On the Development of IETF-based Network Monitoring Probes
for High Speed Networks

Ricardo Sanchez, Rodrigo Pereira, Luciano Gaspary

Universidade do Vale do Rio dos Sinos
Centro de Ciéncias Exatas e Tecnoldgicas
Programa Interdisciplinar de P6s-Graduacao em Computacdo Aplicada (PIPCA)
Av. Unisinos 950 — CEP 93.022-000 — Sao Leopoldo, Brazil

rnsanchez@cscience.org, {rspereira,paschoal}@exatas.unisinos.br

Abstract

In the recent years network managers have increasingly relied on monitoring tools to characterize and measure
high-layer protocol traffic in order to (a) justify investments on network equipment acquisition, (b) identify most
network-consuming users, (c) detect bottlenecks, to mention just a few reasons. The Internet Engineering Task
Force (IETF), aware of the mentioned demand, has been making efforts to standardize management mechanisms
that allow the characterization and measurement of both protocols and networked applications behavior. However,
the development of IETF compliant probes so that they sustain the traffic generated in high speed networks
is a current challenge, since communication links operating at 100Mbps or higher rates require efficient packet
filtering and processing mechanisms so that probes do not discard packets. This paper reports the development, by
our research group, of a RMON2 compliant SNMP agent. The paper focuses on the project decisions, including
the architecture and data structures used (having in mind that the agent is supposed to be deployed in high speed
network environments). The paper also presents a performance evaluation of the agent.
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1 Introduction

The popularization of computer networks in the recent years brought about the appearance of a high number of
distributed applications and high-layer protocols. Online games such as Quake, videoconferencing tools (e.g. Net-
Meeting and CUseeMe) and applications for message and file exchange, like ICQ and Kazaa, are some examples
of the “new” menu of networked applications. These applications and many other have been increasingly incorpo-
rated by network users to their daily routine, which for the network manager means the need for constant changes
in the network infrastructure to support the increasing traffic imposed by them. Such modifications involve costs
and, therefore, they need to be justified. Due to the diversity and complexity of these applications, not only ca-
pacity planning has become a more challenging task, but also traffic characterization and monitoring as well as
network optimization.

The Internet Engineering Task Force (IETF), aware of the mentioned problem, has been making an effort
to standardize management mechanisms that allow the characterization and measurement of both protocols and
networked applications behavior. Remote Network Monitoring MIB version 2 (RMON2) [1], Application Per-
formance Measurement MIB (APM) [2] and Real-time Application QoS Monitoring MIB (RAQMON) [3] are
examples of initiatives where the rmonmib working group has been working on since the end of the 90’s.

The importance of these standards is unquestionable. By using standard MIBs to accomplish protocols and
networked applications monitoring, it becomes possible to manage an heterogeneous infrastructure, with network
devices and probes from different vendors, using both the same interface (e.g. RMON2, APM and RAQMON
MIBs) and communication protocol (e.g. SNMP). Besides, in opposition to what happens to most of the proprietary
monitoring tools, a management station can collect data from several probes. Therefore, it is possible to monitor
several subnets from one central manager.
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The development of IETF compliant probes so that they sustain the traffic generated in high speed networks
is a current challenge. On the one hand, communication links operating at 100Mbps or higher rates require effi-
cient packet filtering and processing mechanisms so that probes do not discard packets. On the other, the size and
complexity of the supported MIBs do not help to make the monitoring process efficient. IETF MIBs, specially
RMON?2, are composed of several groups that provide the network manager with different views about the moni-
tored traffic. Hence, regardless of the architecture and data model used, each observed packet in the network traffic
requires one or more updates in the internal structures maintained by the probe (delaying the accounting process).

This paper reports the development, by our research group, of an RMON2 compliant SNMP agent. The paper
focuses on the project decisions, including the architecture and data structures used (having in mind that the agent
is supposed to be deployed in high speed network environments). The paper also presents a performance evaluation
of the agent. Besides discussing the difficulties of, at the same time, developing probes in conformance with IETF
standards and making them able to operate in high speed networks, it is also a major contribution of this work
the release of an open and free software-based RMON2 agent, which is an extension to NET-SNMP [4], and that
can be used as an alternative to the expensive probes as there are not many requirements to run it on Intel x86
stations (e.g. PCs). The agent can be deployed in any institution at close to zero costs and be used as a base to
other academic researches!.

The paper is organized as follows: section 2 describes some related work. In section 3 we present the developed
agent. The paper follows with a detailed presentation, in section 4, of the performance evaluation done with the
agent. Section 5 concludes with some final considerations and prospects for future research.

2 Related Work

Research works related to real time network traffic monitoring aim, in general, at proposing software architectures
that are able to handle a large number of packets with the lowest possible discard rates. An approach to accomplish
this objective is the use of efficient filtering and packet matching mechanisms. Monitoring tools proposed by
Malan and Jahanian [5] and Anagnostakis et al. [6] take this aspect into account. Windmill is a passive network
protocol performance measurement tool. The tool provides the underlying filtering mechanism as well as the
ability to reconstruct the high-level protocol streams. It utilizes dynamic code generation for fast packet matching
and is designed to demultiplex packets to a set of receivers (one-to-many). Through the combination of dynamic
compilation and a fast matching algorithm, Windmill’s WPF can match an incoming packet with five components
in less than 350ns on a 200MHz Pentium-Pro. FLAME is a programmable packet monitoring system that provides
a mechanism for loading code in the system kernel. It guarantees safety by using a type-safe language and run-time
checks. Developers claim that the system sustains itself even under Gigabit per second traffic rates.

Other complementary and equally important approach to develop efficient real time traffic monitoring probes
focuses on using data strucures that provide fast store and update procedures, since they are invoked at least once
for every analyzed packet. In the case of ntop [7], an open-source web-based network usage monitor that enables
users to track relevant network activities including network utilization, established connections, network protocol
usage and traffic classification, hosts information is stored in a large hash table whose key is the 48 bit-long
hardware (MAC) address that guarantees its uniqueness. Each entry contains several counters that keep track of
the data sent/received by the host, sorted according to the supported network protocols. For each packet, the hash
entry corresponding to packet source and destination is retrieved or created if not yet present. IPTraf is a network
monitoring utility for IP networks that uses a similar approach [8]. The main data structures used by the various
facilities are doubly-linked lists. This makes it easier to scroll forward and backward, and the maximum number
of entries is limited only by available memory. Search operations on most facilities, are performed linearly, and
have a mild hit [8]. The IP Traffic Monitor (part of IPTraf) though uses a hash table for better search efficiency,
due to its propensity to grow quite rapidly.

Triticom, Network Harmoni, Cisco and Enterasys sell RMON2 probes that support 10 to 100Mbps traffic rates.
However, information about packet filtering optimization and processing are not provided by these vendors. The
RMON?2 agent our research group has developed, as presented in the next sections, makes use of a user-level packet
capture library and, therefore, tends to be less efficient than approaches that push this functionality into the kernel
(e.g. FLAME). However, the station where our agent is installed can be used to run other applications concurrently.
Regarding the data structures used to accomodate statistics provided by RMON?2, we have mostly employed ta-
bles (implemented as vectors) indexed by hash functions. Besides, we have used additional mechanisms such as
caching to improve agent efficiency (to support high-speed network traffic).

1t is important to highlight that there is no other open and free RMON2 agent implementation available.
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3 Internals of the RMON2 Agent

In this section we describe the RMON2-compliant SNMP agent developed by our research group. The section
starts with a brief review of the RMON2 MIB (sub-section 3.1), followed by a detailed description of the agent’s
architecture (sub-section 3.2). Then we present (a) the mechanisms used by the agent to store collected information
(sub-section 3.3) and (b) relevant optimizations implemented (sub-section 3.4).

3.1 A Brief Review of the RMON2 Management Information Base

The works to extend RMON MIB and include mechanisms to monitor higher-layer protocols began in 1994. This
initiative, called RMONZ2, resulted in the creation of RFC 2021 in January 1997 [1]. When monitoring high-layer
protocols such as network and application-layer protocols, it is possible to visualize the whole corporate network
instead of individual segments. Briefly, the groups defined in RMON2 MIB are:

e protocol directory (protocolDir): repository that indicates all the protocol encapsulations that the probe
is capable to interpret; this group is composed of a single table;

e protocol distribution (protocolDist): provide statistics about the amount of traffic generated by each
protocol encapsulation observed by the probe; it is composed of a control (protocolDistControl) and
a data table (protocolDistStats);

e address map (addressMap): associates each network-layer address to the respective MAC address, storing
it in a table;

o network-layer host (n1Host): collects statistics about the amount of input/output traffic of the hosts based
on their network-layer addresses; composed of a control (h1HostControl) and a data table (n1Host);

o network-layer matrix (n1Mat rix): provides statistics about the amount of traffic between host pairs based
on their network-layer addresses; the network-layer matrix group is composed of two control tables (h1Matrix—
Control, nlMatrixTopNControl) and three data tables (n1MatrixDS, nlmatrixSD, nl-
MatrixTopN);

e application-layer host (alHost): collects statistics about the amount of input/output traffic of the hosts
based on their application-layer addresses; it is composed of a data table (a1Host) and is controlled by the
network-layer host control table (h1HostControl);

e application-layer matrix (alMatrix): provides statistics about the amount of traffic between host pairs
based on their application-layer addresses; the application-layer matrix is composed by three data tables
(alMatrixDS, alMatrixSD, alMatrixTopN) and is controlled by the network-layer matrix con-
trol tables (h1MatrixControl, hlMatrixTopNControl);

e user-history collection (usrHistory): periodically samples objects specified by the user (manager) and
stores the collected information in tables;

e probe configuration(probeConfig): controls the configuration of various operational parameters that are
supported by the probe, software and hardware revision numbers of the probe, a trap destination table, and
SO on;

e rmon conformance (rmonConformance): describes the requirements for conformance to the RMON2
MIB.

The agent we have developed comprises the groups that provide statistical information: protocol directory,
protocol distribution, network-layer host, network-layer matrix, application-layer host e application-layer matrix.
Gaspary et al. describe in [9] the purpose of each of these tables in detail.

3.2 Architecture of the Agent

The agent runs on GNU/Linux stations and was developed as an extension to the Net-SNMP framework [4], using
the C language, the POSIX thread library and the packet capture 1ibpcap library [10]. Figure 1 shows the agent
architecture. The PM (Processing Module) module is responsible for receiving and analyzing the captured packets
(detailed in sub-sections 3.2.1 and 3.2.2). Essential information of the analyzed packets are identified and stored
in an auxiliary data structure to be used later on by the UM (Update Module) module. The UM module, with the
obtained information, updates the tables that store the statistics provided by the RMON2 MIB (sub-section 3.2.3).
Finally, the W (Wrapper) module is an interface of the developed agent with the Net-SNMP daemon (sub-section
3.2.4).
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Figure 1: Internal organization of the agent

3.2.1 Packet capture

Packets are captured using the 1ibpcap (Packet Capture library) library, which provides the developer with a
high-level interface to capture all the packets flowing on the network segment. When the agent requests the library
to start capturing packets in a certain interface, it registers a call-back function that is invoked whenever a packet
is captured, delivering it to the PM module (see flow 1 in figure 1). The agent explores the filtering mechanisms
available in the library. Hence, only packets whose encapsulations are registered at protocolDir table are
captured, minimizing the number of packets that would be unnecessarily processed otherwise. When packets are
discarded, the number of dropped packets is measured and protocolDistControl, hlHostControl and
hlMatrixControl tables are updated.

3.2.2 Packet processing

To speed up the process of updating the tables that compose the RMON2 MIB, each packet delivered by the
libpcap to the PM module is analyzed and essential information are grouped in a PEDB (Packet Essential Data
Block). If the UM module is not busy, the PEDB is directly dispatched to it. Otherwise it is inserted in a circular
queue (as illustrated in flow 2 of figure 1). This queue leads to packet loss rate reduction (especially during network
traffic peaks). Figure 2 shows the essential information that are extracted from each packet and grouped in a PEDB.

IPv4 Packet Header TCP Protocol Header UDP Protocol Header
anL ToS Length Src Port Dst Port Src Port Dst Port
Identification |Fragmentation Sequence Number Length Checksum

TTL ey Checksum Acknowledge Number

Source IP Address DO| Reserv |Flags|  Window
Destination IP Address Checksum Urg Pointer
Options Pad

Figure 2: Essential information extracted from the captured packets

3.2.3 Update of the RMON?2 tables

Concurrently to the process just mentioned, the UM module checks if there is any pending PEDB in the queue.
If not, it is going to block until the PM module delivers new data. Whenever the UM module receives a new
PEDB, it updates the RMON2 MIB tables executing the procedure described below. To illustrate it, consider an
http/tcp/ipv4/ether2 packet being processed by an agent configured to identify the encapsulations listed
in figure 3.

o First, the UM module checks if there is an encapsulation registered at the prot ocolDir table that matches
the encapsulation of the PEDB being processed, taking only link and network layers into account. If so, as
occurs in figure 3 (a), then tables protocolDistStats, nlHost and n1Mat rix must be updated.

e Second, the UM module checks if there is an encapsulation registered at the protocolDir table that
matches the encapsulation of the PEDB being processed, taking only link, network and transport layers
into account. If so, as occurs in figure 3 (b), then tables protocolDistStats, nlHost, n1Matrix,
alHost and alMatrix must be updated.
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e Third, the UM module checks if there is an encapsulation registered at the protocolD1ir table that matches
the encapsulation of the PEDB being processed, taking all link, network, transport and application layers
into account. If so, as occurs in figure 3 (c), then tables protocolDistStats, nlHost, nlMatrix,
alHost and alMatrix must be updated.

. QO Q

Q> 0&\6 Q ) ~o"’;\\o

& & & sub-identifier probe initial

N < N R parameters textual description parameters  who created? row status

1 0,0,0,0 |ether2.ipv4 1,1,3,3 | Someone active (a)
+ . 4

1 2048 6 0 0,0,0,0 |ether2.ipvéd.tcp 0,1,3,3 | Someone active (b)
+ . o+

1 2048 6 0 0,0,0,0 |ether2.ipvd.tcp.http | 1,1,3,3 | Someone active (c)

Figure 3: Examples of encapsulations registered at the protocolDir table

3.2.4 Integration of the agent to the Net-SNMP framework

The integration between the RMON2 agent and Net-SNMP is done through a module (Wrapper) that registers
several call-back functions. These functions are invoked whenever the Net-SNMP daemon receives a request (get,
getnext or set) referring to RMON2 MIB objects (see flows 4 and 5 in figure 1). The Wrapper module had its
basic structure created by a tool called mib2c (included in Net-SNMP distribution). The skeleton automatically
generated has been populated with functions that (a) access the data structures developed (detailed in next sub-
section) and (b) retrieve/set the information being requested/informed.

3.3 Storing of Collected Information

This section describes how the statistics that comprise the RMON2 MIB are internally stored by the agent. Ba-
sically, three types of data structures have been used: direct access, hash function-based access and cache-based
access (detailed in the following sub-sections).

3.3.1 Data structures with direct access

The protocolDir and control tables (protocolDistControl, hlHostControl,
hlMatrixControl, hlHostControl and alMatrixControl) have been implemented as vectors with
direct access. These tables consist of vectors of pointers, which are used to allocate specific records of each table.
Due to the static nature of these data structures, table sizes must be configured before compiling the agent.

3.3.2 Data structures with hash function-based access

Data tables (protocolDistStats, nlHost, nlMatrix, alHost and alMatrix) have been implemented
as vectors of pointers whose indexing is done through a hash function applied to a key. This approach provides
fast data retrieval (in the first attempt in general). For each data table there is a particular way of generating the
key that will be used to access or insert an entry in its respective storage slot. As an example, figure 4 shows both
the composition of the key used to access or insert an entry in alHost and the process of collision resolution.

hash(3232629044, 0)
@ s

XOR « Collision
o)
hash(3232629044, 1)

(©) 3232629044 ® T3820 | —COrrect | sump——

tcp

Figure 4: Key generation, access to the alHost table and conflict resolution

To generate the key, a XOR logical operation is performed on the source network-layer address, illustrated in
figure 4(a), and the transport protocol identifier plus the destination application port (b), producing the key (c).
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By applying the hash function to this key, one obtain the first vector access index (d), enabling the access to the
table, illustrated in (e). In the example, one can observe that the entry in position (d) is not the one to be updated
(network-layer addresses and application ports do not match), resulting an access collision. When it happens,
it is necessary to calculate the second vector access index using the same key (c). By passing an offset of 1 as
argument to the hash function, a skip (spacing between the keys) of 35406 slots has been added to the initial index
(d), generating the second index (f). As one can see in the figure, this index will correctly point to the entry to be
updated (g). It is worth mentioning that each key has a different spacing between keys reducing the probability of
collisions.

Had other collision occurred, the previous step would be repeated using an offset of 2, and so on, until the
corresponding entry had been found. After using all possible offsets, it means a new entry is supposed to be
created and inserted in the table. Besides, the value for the maximum number of collisions must be updated, since
the last entry inserted is located after the search limit the agent does.

3.3.3 Data structures with cash-based access

The protocolDir table, besides being directly accessed, has an auxiliary structure that provides the function-
ality of a cache. As some encapsulations are identified more than others in the network traffic, they are promoted
and are moved to the header of a doubly-linked list. Hence, encapsulations that occur more frequently are located
in the protocolDir table in a shorter time (and with lower computational cost). To speed up the search for
encapsulations even more, the table uses three caches, one for each encapsulation level (network, transport and
application).

3.4 Optimizations

During the development of the agent we have put efforts into increasing the processor cache hit rates (in an attempt
to maximize the number of operations that are retrieved from the processor cache memory). The data structures
have been designed aiming at obtaining a better usage of the new features and resources provided by current proces-
sors. For example, current 1 686 processors have multiple parallel execution units, allowing anticipated instruction
decoding. Hence, while an instruction is being executed, the next is decoded, reducing the time the processor has
to wait for instruction decoding. There are also special parallel execution channels that allow operations on integer
and float point numbers to be executed in parallel.

4 Performance Analysis of the Agent

In this section we describe the performance analysis we have carried out to determine the sustained capacity of
the agent. The experimental setup used to run the experiments is presented in sub-section 4.1. Then we present in
sub-section 4.2 the measurements performed (using both homogeneous and realistic network traffic) to figure out
the performance of the agent.

4.1 Experimental Setup

To analyse the performance of the agent we have used a simple setup, consisting of two PCs connected through a
category 5e UTP crossover cable at 100Mbps. The source host has a 333MHz Intel Celeron (Mendocino) CPU and
64MB RAM. Its Ethernet controller is the 100Mbps 3COM 3c905B Cyclone. The operating system used in the
source host is the GNU/Linux (Slackware Linux 8.0, kernel 2.4.20). The destination host (where the RMON?2 agent
is installed) has a 1.7GHz Intel Pentium 4 CPU, 512MB RAM, an Intel i845 (Brookdale) chipset host bridge, a
100 Mbps 3COM 3c905C-TX/TX-M Tornado network interface card and runs GNU/Linux (Slackware Linux 8.1,
kernel 2.4.20).

4.2 Measurements

The first experiment consisted of transmitting 1,000,000 UDP packets (with the same protocol header) from source
to destination, at 100Mbps, using the packet generator module provided by the Linux kernel. This transmission
has been repeated 43 times varying the size of the packets generated, to achieve different packets per second (pps)
rates. The purpose of this experiment was to obtain the maximum number of packets per second the agent is able
to process and to identify the interference of the operating system on the agent monitoring capacity.
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In this first experiment, 64 to 1472 byte-long packets have been used. From 64 to 224 bytes, the packet sizes
have been increased of eight bytes in each run so that we could identify the maximum agent capacity. From 256
to 1472 bytes the packet sizes have been enlarged 64 bytes in each run. In figure 5 one can observe that the agent
capacity is highly affected by the heavy system load. From 208-byte long packets on, the system load allowed the
agent to process 58,900pps with a 8.68% loss rate. It is worth noticing that, although when using 216 byte-long
or larger packets the system has already some free CPU time, the agent still lose some packets. It occurs because
there is a bottleneck when delivering captured packets by the libpcap to the RMON2 agent, evidenced by the fact
that with 960-byte long packets there was a 0% loss rate (at 12,700pps), while with 1472-byte long packets (at
8,355pps) the loss rate reached 0.0015%.

Packet Loss Analysis (at 100Mbps)
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Figure 5: Packet loss rate at 100Mbps

To accomplish the realistic traffic test, a faster machine was necessary to substitute the one used as the source.
The employed machined as the new sender is identical to the receiver, capable of retransmitting the traffic at the
rate it was collected. Its characterization is shown in figure 6, containing 97.6482% of IPv4 packets from which
96.4051% are TCP packets (over the total of 1,000,000 packets) and 0.8486 are UDP packets. The remaining
packets were not analysed by the RMON2 agent.
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Figure 6: Characterization of the realistic traffic used to analyse the agent performance
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The average packet loss in the carried out experiments was of 23.9608%. During the experiments, it was
verified that the peaks of CPU use are directly related with packet dropping. A more refined analysis indicated
that the protocolDir table cache mechanism presents deficiencies when submitted to very diversified traffic,
as occurs in the carried out experiments, forcing the agent to discard packets.

5 Conclusions and Future Work

The RMON?2 MIB, as happens with others MIBs standardized by the IETF, has a large number of objects, offering
different views of the network traffic being monitored. To keep these views real-time updated, each captured
packet requires a numerous set of tables to be updated. For example, when a http/tcp/ipv4/ether?2 packet
is captured (assuming the agent is setup to analyse this encapsulation), it is necessary to update statistics related to
the network, transport and application protocols. This demands high computacional effort, directly affecting the
tool’s performance (as shown in figure 5).

The mechanisms chosen to support network monitoring (and to keep MIB objects up to date) are critical to
achieve the necessary scalability to cope with high-speed networks. On passive network monitoring, intensively
used by our agent, having a capture library on user-space becomes an inadequate approach to meet the imposed
requirements to monitor networks whose rates are close to and higher than 100Mbps. Our research group be-
lieves that one strategy to adopt is the development of a Linux kernel module with similar functionalities to the
libpcap library, aiming the agent specific needs. Other identified optimization points relate to a better CPU use,
as suggested in [11].

Our experiments point that the cache mechanism, used to improve protocolDir table access performance,
showed itself improper to specific conditions (traffic with a large variety of protocols). These observations lead us
to the redesign of its internal structure, replacing the actual cache with a hash table (work in progress).

Acknowledgements

We thank Débora Pandolfi Alves, Pedro Augusto Balsemdo, Juliano Valentini, Cristiano Roberto Hansen, Lufs
Felipe Balbinot, Maiko de Andrade, Jodo Marcelo Ceron, Peter Max Finzsch and Valter Roesler for their helpful
comments, ideas and contributions.

References

[1] S. Waldbusser. “Remote Network Monitoring Management Information Base Version 2 using SMIv2”. RFC
2021, INS, Jan. 1997.

[2] S. Waldbusser. “Application Performance Measurement MIB”. Internet Draft, Mar. 2003.

[3] A. Siddiqui, D. Romascanu, E. Golovinsky and R. Smith. “Real-time Application Quality of Service Monitor-
ing (RAQMON) MIB”. Internet Draft, Oct. 2002.

[4] Net-SNMP Project Homepage. http://www.net-snmp.org/.

[5] G. Malan and F. Jahanian. “An Extensible Probe Architecture for Network Protocol Performance Measure-
ment”. In Proc. of ACM SIGCOMM, Vancouver, 1998, pp. 215-227.

[6] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, J. Ioannidis, M. Greenwald and J. M. Smith. “Efficient Packet
Monitoring for Network Management”. In Proc. of the S8th IEEE/IFIP Network Operations and Management
Symposium, Florence, 2002, pp. 423—-436.

[7]1 L. Deri and S. Suin. “Ntop: Beyond Ping and Traceroute”. In Proc. of the 10th IFIP/IEEE Workshop on
Distributed Systems: Operations and Management, Zurich, 1999, pp. 271-283.

[8] IPTraf Homepage. http://cebu.mozcom.com/riker/iptraf/.

[9] L. P. Gaspary and L. R. Tarouco. “Characterization and Measurements of Enterprise Network Traffic with
RMON?2”. In Proc. of the 10th IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management, Zurich, October 1999, p. 229-242.

[10] tcpdump Homepage. http://www.tcpdump.org/.

[11] AMD Athlon Processor x86 Code Optimization Guide.
http://www.amd.com/us—en/Processors/TechnicalResources/.

172





