp",

"transmission",'"snmp"}

" "
2

(this implicitly associates the strings “System”, “Interfaces”, etc., to indexes 1, 2, ...). Syntactic
sugar is provided to allow the programmer to use the familiar sysUpTime.Type syntax instead of
sysUpTime{"Type"}.

We are currently using Lua as a basis for the development of network management applications
[MILR98, RLMS98]. One very interesting implication of the use of an interpreted language in this
context is the possibility of incorporating new functionality with no need for recompilation.

The choice of Lua, instead of the traditional Tcl/Tk for network management or Perl in Web
arena, was motivated by several points. In the first place, it is possible to use Lua with many
different levels of sophistication. Because of its simple syntax, Lua can easily be used by novice
users for simple configuration tasks, such as automatic determination of fonts and window sizes.
On the other extreme, the language offers some very powerful programming mechanisms [IFC96],
which can be used by more technically advanced programmers. In second place, it is very easy to
provide new libraries for Lua, due to the facilities available for interfacing it with C. This feature
was important to us, since it was necessary to develop a management library, LuaMan [RLMS98],
providing access to SNMP, DNS, and ICMP. LuaMan is briefly described in section 3.1. In third
place, a number of relevant libraries are already available for Lua; these include, for example,
LuaOrb [ICR98], which provides access to CORBA objects, CGILua [HBI98], which supports the
construction of dynamic web pages in Lua, and DBLua [dbl], which provides access to ODBC
databases. Section 3.2 presents a brief overview of CGILua, which was used in the development
of our web based application.

3.1 LuaMan

The construction of network management applications requires access to several relevant network
services. Access to SNMP (Simple Network Management Protocol) operations allows management
applications to interact with SNMP agents and so manipulate the management information stored
in their MIBs. Access to ICMP provides mechanisms which can be used for managing devices
which do not support SNMP. ICMP messages are also used in the classical algorithms for tracing
routes and IP network discovery [SL93]. Another facility which is also extremely useful in a
network management environment is access to DNS (Domain Name System) services.

Access to SNMP and other relevant network services was achieved in Lua through the develop-
ment of LuaMan, a library which provides Lua with a network management API. Several features
of LuaMan were based on Tnm, the Tcl Extensions for Network Management implemented in
Scotty [Sch97].

The current implementation of LuaMan is based on the Carnegie Mellon CMU SNMP Library.
The LuaMan library can be ported to a wide range of platforms. It is currently running on Linux,
Solaris, SunOS, IRIX and AIX. Work is under way for porting LuaMan to Windows NT.

3.2 CGILua

CGILua [HBI98] is a tool which supports dynamic web page generation by decoding data sent
to forms and simplifying dynamic HTML page construction. Two kinds of files are supported by

CGILua: pure Lua Scripts and mixed HTML files.

A pure Lua script is simply a Lua program; when this file is activated, the Lua program is
executed, and its output is interpreted as a HTML document. Figure 2 presents an example of
pure Lua script, which uses LuaMan functions to implement a classical MIB walk.

write("Content-type: text/html\n\n")
write ("<HTML>")
write ("<HEAD>"
write ("<TITLE>CGILua example: MIB walk</TITLE>")
write ("</HEAD>")
write ("<BODY>")
write("<H1>Objects in the system subgroup - MIB-II</H1>")
write ("<HR>")
write ("<TABLE>")
snmp_session = snmp_open{peer="imperio.telemidia.puc-rio.br",
root="system"
varBind = {object_name=root}
repeat
varBind = snmp_getnext(snmp_session, varBind)
if varBind then
if not strfind(varBind.object_name, root) then
mibEnd = true
else
write ("<TR><TD>",varBind., "</TD></TR>")
end --if not strfind
end --if varBind
until (not varBind) or mibEnd
snmp_close (snmp_session)
write("</TABLE>")
write ("</BODY>")
write ("</HTML>")

Figure 2: CGILua pure Lua script

A mixed HTML file is a template: a HTML document with escape marks which indicate fields
that are handled by the CGILua preprocessor. The HTML document can be manipulated with
any HTML editor, allowing designing concerns to be separated from programming. Three kinds
of fields are supported by CGlILua. Statement fields, surrounded by the escape marks <!--$$ and
$$-->, contain Lua chunks of code which are executed as normal Lua scripts. To generate any
values to the final page, they must explicitly write these values. Ezpression fields, surrounded by
the escape marks $| and |$, contain Lua expressions which are evaluated by the preprocessor to
obtain a value to be substituted for this field in the final page. Control fields indicate parts of the
document to be conditionally repeated. Figure 3 presents an example which uses the three kinds
of fields. This example describes a page showing all objects in subgroup IP of MIB-II.

The LOOP construct is analogous to C’s for statement, causing repetition of all the code between
the LOOP field and the matching ENDLOOP. Fields start, test, and action allow the programmer
to control the repetition.

In dynamic web page generation, security is always an important issue. The architecture
of CGILua, together with some features of the language itself, allows the server’s administrator
to define protected environments for the execution of CGILua programs [HBI98]. CGILua has
two main modules: a kernel, written in C, and a configuration script, written in Lua. When

<HTML>
<HEAD><TITLE>CGILua template example: iterating through group IP</TITLE></HEAD>
<BODY> <H1>traversal of group IP</H1>
<I--$$
function next_object()
name, errn = mib_fullname(vb.oid)
still_ip = strfind(name,"ip")
if (still_ip) then
vb,err,ind = snmp_getnext(sl,vb)
end
end
sl,err = snmp_open{peer="200.20.120.198", timeout=10}
$$-——>
<HR>
<TABLE BORDER=1 WIDTH=100%>
<TR>
<TD>0bjectId</TD>
<TD>0bjectName</TD>
</TR>
<!--$$ LOOP start="vb, err,ind = snmp_getnext(sl,"ip")",
test=" (err == SNMP_NOERROR) or (still_ip)",
action="next_object()" $$——1>
<TR>
<TD>$|vb.oid|$</TD>
<TD>$ |name | $</TD>

</TR>

<!--$$ ENDLOOP $$-—-!'>
</TABLE>

<!--$$ snmp_close(sl) $$-->
</BODY></HTML>

Figure 3: CGILua mixed HTML file

a CGILua page is accessed, the HTTP server activates the kernel, which prepares an execution
environment and then activates the configuration script. Among other initialization activities,
the kernel creates a facility that allows a Lua program to erase a global function while keeping
private access to it. This facility may be used in the configuration script to redefine functions
which are considered insecure for remote execution. Redefinition is supported by Lua’s treatment
of functions as first-class values.

4 LuaWebMan

This section describes Lua WebMan, a web based management application developed using CGILua
and the LuaMan library. Section 4.1 describes the implemented management tools, and section 4.2
describes LuaWebMan’s facilities for dynamic extension.

4.1 Basic Functionality

One of the goals of this work was to evaluate the ease of development of classic management tools
using the environment described in section 3. To this end, we selected a basic set of management
functions which explore some diversity in implementation. These functions include:

e network discovery and visualization
e traffic monitoring
e MIB browsing

e trap log

Figure 4 shows a LuaWebMan screen, which is organized in three regions. The left column
shows the list of currently available commands or menus. The uppermost region is reserved for
messages, and the central region is dedicated to network visualization. The network visualization
region allows the user to select a device, which will then be regarded as the current device by the
other management tools.

Network discovery and visualization

Network discovery, registration and visualization is supported by items in submenu “network”
of LuaWebMan. The idea is to maintain a set of known networks, which have been previously
registered by the user, and to allow management operations to take place either on one of these
previously known networks or on a new network. Figure 4 shows the network submenu. The
user may ask to see previously registered networks or to register a new network. Networks are
registered in a nested hierarchy.

The discovery menu item allows the user to discover the configuration of a new network and
have it registered as part of the persistent hierarchy. Discovery is implemented by using function
icmp netecho, from the LuaMan library, which, given a network address and a mask, returns the
addresses of active machines on the given network.

Other menu options are available for manually editing the network hierarchy or specific net-
works, as well as for entering information to be displayed about specific devices.

The selection of a workstation or other device in the displayed network triggers the execution of
a script. This script marks the selected device as the current device, upon which other applications
will operate. Moreover, it tries to get some information from the SNMP agent at the selected
device. When successful, the information returned by the agent is displayed in the message area.
An example can be seen in Figure 4.

The graphical display of dynamically determined network configurations as clickable areas,
allowing selection of an icon to trigger a script, is implemented with the help of ImageMaker
[Spo97], a tool which dynamically generates GIF images and sensitive maps' The use of this tool
allowed LuaWebMan to obtain a degree of interactivity normally associated to applets using only
standard HTML features.

Other Applications

The three other basic applications incorporated into LuaWebMan are grouped under the “Tools”
submenu.

The “Traffic” tool monitors incoming and outgoing traffic at a given IP address (as monitored
by a SNMP agent at that address). Using HTML’s refresh facility, a dynamic bar chart is built,
showing the total number of received and transmitted bytes in the last 50 cycles (a refresh takes
place every second). Figure 5 shows an example of this chart. The same procedure could trivially
be adapted to show ICMP or SNMP traffic, errors, etc.

! Besides network maps, ImageMaker also supports the dynamic construction of bar and pie charts as sensitive
maps.

= E FHetscape: LUAMAH for Web
Location: |http:/ fwww. tecgraf .ouc-rio.br/~edison/ tese/html / g
CD0
Metwork
display
discover _EI _El _El _El I
13982 16.22 139.8216.23 139.8216.26 139.8216.28 139821
e eniion L —ade igponda brahrng deseanh
delete anhecidon descanhecidon desconhecidon descanh
Back 139821643 139.8216.44 139821645 139.8216.46 139.821
descanhecidn descanheacidn descanhecida descanhecidn deseanhd
deserrhecidon descanheciton descanheciton deserrhecidon deserrihe
139.8216.50 139.82 85 254
deseanhecidn reisber
descarhecidon descanhecidon

Figure 4: LuaWebMan: network display

The bar chart is built using a standard HTML table. This is in contrast to standard display
of graphs in GIF or JPEG format. The use of a HTML table greatly reduces the amount of
information transmitted from server to browser.

The “MIB Browser” tool is a standard MIB browser, again using HTML tables to display
information. A form is used to allow the user to browse through the tree and to request object
values.

The “Trap” tool displays a new window with a log of the last traps generated. A separate
process is responsible for receiving the traps and logging them on a file. It would be more
interesting to have some asynchronous mechanism to allow the tool to generate an alarm whenever
a trap occurs. This is difficult to obtain in the standard client-server web environment, as will be
discussed in section 5.

4.2 Extending LuaWebMan

The kind of web based feature discussed in the previous section is currently available on a num-
ber of tools. The distinguishing feature in LuaWebMan is the possibility of being dynamically
extended, and the fact that extension takes place in the same environment which is used for net-
work management. It is not necessary to switch to a different environment in order to build new
management functionality.

Two levels of programming are offered to the user for the creation of new functions. On the
first level, the user may browse, create, and modify CGILua scripts, as well as explicitly order
their execution. On this level, the user may write Lua scripts using any of the available libraries
and interactively test these programs. This provides the flexibility of an interactive console; the
programs, however, are always executed on the server. LuaWebMan maintains all scripts created
by a specific user in a separate area (directory), allowing the user to create new persistent scripts.

| E= ENetscape: Traffic in 139.62.16.43

139.82.16 43

traffic — % of peak rate (1035 bps)
10

0g
08
07
08
05

04
03
02
01

fime

| receivedsiransmitted bytes

Figure 5: LuaWebMan: traffic monitoring

This functionality is offered by the items in menu “Scripts”. On a second level, the user may
associate existing scripts to existing or new menu items. This functionality is available through
submenu “Interface”.

In a typical scenario, to create a new extension, the user would first create and test a new
script, and then associate this script to a new menu item. We will now follow this procedure step
by step, using as an example the creation of a script which implements ping, based on the use of
function icmp_echo.

<HTML>
<HEADER><TITLE>PING</TITLE></HEADER>
<BODY BGCOLOR="#FFFFFF">

<!--$%
campos={ {txt="ping address: ", type="text", name="ip",
value="0.0.0.0"},
{txt=nil, type="submit", value="0k"}
X
$$-->

<FORM METHOD="post" ACTION="ping.lua'">
<!--$$ LOOP start="i=1", test="campos[i]", action="i=i+1" $$-->
<P> $|campos[i].txt|$
<INPUT TYPE="$|campos[i].typel|$" NAME="$|campos[i].name|$"
VALUE="$|campos [i] .value|$">
<!--$$ ENDLOOP $$-->
</FORM>
</BODY>
</HTML>

Figure 6: New HTML file for data input

To create this function, the user would initially go to the “Scripts” menu and activate the
“New” script option and create a script ping.html (in this case, a simple HTML form). Figure 6
shows the script. Next, the user would again choose the “New” script option and create the script
ping.lua (see field ACTION in Figure 6), shown in Figure 7. Finally, the user would go to menu
“Interfaces”, create a new menu item in menu “Tools”, called “ping”, and associate the selection
of this item to the ping.html script. Figure 8 shows the dialog for the creation of this association.
After this step, menu “Tools” will contain a new item, as shown in Figure 9. The figure shows

write("Content-type: text/html\n\n")
dofile("../../cgilua/config.lua")

write ("<HTML><HEADER><TITLE>PING</TITLE></HEADER>\N")
write (’<BODY BGCOLOR="#FFFFFF>"’)

icmp_init()

TripTime, ErrEcho = icmp_echo(cgi.ip)

if ErrEcho == ICMP_NOERROR then

write("<P>"..cgi.ip..": Time = "..TripTime.."s\n")
else

write("<P>..cgi.ip..": not responding.")
end

icmp_close()
write ("</BODY></HTML")

Figure 7: New Lua script for ping function

the result of selecting the new item “ping” in menu “Tools”.

5 Final Remarks

The goal of this work was to evaluate our management application development environment as
regards web based management, and to study in what measure we could overcome the limitations
imposed by web based management.

Development of LuaWebMan was simple and met with no major problems. A point which
makes the ease with which the tool was developed specially relevant is that the programmer of Lu-
aWebMan had no previous experience with either Lua or LuaMan. Although the set of predefined
tools in LuaWebMan is small, we believe it fulfils the role of demonstrating the environment’s
flexibility. Incorporation of other predefined management facilities would be straightforward.

One limitation of the tool is its inability to deal with asynchronous events. A common man-
agement facility is alarm generation, in which the system warns the user about newly received
traps (in our application, the user must explicitly ask to see the trap log). The behaviour of
“warning” the management application is compatible with a producer-consumer communication
model, and not with the standard client-server environment model supported by the web.

The extensibility of the tool is certainly its most important feature. To our knowledge, Lu-
aWebMan is the only web based management tool which allows the user to use the tool itself
to dynamically create extensions to interface and behaviour. It would be, in principle, possible
to implement this facility on any interpreted language with support for network management.
However, we believe the idea to be specially useful in the light of Lua’s simplicity and flexibility.

The architecture used in LuaWebMan, shown in Figure 1, concentrates all the management
information processing in the HTTP server. We are now studying alternatives for distribution.
One idea would be to allow the CGI/SNMP gateways to be organized in hierarchies. In this
scheme, which requires the CGI scripts to have access to HT'TP, the HTTP server shown in
Figure 1 would both be accessible directly by a browser, as it is now, and by other CGI/SNMP
servers. A master HTTP server in a given network would be able to retrieve data directly from
SNMP agents, through the CGI/SNMP gateway, and also from slave HTTP servers, possibly
respounsible for collection and consolidation of subnetwork management statistics.

Inrerface
New tool in menm s
e v Merwaork
HMew tool
“* Tools
Delere gronp & Serpts
Delete tool o Interface
" v Help
Modify tool
tool ping
scrpt Fing.html
parameters
Display results i < workarea
4 {ermpWin

Figure 8: Dialog for associating a new menu item to a script

=== o=

Location: | http://wwwe. tecgraf .puc—rio.br/~ediron/ tese/html /

LuaWebMan

=== ol=l

MIE Browser

Host

135.82.17.10

o

16

nat nat

138.832 5850 138.82.2030
tecgrof pue—ria s auarte emdar
net

&

1398295

fabr telernidia puc—riabr
nat

sl

Figure 9: New ping tool

=m0l

References

[Com97]

[dbl]

[HBIYS]

[ICR98]

[IFC]

[IFC96]

[Ish98]

[MILRIS]

[RLMS98]

[RMY5]

[Sch97]

[SL93]

[Spo97]

[Ste97]

[Tec97]

Cisco Company. Cisco - clickstart, 1997.
http://www.cisco.com/warp/public/728/clickstart/index.shtml.

DBLua library. http://www.tecgraf.puc-rio.br/manuais/dblua.

A .M. Hester, R. Borges, and R. Ierusalimschy. Building flexible and extensible web
applications with Lua. In WebNet 98 — World Conference of the WWW, Internet and
Intranet, Orlando, FL, 1998.

R. Ierusalimschy, R. Cerqueira, and N. Rodriguez. Using reflexivity to interface with
CORBA. In International Conference on Computer Languages 1998, Chicago, 1998.
IEEE.

R. Ierusalimschy, L. Figueiredo, and W. Celes. The programming language Lua.
http://www.tecgraf.puc-rio.br/lua/.

R. Ierusalimschy, L. Figueiredo, and W. Celes. Lua - an extensible extension language.
Software: Practice and Ezperience, 26(6), 1996.

E. Ishikawa. Geréncia de redes baseada em web. Master’s thesis, Depto de Informatica,
PUC-Rio, 1998.

A. Moura, E. Ishikawa, M. Lima, and N. Rodriguez. Aplicacdes de geréncia extensiveis.
In SBRC’98, Rio de Janeiro, Brasil, 1998.

N. Rodriguez, M. Lima, A Moura, and M. Stanton. A platform for the development
of extensible management applications. In INET’98, Geneva, Switzerland, july 1998.

M. Rose and K. McCloghrie. How to manage your network using SNMP. Prentice-Hall,
1995.

J. Schonwalder. Scotty - Tcl Extensions for Network Management Applications, 1997.
http://wwwsnmp.cs.utwente.nl/"schoenw/scotty/.

J. Schonwalder and H. Langendorf. How to keep track of your network configuration.
Proceedings Tth Conference on Large Installation System Administration (LISA VII),
1993.

Flavio Spolidoro. Imagemaker for network management, 1997. Projeto Final
de Curso. Depto de Informdatica, PUC-Rio. Descricao disponivel por www em
http://www.tecgraf.puc-rio.br/"spol/imagemaker/.

Steve Steinke. Network management meets the web. Network, 12(12):44-50, 1997.

Asante Technologies. Intraspection, 1997. http://www.intraspection.com.

