
Quantitative Temporal Reasoningy
E. A. EMERSON 1;2 A. K. MOK 1 A. P. SISTLA 3 J. SRINIVASAN 1;41. Department of Computer Sciences,The University of Texas at Austin,Austin, Texas 78712 USA2. Mathematics and Computing Science Department,Eindhoven University of Technology,5600MB Eindhoven,The Netherlands3. Department of Electrical Engineering and Computer Science,The University of Illinois at Chicago,Chicago, Illinois 60680 USA4. Dowell Schlumberger Inc.,Tulsa, Oklahoma 74134 USAAbstractA substantially large class of programs operate in distributed and real-time environments, and an integral partof their correctness speci�cation requires the expression of time-critical properties that relate the occurrence ofevents of the system. We focus on the formal speci�cation and reasoning about the correctness of such programs.We propose a system of temporal logic, RTCTL (Real-Time Computation Tree Logic), that allows the melding ofqualitative temporal assertions together with real-time constraints to permit speci�cation and reasoning at the twinlevels of abstraction: qualitative and quantitative. We argue that many practically useful correctness propertiesof temporal systems, which need to express timing as an essential part of their functionality requirements, canbe expressed in RTCTL. We develop a model-checking algorithm for RTCTL whose complexity is linear in thesize of the RTCTL speci�cation formula and in the size of the structure. We also present an essentially optimal,exponential time tableau-based decision procedure for the satis�ability of RTCTL formulae. Finally, we considerseveral variants and extensions of RTCTL for real-time reasoning.yThe work of the �rst author was supported in part by NSF grant DCR{8511354, ONR URI contract N00014{86{K{0763, and Nether-lands NWO grant nf{3/nfb 62{500. The work of the second author was supported in part by ONR Grant number N00014-89-J-1472 andONR URI contract N00014{86{K{0763. A summary of these results was presented at the Workshop on Automatic Veri�ation Methodsfor Finite State Systems, Grenoble, France, June 12-14, 1989. 1

1 IntroductionMotivated mainly by the virtue of separating concerns, most research into formal speci�cation and reasoning aboutcorrectness of programs has paid little heed to dealing with quantitative temporal properties. In fact, this has provedto be an advantageous abstraction because, in many applications, the correctness properties of a program need to bestated independently of concerns of e�ciency, performance, or features (e.g., the speed) of the underlying hardwareimplementation (cf. (Dijkstra 1976)). Given this, a common characteristic of most temporal or modal logics heretoforeproposed for program reasoning (cf. (Pnueli 1977)) is that they provide a formalism for qualitative reasoning aboutchange over time. For example, such formalisms allow the expression of assertions such as an event p will eventuallyoccur (stated as F p); note that this assertion places no bound on the time that may elapse before the occurrence ofp. Thus, with p = halt, F halt asserts that a program terminates, and, indeed, such a qualitative sort of correctnesstemporal property is in fact the strongest one that may be desirable to state of many programs.On the other hand, there is a substantially large class of programs that operate in distributed and real-timeenvironments including, for example, network communication protocols and embedded real-time control systems,an integral part of whose correctness speci�cation requires the expression of time-critical properties that relate theoccurrence of events of the system. For example, consider p = respond, in the context of a control system. There, wemight want to assert a quantitative correctness property such as F�50 respond, meaning that a response is guaranteedwithin bounded time, namely, 50 time units. By and large, the speci�cation and veri�cation of such systems has beenad hoc.In this paper, we show how to augment temporal logic to handle quantitative assertions in a systematic fashion.We focus primarily on one system of logic, RTCTL (Real-Time Computation Tree Logic), which extends the qualitativetemporal logic CTL (Computation Tree Logic, cf. (Emerson and Clarke 1982), (Emerson and Halpern 1982)). Temporallogic in general and CTL in particular have been demonstrated useful to reason about a variety of discrete systems,and thus, an appropriate extension such as RTCTL should naturally allow one to deal with various kinds of real-timeapplications. RTCTL allows the melding of qualitative temporal assertions together with real-time constraints topermit speci�cation and reasoning at the twin levels of abstraction: qualitative and quantitative. It supports e�cientreasoning at both these levels, and permits re�nement from the qualitative level down to the quantitative level. Ourapproach derives power from the fact that standard techniques in temporal logic such as satis�ability testing andmodel-checking have been shown to be applicable to automating the construction of, and mechanical reasoning about,concurrent programs (cf. (Emerson and Clarke 1982), (Clarke, Emerson, and Sistla 1983), (Manna and Wolper 1984),(Lichtenstein and Pnueli 1985)). We provide the groundwork for extending these techniques to real-time applications.The model-checking approach to program veri�cation, proposed in (Clarke and Emerson 1981) and (Clarke,Emerson, and Sistla 1983), may be summarized as follows. The global state transition graph of a �nite-state concurrentsystem may be viewed as a �nite temporal structure, and a correctness speci�cation for the system is expressed as aformula in an appropriate propositional temporal logic. The model-checking algorithm is used to determine whether thestructure is a model of the formula (i.e., whether the formula is true in the structure), and, thereby, whether the given�nite-state program meets a particular correctness speci�cation. This approach is potentially of wide applicabilitysince a large class of concurrent programming problems have �nite-state solutions, and the interesting properties ofmany such systems can be speci�ed in a propositional temporal logic.The basic idea behind this mechanical model-checking approach to veri�cation of �nite-state systems is to makebrute force graph reachability analysis e�cient and expressive through the use of temporal logic as an assertionlanguage. Of course, much research in protocol veri�cation has attempted to exploit the fact that protocols arefrequently �nite-state, making exhaustive graph reachability analysis possible. The advantage o�ered by model-checking seems to be that it provides greater
exibility in formulating speci�cations through the use of temporal logicas a single, uniform assertion language that can express a wide variety of correctness properties. This makes it possibleto reason about, for example, both safety and liveness properties with equal facility.Because of the simplicity of the model-checking problem and the e�ciency of its solution, the model-checkingapproach has found several applications to the automatic veri�cation of temporal systems. So far, model-checkingalgorithms for several temporal logics have been used to verify a large number of �nite-state systems ranging fromexamples of concurrent programs presented in the academic literature (such as solutions to the mutual exclusion and2

other synchronization problem) to network communication protocols to VLSI circuits (cf. (Clarke, Emerson, and Sistla1983), (Lichtenstein and Pnueli 1985), (Emerson and Lei 1985), (Browne 1986), (Queille and Sifakis 1981), (Clarkeand Grumberg 1987)).We develop a model-checking algorithm for RTCTL which, like the algorithm for CTL, has complexity linearin the size of the RTCTL speci�cation formula and in the size of the global state-space graph. The key observationthat makes this possible is that the model-checking algorithm can easily recover not only whether an eventuality isful�lled, but also when (cf. (Clarke and Emerson 1981), (Emerson and Lei 1986), (Emerson and Lei 1987)).Next, we focus on the satis�ability problem for RTCTL. We exhibit an exponential time decision procedurefor RTCTL, using a tableau-based approach (cf. (Emerson and Clarke 1982), (Emerson and Halpern 1982)), andshow that it is essentially optimal. Our algorithm provides a basis for automating the synthesis of programs withtiming-constraints by a method similar to the qualitative approach described in (Emerson and Clarke 1982), (Mannaand Wolper 1984), and (Pnueli and Rosner 1989).Finally, we consider some extensions and variants of RTCTL, which allow various combinations of modalitiessuch as F�kq and F=kq. Somewhat surprisingly, the presence of the F=k modalities causes a blowup in the complexityof satis�ability to be double exponential time complete, while model checking can still be done in polynomial time.The satis�ability decision procedure for the logic with F=k is of complexity deterministic single-exponential in thetemporal portion of the input formula, and deterministic double-exponential in the binary representation of the timingconstants in it.The rest of this paper is organized as follows. In Section 2, we present the logic RTCTL and some usefulassertions expressible in it. Section 3 deals with real-time model-checking, and Section 4 with the satis�abilityproblem for RTCTL. Section 5 considers various other quantitative temporal logics derived from CTL. Finally, relatedwork is discussed in the concluding Section 6.2 The Logic RTCTLThe system of branching time temporal logic CTL (Computation Tree Logic) has been extensively used to specify andreason about correctness properties of concurrent programs (cf. (Emerson and Clarke 1982), (Emerson and Halpern1982), (Clarke, Emerson, and Sistla 1983)). One disadvantage of CTL and other extant temporal logics, however, isthat they lack the ability to express properties of programs related to real-time. In this section, we de�ne RTCTL(Real-Time CTL), an extension to CTL that permits reasoning about time-critical correctness properties of programs,and give a sample of the kinds of program properties RTCTL can express. We begin, however, with a formal de�nitionof the syntax and semantics of CTL.Let � be an underlying alphabet of atomic propositions P , Q, etc. The set of CTL (Computation Tree Logic)formulae is generated by the following rules:S1. Each atomic proposition P is a formula.S2. If p, q are formulae, then so are p ^ q and :p.S3. If p, q are formulae, then so are A(p U q), E(p U q), and EXp.A formula of CTL is interpreted with respect to a temporal structure M = (S; R; L) where S is a set of states,R is a binary relation on S that is total (so each state has at least one successor), and L is a labelling which assignsto each state a set of atomic propositions, those intended to be true at the state. Intuitively, the states of a structurecould be thought of as corresponding to the states of a concurrent program, the state transitions of which are speci�edby the binary relation R. A fullpath x = s0; s1; s2; : : : in M is an in�nite sequence of states such that (si; si+1) 2 R foreach i; intuitively, a fullpath captures the notion of an execution sequence. We write M; s j= p to mean that \formulap is true at state s in structure M". When M is understood we write only s j= p. We de�ne j= by induction onformula structure: 3

S1. s0 j= P i� P is an element of L(s0)S2. s0 j= p ^ q i� s0 j= p and s0 j= qs0 j= :p i� it is not the case that s0 j= pS3. s0 j= A(p U q) i� for all fullpaths s0; s1; s2; : : : in M , 9i � 0 such that si j= q and 8j; 0 � j < i; sj j= ps0 j= E(p U q) i� for some fullpath s0; s1; s2; : : : in M , 9i � 0 such that si j= q and 8j; 0 � j < i; sj j= ps0 j= EXp i� there exists an R-successor t of s0 such that t j= pThe other propositional connectives are de�ned as abbreviations in the usual way: _ for disjunction,) forimplication, and � for logical equivalence. Other basic modalities of CTL are also de�ned as abbreviations: AFqabbreviates A(true U q), EFq abbreviates E(true U q), AGq abbreviates :EF:q, EGq abbreviates :AF:q, and AXqabbreviates :EX:q.We use jpj to denote the length of formula p. If p is a CTL formula, we take jpj to be the number of nodes in thesyntax diagram for p. If p is a (quantitative) RTCTL formula, jpj = jp0j+ c where jp0j is the length of the qualitativeCTL formula p0 obtained from p by deleting time bounds and c is the sum of the length of the bit strings representingin binary the constants in time bounds of p. For example, if p = AF�5(Q ^ R), then the corresponding qualitativeformula p0 is AF (Q ^R). We have jp0j = 4, charging 1 for the modality AF plus 1 for the connective ^ plus 1 for theproposition q plus 1 for the proposition R. The constant 5 in the time bound is represented by 101 in binary, a bitstring of length 3. Thus jpj = 4+ 3 = 7.We now consider some examples of CTL formulae useful to describe qualitative temporal properties of programs.AF q, for example, speci�es the inevitability of q: q must eventually hold along all paths. Thus, AG(p) AF q) saysthat p inevitably leads-to q: q eventually holds along every path stemming from a state at which p is true. Similarly,EF q indicates that q could potentially become true: it is true along some one fullpath. Note that none of thesemodalities allows one to express that q will in fact become true within a certain number, say 10, of state transitions:they merely assert that q will eventually become true.So we extend CTL to RTCTL. The set of RTCTL (Real-Time Computation Tree Logic) formulae is generatedby the rules S1{S3 above together with the rule:S4. If p, q are formulae and k is any natural number, then A(p U� k q) and E(p U� k q) are formulae.The temporal structures over which RTCTL formulae are interpreted are the same as CTL structures. The semanticsof the new RTCTL modalities are given by:S4. s0 j= A(p U� k q) i� for all fullpaths s0; s1; s2; : : : in M , 9i; 0 � i � k, such that si j= q and 8j; 0 � j < i; sj j= ps0 j= E(p U� k q) i� for some fullpath s0; s1; s2; : : : inM , 9i; 0 � i � k, such that si j= q and 8j; 0 � j < i; sj j= pIntuitively, k corresponds to the maximum number of permitted transitions along a path of a structure before theeventuality p U q holds. We follow the convention that each transition takes unit time for execution (but see theremark near the end of Section 3), so k speci�es a time bound.Some other basic modalities of RTCTL are de�ned as abbreviations: AF� k q abbreviates A(true U� k q) andEF� k q abbreviates E(true U� k q). We also de�ne the modality G� k (for each natural number k) as the dual ofF� k, i.e., AG� k p abbreviates :EF� k :p, and EG� k p abbreviates :AF� k :p.It is worth pointing that the RTCTL modalities elegantly generalize the analogous CTL ones. Speci�cally, notethat A(p U q) abbreviates 9k : A(p U� k q), and, similarly, E(p U q) abbreviates 9k : E(p U� k q). This motivates thefollowing de�nition: If A(p U q) is true at a state s of an RTCTL structure, we de�ne the rank of A(p U q) at s asthe smallest natural number k such that A(p U� k q) holds at s. The rank of AF q, E(p U q), and EF q are de�nedsimilarly.As usual, an RTCTL formula is said to be valid if it holds at all states of all structures. From the semanticsabove, it is easy to verify that the RTCTL formulae A(p U�k q) � (q _ (p ^ AXA(p U� (k�1) q))) and E(p U� k q) �4

(q_ (p^EXE(p U� (k�1) q))) are valid for k � 1. Also A(p U� 0 q) � q � E(p U� 0 q) is valid. These formulae may beregarded as the analogues of the �xpoint characterizations of the CTL modalities AU and EU ((Emerson and Halpern1982)).Note that we do not treat true parallelism but model concurrency in terms of interleaving in the usual way. Weshould point out that interleaving is a realistic assumption for many real-time applications such as avionics and otheron-board embedded systems. For such systems, hardware is typically quite limited. Often there is only (in e�ectz)a single processor on which many sequential processes are multiprogrammed, i.e., conceptually running concurrentlywhen viewed at a large level of granularity, but actually excuted by interleaving individual instructions from eachprocess on the single processor.We conclude this section by illustrating how the basic RTCTL modalities could be used to express importantcorrectness properties of programs that must place an explicit bound on the time between events. First, observe thatAF� k q, for example, speci�es the bounded inevitability of q, i.e., q must hold within k steps along all fullpaths. Thus,the RTCTL formula AG(p) AF� k q) speci�es that p always leads-to q within a bounded period of time, viz., k timeunits. This formula is therefore useful to specify, for example, that a system must respond (with the action q) to anenvironmental stimulus p within k units of time; the importance of speci�cations of this kind for temporal systems isunderscored in (Jahanian and Mok 1987).As a second example, consider a family of m processes, the schedules of which are required to satisfy the propertyof k-bounded fairness, i.e., each process should be scheduled for execution at least once every k steps of the system.This can be expressed by the RTCTL formula Vmi=1AF� kPi ^Vmi=1AG(Pi) AXAF� (k�1)Pi), where Pi indicatesthat process i is executed. The �rst set of conjuncts ensures that each process is in fact executed along the �rst ksteps, and the AG conjuncts ensure that, once executed, a process must be scheduled for execution again within ksteps. We may remark, as an aside, that the property that there be at least one k-bounded fair execution sequenceis expressed by the formula E�Vmi=1 F� kPi ^Vmi=1G(Pi) XF� (k�1)Pi)�, which does not conform to the syntax ofRTCTL.As a third and �nal example, consider a system speci�cation that requires that, on sensing an alarm, all normalprocesses be suspended, and a vigilant mode be entered for at least the next k time units during which only a restrictedset of critical activities is performed. The RTCTL formula AG(alarm) AG�kvigilant) expresses this requirement.3 Real-Time Model-CheckingIn this section, we present an e�cient algorithm for the model-checking problem for RTCTL that is of complexitylinear in both the size of the structure being checked and the length of the formula. The capability of RTCTL to allowone to reason quantitatively about time in addition to the qualitative reasoning a�orded by CTL enhances the utilityof model checking for such applications, as timing constraints play a key role in both network protocols and hardwarecircuits, as well as numerous other real time systems.Formally, the model-checking problem for RTCTL may be stated as: Given an RTCTL formula p0 and a �nitetemporal structure M = (S; R; L), for some state s 2 S is it the case that M; s j= p0? (Recall that the RTCTLstructure is said to be �nite if its size, jM j, de�ned as jSj+ jRj, is �nite.)Figure 1 presents the overall algorithm for this problem. It determines, for each state s in M and for eachsubformula p of p0, whether M; s j= p. The algorithm is designed to operate in stages: the �rst stage processes allsubformulae of p0 of length 1, the second, of length 2, and so on. At the end of the ith stage, each state is labelledwith the set of all subformulae of p0 of length no more than i that are true at the state. As the basis, note thatthe labelling L of M initially contains the set of atomic propositions (i.e., all subformulae of p0 of length 1) true ateach state of M . To perform the labelling on subsequent iterations, information gathered in earlier iterations is used.For example, a subformula of the form q ^ r, i.e., one whose main connective is ^, should be added to the labels ofprecisely those states already labelled with both q and r. Subformulae of the form :q are handled in like fashion.zHardware duplication may be used for the sake of fault tolerance.5

/* Input: A structure M = (S; R; L) and an RTCTL formula p0. *//* Output: There is a state s 2 S such that M; s j= p0. */for i := 1 to length (p0) do beginfor each subformula p of p0 of length i do begincase structure of p is of the formP , an atomic proposition : /* Nothing to do as states of M already labelled with propositions. */;q ^ r : for each s 2 S doif q 2 L(s) and r 2 L(s) then add q ^ r to L(s);:q : for each s 2 S doif q =2 L(s) then add :q to L(s);EX q : for each s 2 S doif q 2 L(t) for some R-successor t of s then add EX q to L(s);A(q U� k r) : AU check (q, r, min(k; jSj), A(q U� k r));A(q U r) : AU check (q, r, jSj, A(q U r));E(q U� k r) : EU check (q, r, min(k; jSj), E(q U� k r));E(q U r) : EU check (q, r, jSj, E(q U r));end; /* case */end; /* for */end; /* for */if p0 2 L(s) for some s 2 S then Output (true)else Output (false);Figure 1: A Model-Checking Algorithm for RTCTL.procedure AU check (q; r; k; f);beginfor each t 2 S, count(s) := 0;AU0 Set := fs 2 S : r 2 L(s)g;j := 0;while j < k doTEMP := AU j Set;while TEMP 6= ;remove some t from TEMP;for each R-predecessor s of t docount(s) := count(s) + 1;if :ranked(s) and count(s) = degree(s) and q 2 L(s) thenadd s to AU j+1 Set;add f to L(s);endj := j + 1;endend; /* AU check */ Figure 2: The procedure AU check.6

procedure EU check (q; r; k; f);beginEU0 Set := fs 2 S : r 2 L(s)g;j := 0;while j < k doTEMP := EU j Set;while TEMP 6= ;remove some t from TEMP;for each R-predecessor s of t doif :ranked(s) and q 2 L(s) thenadd s to EU j+1 Set;add f to L(s);endj := j + 1;endend; /* EU check */ Figure 3: The procedure EU check.Modal subformulae are handled by the procedures shown in Figures 2 and 3 as described below. When the algorithmterminates, the label of each state indicates the subformulae of p0 true at the state.The modal subformula A(q U� k r), is processed by invoking the AU check procedure. The �rst two parametersare q and r while the third parameter corresponds to k. Note, however, that for any integer k � jSj the subformulaA(q U� k r) is true in a particular state i� the subformula A(q U� jSj r) is true in that state, since any path throughMinvolving more than jSj states must form a cycle. For this reason the procedure AU check is invoked with min(k; jSj)as the third argument. Similarly, the procedures for the other modal subformulae are invoked with third argument.at most jSj. The fourth parameter is the modal subformula itself.Correct operation of the procedure AU check can be understood as follows. To determine the states at whichA(q U� k r) holds, it computes the rank j of A(q U� k r) at each state in the structure. Recall that the rank ofA(q U� k r) at s is the least value of j such that A(q U� j r) holds at s. The algorithm successively computes AU�j-Set = the set of states of rank j, for each j from 0 to jSj. The key idea is that AU�j+1 � Set = the set of unrankedstates which are labelled with q and which have all successor states already ranked and in AU�j0 �Set for some j0 � j.We point out that the rank of a node is 1 + the maximum of the ranks of its successors, which need not all beequal. We wish the algorithm to assign a rank to a node as soon as all its successors have been ranked. It can testif state s is ranked, by checking if L(s) contains any AU entry of the form A(qU�jr) for some j. The algorithm alsouses an integer valued counter for each node s, count(s), to keep track of how many successors of s have been ranked.When s is unranked and count(s) = degree(s), then s should be assigned the rank of 1 + the maximum rank of all itssuccessors. However, the algorithm does not have to go back and inspect the ranks of all successors to compute theirmaximum; nor, does it have to maintain the maximum of all ranked successors as it proceeds. Instead, note that thealgorithm assigns ranks to nodes in (nondecreasing) order of rank. Hence, if t is the successor of s that causes s to beassigned a rank then all other successors t0 of s have already been assigned ranks � rank(t) = j. Thus, the algorithmcorrectly sets the rank of s = 1 + j = 1+ maximum of the ranks of all successors of s. Then the original formulaA(q U�k r) is added to L(s).To analyze the complexity of the procedure AU check, we argue as follows. First, from the correctness of thealgorithm, we see that the sets AU j Set for j = 0; 1; :::; k are pairwise disjoint and are all contained in S. As a7

consequence the total number of times the body of the inner while loop is executed is bounded by jSj. The body ofthe inner for loop is executed at most once for each element in R. All the initialization and the other statements in theouter while loop are executed at most jSj times. Thus, we see that the complexity of executing the entire procedureAU check is O(jSj+ jRj).We can easily modify the procedure AU check so that we only use two set variables to keep the elements ofAU j Set and AU j+1 Set for each iteration of the outer while loop instead of using k such variables.To handle the modality E(pU�k q), we use the procedure EU check. The key idea is that EU�j+1�Set = the setof unranked states which are labelled with q and which have some successor state already ranked and in EU�j0 �Setfor some j0 � j. The procedure EU check can be proven to be correct by a similar argument and can also be shownto have complexity O(jSj+ jRj).Theorem 1 The model-checking problem for RTCTL is decidable in time linear in both the size of the input structureand the length of the input formula. 2Remark 1: It should be emphasized that time bounds larger than the size of the state space need not becomputed, since, e.g., AF�jSjq) AF�kq for any k > jSj. Thus, our algorithm does not require cost exponential inthe size of the time bounds (cf. (Alur, Courcoubetis, and Dill 1990)).Remark 2: We should also point out that, with minor modi�cations to the procedures AU check and EU check,the above algorithm can as e�ciently handle more general temporal structures, ones in which each element of thebinary relation R is labelled with a nonnegative integer cost that intuitively corresponds to the amount of time takento execute that transition. RTCTL structures as de�ned in the previous section may be thought of as labelling eachelement of R with a single unit of time.4 Satis�ability for RTCTLWe now turn to the problem of determining the satis�ability of an RTCTL formula. This problem may be stated as:Given an RTCTL formula f , is there a temporal structure M and a state s of M such that M; s j= f? If so, M is saidto be a model of f . The satis�ability problem for temporal logics has been shown to have applications to synthesis ofconcurrent programs from their temporal speci�cations (cf. (Emerson and Clarke 1982), (Manna and Wolper 1984),(Pnueli and Rosner 1989)). Note also that the RTCTL formula f is satis�able i� :f is not valid; hence exhibitinga decision procedure for satis�ability amounts to deciding the validity problem (i.e., determining if a given RTCTLformula is valid) as well.We will give a tableau-based algorithm to decide the satis�ability of RTCTL formulae. A naive way to do this isto translate the given RTCTL formula, f , to an equivalent CTL one, g, by using the �xpoint characterizations of theAU� k and EU� k modalities to expand each occurrence of these modalities in f . The tableau-based decision procedurefor CTL could then be used to determine the satis�ability of g. But the complexity of such an algorithm would bedouble exponential in jf j, as jgj itself would be exponential in jf j, and the CTL decision procedure is exponential inthe length of its input.Somewhat surprisingly, we can give a tableau-based decision procedure for RTCTL, whose complexity is stillonly single exponential in the size of its input, similar to that for CTL (cf. (Emerson and Clarke 1982), (Emersonand Halpern 1982))x). Let f be the RTCTL formula whose satis�ability needs to be determined. We �rst de�neseveral useful notions used in the description of the procedure, beginning with the Fischer-Ladner closure, CL(f), ofan RTCTL formula f (cf. (Fischer and Ladner 1979), (Emerson and Halpern 1982), (Lichtenstein, Pnueli, and Zuck1985)). For conciseness of presentation, we assume that f does not have any of the abbreviations listed in Section 2except AXp (for :EX:p). Identifying ::p with p, and A(p U� 0q) and E(p U� 0q) with q for any RTCTL formulaep and q, CL(f) is the smallest set of formulae containing f and satisfying the following eight conditions:xWe refer the reader to (Emerson 1990) for a survey of temporal logic decision procedures.8

A. :p 2 CL(f) , p 2 CL(f),B. p ^ q 2 CL(f)) p; q 2 CL(f),C. EX p 2 CL(f)) p 2 CL(f),D. AX p 2 CL(f)) p 2 CL(f),E. A(p U q) 2 CL(f)) p; q; AXA(p U q) 2 CL(f),F. E(p U q) 2 CL(f)) p; q; EXE(p U q) 2 CL(f),G. A(p U� k q) 2 CL(f)) p; q; AXA(p U� (k�1) q) 2 CL(f) for k � 1, andH. E(p U� k q) 2 CL(f)) p; q; EXE(p U� (k�1) q) 2 CL(f) for k � 1.Note that the size of CL(f) is exponential in jf j. We shall call a formula in CL(f) elementary if it is of the formEX p or AX p. We de�ne a subset S of CL(f) to be maximally consistent i� S satis�es all the following conditions:1. For each p 2 CL(f), :p 2 S , p =2 S,2. p ^ q 2 S , p; q 2 S,3. A(p U q) 2 S , q 2 S or p; AXA(p U q) 2 S,4. E(p U q) 2 S , q 2 S or p; EXE(p U q) 2 S,5. A(p U� k q) 2 S , q 2 S or p; AXA(p U� (k�1) q) 2 S for k � 1,6. E(p U� k q) 2 S , q 2 S or p; EXE(p U� (k�1) q) 2 S for k � 1,7. A(p U� 0 q) 2 S , q 2 S,8. E(p U� 0 q) 2 S , q 2 S,9. A(p U� k q) 2 S) for all j � k such that A(p U� j q) 2 CL(f), A(p U� j q) 2 S, and10.E(p U� k q) 2 S) for all j � k such that E(p U� j q) 2 CL(f), E(p U� j q) 2 S.We now show that the number of maximally consistent subsets of f is only exponential in jf j. An eventuality isany formula of the form A(p U q), E(p U q), A(p U� k q), or E(p U� k q). We shall call a formula in CL(f) quantitativeif it is of the form A(p U� k q), AXA(p U� k q), E(p U� k q), orEXE(p U� k q). We letH denote the set of quantitativeeventualities that appear in f as subformulae. We can decompose the positive formulae (i.e., formulae not of the form:p) in CL(f) into jHj + 1 sets: each quantitative eventuality H = A(p U� kH q) (respectively, H = E(p U� kH q))that appears in f has a corresponding set, YH , which contains all formulae in CL(f) of the form A(p U� j q) andAXA(p U� j q) (respectively, E(p U� j q) and EXE(p U� j q)), where j � kH . All other positive formulae in CL(f)are members of a separate set, Y0. It is easy to see that jY0j is linear in jf j, whereas, for any H 2 H, jYH j is exponentialin the number of bits in kH , and hence, exponential in jf j.Next, we note from Rule 1 above that in constructing any maximally consistent set S, we have two choices foreach formula in Y0: either include it in S or include its negation in S. For the formulae in YH , however, Rules 9and 10 imply that we can e�ectively choose only one j, viz., the smallest one, which is no more than kH , such thatA(p U� j q) or E(p U� j q) is in S. Also, once this choice of the smallest j is made, Rules 5 and 6 determine thequantitative elementary formulae of H that must appear in S. Thus, the number of distinct maximally consistent setsis of the order of 2jY0j �QH2H(kH + 2), i.e., of size 2O(jf j). Note, also, that the number of elements in a maximallyconsistent set is also exponential in jf j.The �rst step in the decision procedure is to construct the tableau for f . This is a directed graph which encodespotential models of f , so that f is satis�able i� there is a \collapsed" model of f contained in the tableau. Theinitial tableau, which we denote by T0, is a directed graph, whose nodes correspond to the maximally consistent setsof CL(f). A node corresponding to the set S is labelled with the formulae in S. We use the elementary formulae ina node to guide us in determining the edges of T0. An edge is added from node V to node W i� (a) for every formulaof the form AX p in V , p is in W , and (b) for every formula of the form :EX p in V , :p is in W .The next step is to prune T0 by deleting nodes for which the conjunction of the formulae in their label cannotever label any state of any temporal structure. Despite the fact that RTCTL has more kinds of eventualities thanCTL, this step is the same as the pruning step for CTL (cf. (Emerson and Halpern 1982)). The main task of thepruning step in the CTL algorithm is to check for each eventuality in the label of each node, that the eventuality isful�lled. For example, if the qualitative eventuality AFq appears in the label of node s, it must be that along eachfullpath from s there does indeed occur a node labelled with q. This is necessary to avoid the problem of \inde�nite9

postponement" where there is a fullpath starting at s all of whose nodes are labelled with AFq and AXAFq butnot q. In pruning for such qualitative eventualities, it is necessary and su�cient to check whether there is a DirectedAcyclic sub-Graph (DAG) contained in the tableau for that eventuality rooted at that node which certi�es ful�llmentof that eventuality at that node. For AFq this would be a DAG all of whose frontier nodes are labelled with q.For RTCTL, it might appear that such a DAG would need to be detected for the quantitative eventualities in thelabel of a node as well; however, this is not required because the local structure of the tableau (i.e., the way the initialtableau is constructed) guarantees that such a DAG can always be found. The essential point is that the bound onthe quantitative eventualities prevents inde�nite postponement, because the local structure of the tableau propagatesa decremented bound to successor states. For example, if AF�3q labels s but q does not, then the successors of smust be labelled with AF�2q, and so on, ensuring ful�llment within 3 steps.The pruning can thus be performed in time polynomial in the (exponential) size of the tableau. The remainderof the decison procedure is just as for CTL. The formula f is satis�able i� f 2 L(s) for some node s in the �nal,pruned tableau, and when f is satis�able a model for f is contained in the tableau. Thus we have establishedProposition 2 The above algorithm decides the satis�ability of its input RTCTL formula f correctly and in time2O(jf j). 2Thus, we have a deterministic decision procedure for RTCTL whose complexity is at most exponential in thelength of f . Since the problem of determining the satis�ability of CTL formulae is deterministic exponential timecomplete ((Emerson and Halpern 1982)), and since RTCTL subsumes CTL, our algorithm is essentially optimal:Theorem 3 The satis�ability problem for RTCTL is deterministic single exponential time complete.Note that the techniques in (Emerson and Clarke 1982) and (Emerson and Halpern 1982) to construct the initialtableau \bottom-up" are applicable to RTCTL as well. Thus the exponential blow-up in jf j need be incurred only inthe worst case, rather than in the average case as would be done by the above naive construction of the initial tableau.5 Other Quantitative Modalities and Temporal LogicsIn this section, we brie
y consider two other quantitative temporal modalities: U� k and U= k. Intuitively, A(p U� kq)says that q is true after k or more time instants along each fullpath and p is true till then. Similarly, A(p U= kq)states that q is true exactly at the kth time instant along all fullpaths and p is true at each of the preceding k � 1time instants. More formally, we de�ne the logic CRTCTL (Complete RTCTL) to comprise the formulae generatedby the rules S1{S4 in Section 2 together with the rules:S5. If p, q are formulae and k is any natural number, then so are A(p U� k q) and E(p U� k q), andS6. If p, q are formulae and k is any natural number, then so are A(p U= k q) and E(p U= k q).We also de�ne two sublogics of CRTCTL: RTCTL�, whose formulae are obtained by using Rules S1{S3 and S5, andRTCTL=, whose formulae are generated by Rules S1{S3 and S6.The semantics of the new quantitative modalities are given by:S5. s0 j= A(p U� k q) i� for all fullpaths s0; s1; s2; : : : in M , 9i; i � k, such that si j= q and 8j; 0 � j < i; sj j= ps0 j= E(p U� k q) i� for some fullpath s0; s1; s2; : : : in M , 9i; i � k, such that si j= q and 8j; 0 � j < i; sj j= pS6. s0 j= A(p U= k q) i� for all fullpaths s0; s1; s2; : : : in M , sk j= q and 8j; 0 � j < k; sj j= ps0 j= E(p U= k q) i� for some fullpath s0; s1; s2; : : : in M , sk j= q and 8j; 0 � j < k; sj j= p10

Other abbreviations of these modalities can be de�ned as in Section 2. It is worth noting that AF= kp � AG= kpis a validity. So is A(p U= k q)) A(p U� k q) ^ A(p U� k q), but the same formula with the implication reversed isnot valid. We could also de�ne modalities such as U<k and U>k, but as we are dealing with discrete time, these areeasily expressed in terms of U� k and U� k respectively.>From the semantics above, it is easy to verify that the following formulae are valid. First, for each k � 1:(i) A(p U�k q) � p ^ AXA(p U� (k�1) q); (ii) E(p U� k q) � p ^ EXE(p U� (k�1) q); (iii) A(p U= k q) � p ^AXA(p U=(k�1) q); and (iv) E(p U= k q) � p ^EXE(p U= (k�1) q). Secondly, for k = 0: (v) A(p U� 0 q) � A(pU q);(vi) E(p U� 0 q) � E(pU q); and (vii) A(p U= k q) � E(p U= k q) � q. These formulae may be regarded as theanalogues of the �xpoint characterizations of the CTL modalities AU and EU ((Emerson and Halpern 1982)).We conclude this section with a discussion of results concerning the logics CRTCTL, RTCTL, RTCTL�, andRTCTL=.Regarding complexity, we can show that there is a polynomial time model checking algorithm for each of thequantitative logics.Theorem 4 The model checking problem for the logics RTCTL=, RTCTL� and CRTCTL can be decided in polynomialtime; viz. in time O(jpjjSj3) for input formula p and structure M = (S; R; L).Proof: We are assuming that all the constants in the formula are given in binary representation. We show thatwe can model check for the new modalities given by the rules S5 and S6 within the required time complexity. Foreach of the subformulas g of the form A(q U� k r) or A(q U= k r) or E(q U� k r) or E(q U= k r) we provide a labellingprocedure at the end of whose execution, for each state s, the subformula g is in the set L(s) i� s satis�es thesubformula. We show that the complexity of executing these labelling procedures is O(dlog kejSj3). Since the lengthof the binary representation of k is dlog ke it will automatically follow that the complexity of the model checkingalgorithm is O(jpjjSj3). We assume that by the time the labelling procedures for the above subformulas are invokedwe have have already executed the labelling procedures for the subformulas q and r.To label states with subformulas of the form A(q U� k r), we use the identity A(q U� k r) � A(q U= k A(q U r))and use the labelling procedures for the subformulas A(q U= k r) and A(q U r). To label states with subformulas ofthe form E(q U�k r) we use the identity E(q U� k r) � E(q U= k E(q U r)) and use the labelling procedures for thesubformulas E(q U= k r) and E(q U r).Now, we describe the labelling procedures for subformulas of the form A(q U= k r) and of the form E(q U= k r)that have complexity O(dlog kejSj3). If k = 0 then s satis�es A(pU=kq) i� s satis�es E(pU=kq) i� s satis�es q. Ifk > 0 then let l = k � 1. If l = 0 then s satis�es A(q U= k r) (respectively, satis�es E(q U= k r)) i� s satis�es q andfor all (respectively, for some) R-successors s0 of s, it is the case that s0 satis�es r. In these cases, it should easy tosee that we can correctly label the states with the above subformulas in the required time. So, we assume that l > 0.De�ne a new binary relation T = f(s; s0) : q 2 L(s)\L(s0)g. The relation T can be computed in time proportional tojM j. For any state s 2 S, s satis�es A(q U= k r) (respectively, satis�es E(q U= k r)) i� for all (respectively, for some)states s0; s00 such that (s; s0) 2 T l and (s0; s00) 2 R, it is the case that s00 satis�es r. Now, we show that the relationT l can be computed in time O(dlog kejSj3). From this it should be easy to see that the we can correctly label statesin the required time. We use \iterative squaring" to �rst compute the relations T; T 2; T 4; :::; T 2m where m = blog kc.Note that each of the relation in the above list can be computed by squaring the previous relation and this can beaccomplished in time O(jSj3) using boolean matrix multiplication algorithm. As a consequence all the above relationscan be computed in time O(jSj3dlog ke). Now the relation T l can be computed by composing together relations forthe appropriate powers of the binary expansion of l. For example, if l = 5 then the its binary expansion is 101 and T lcan be computed by composing T 4 and T . In general this involves at most dlog ke additional compositions. and canbe accomplished in time O(jSj3dlog ke). 2A decision procedure for the satis�ability problem for RTCTL� can be obtained in a manner analogous to thatof RTCTL. The validities such as A(q U� k r) � q ^ AXA(q U� k�1 r) for k > 0 and A(q U� 0 r) � A(q U r) suggestthat we de�ne the closure of formula A(q U� k r) to include all subformulas of the form A(q U� i r) for all i such that11

0 � i � k. However, if the subformula A(q U� k0 r) is in a maximal consistent set of subformulae then we must alsohave in the set A(q U� k00 r) for all smaller k00. Thus, what is signi�cant is the largest k0 such that A(q U� k0 r) is in thesubset. This means that we have only k + 2 = 2O(jkj) maximal subsets generated on account of A(q U� k r) and thatthe tableau is only of single exponential in size. Hence, the complexity works out to be deterministic single exponentialtime, with the rest of the details similar to those for RTCTL. A corresponding lower bound also follows since RTCTLsubsumes CTL which is exponential time-hard (cf. (Emerson and Halpern 1982)). Thus, we have established thefollowing theorem.Theorem 5 The satis�ability problem for RTCTL� is deterministic single exponential time complete.Contrary to the above theorem we see that using precise equality in the quanti�ed modalities costs anotherexponential as in the case of RTCTL=.Theorem 6 The satis�ability problem for RTCTL= is double exponential time complete.Proof:The upper bound follows by observing that we can translate a formula in RTCTL= into an equivalent CTLformula whose length is exponential in the length of the original formula, and then applying the exponential time CTLdecision procedure.For the lower bound we argue that every language accepted by an exponential space bounded alternating TuringMachine (ATM) is polynomial time reducible to the satis�ability problem for RTCTL=. The lower bound then followsfrom the results of (Chandra, Kozen, and Stockmeyer 1981) where it is shown that the set of languages that canbe recognized in deterministic double exponential time is exactly the set of languages recognized by ATMs usingexponential space.Let A = (Q;�; �L; �R; q0) be an ATM that uses space bounded by 2cn, for some constant c, on each input x oflength n. The set of states Q is partitioned into the sets QEXIST of existential states, QUNIV of universal states,QACCEPT of accepting states and QREJECT of rejecting states. Without loss of generality, we assume that for eachuniversal or existential state q and each symbol a 2 �, the �nite state control has exactly two moves �L(q; a) and�R(q; a). Each such move is a triple (r; b;D) where r is the next state, symbol b will be the new contents of the currenttape cell, and D is either LEFT, RIGHT or NULL indicating that the tape head moves left or right, or stays in thecurrent position, respectively. For each state q which is an accepting or rejecting state there is a single idle transitionto the same state leaving the tape contents and the head position unaltered.A con�guration is a sequence of symbols from the set � [(� � Q) that contains exactly one symbol from theset ��Q and is of length 2cn. If the ith symbol is a 2 � then it indicates the contents of the ith cell to be a; if it is(a; q) 2 � �Q then it indicates that the head is scanning the ith symbol which contains the value a and the currentstate is q. We say that a con�guration is existential, universal, accepting or rejecting according to its state. We saythat a con�guration is a successor of another con�guration if it is a new con�guration that results after the ATMmade one move. Note that a universal or existential con�guration has exactly two successors and the accepting orrejecting con�gurations have exactly one successor.The computation of an ATM A on input x of length n can be represented by a �nite tree T whose nodesare con�gurations of A. Each universal or existential con�guration has two successors, and \L-successor" and an\R-successor"{, while all the accepting or rejecting con�gurations are terminal nodes in T k. We label the nodes ofthe tree with a special proposition AC as follows. Each accepting con�guration is labelled with AC; a universal(respectively, existential) con�guration is labelled with AC i� both (respectively, one) of its successors are labelledwith AC. The ATM A accepts x i� its root is labelled with AC. We could give an RTCTL= formula which de�nes{The L and R \directions" in the tree T should not be confused with the directions LEFT, RIGHT, and NULL that the ATM can movealong its itape; they are unrelated.kMore precisely, we could say that each accepting or rejecting con�guration has a single successor that is an identical copy of itselfbecause the ATM \idles" upon reaching an accepting or rejecting con�guration.12

the tree T , but such a formula will be exponential in length. Instead of directly working with T, we consider anothertree T 0 which is associated with T. Each node (i.e., con�guration) of T is represented in T 0 by a path of length 2cn.We describe an RTCTL= formula which de�nes the tree T 0.The root of T 0 is labelled with a proposition PBEGIN . For each k � 0, each node at a depth k2cn is labelled withPBEGIN . These are the only nodes where PBEGIN holds. We call such nodes PBEGIN nodes. A proposition PENDholds at the parent of each PBEGIN node. We can easily give a formula of length polynomial in n that asserts theseproperties. For example, the formula AG(PBEGIN) AX(A(:PBEGIN U= k PBEGIN))), where k = 2cn � 1, assertsthat the distance between two consecutive PBEGIN nodes is 2cn.Every path from a PBEGIN node to the next PEND node de�nes a con�guration. Corresponding to each a 2 �and q 2 Q we have propositions denoted simply as a and q, respectively. We can easily give a formula that assertsthat at each point in a con�guration exactly one proposition in � holds and in every con�guration there is exactlyone position where some proposition in Q holds and all propositions in Q are mutually exclusive. If at a particularnode the propositions q and a are true then it denotes the symbol (a; q) in the con�guration. If the proposition a istrue and none of the propositions from Q is true then this denotes that the symbol in the corresponding position ofthe con�guration is simply a.Let t be a PEND node. Then every successor node u of t is a PBEGIN node and has the property that either aspecial proposition L holds on all paths starting from u up to the next PEND node or a special proposition R holds onall paths starting from u up to the next PEND node. Moreover, there exists such an L-successor u0 of t and such anR-successor u00 of t. Each path starting from such an L-successor (respectively, an R-successor) node until the nextPEND node represents the L-successor (respectively, a R-successor) con�guration of the con�guration that ended withthe node t. This property can be captured by requiring each PEND node to satisfyAX(L _ R) ^AX(L) A(L U (L ^ PEND))) ^ AX(R) A(R U (R ^ PEND))) ^ EXL ^EXRNote that there may be more than one L-successor (R-successor) path. But our formulas will ensure that all such L-successor (R-sucessor, respectively) paths are labelled identically so as to represent the same con�guration. It su�cesto stipulate for each a 2 � that AG(EX(a^L)) AX(L) a)) ^ AG(EX(a^R)) AX(R) a)), and similarly thatfor each q 2 Q, AG(EX(q ^ L)) AX(L) q)) ^ AG(EX(q ^ R)) AX(R) q)).Most importantly, we can also write a formula that relates the tape contents in one cell to the tape contents in thesame cell in the next con�guration. Since such nodes are separated by a distance of 2cn, we can give such a formula oflength polynomial in n. Using this approach we can express the property that each successive con�guration representedby a path segment is obtained by a move of A and for every such con�guration all its successor con�gurations occur ondi�erent paths. For example, if the propositions q 2 Q and a 2 � hold at a partcular node and q is a universal stateand �L(q; a) = (q0; a0; LEFT), then the formula (q^a)) EF=(2cn�1)(L^q0^EXa0) asserts that the tape symbols andthe head position are appropriately changed in the left successor con�guration. Similarly if none of the propositions inQ holds at a node then the contents of the corresponding tape symbols in the successor con�guration will be identical.This can also be asserted using the formula (a ^ :state)) EF=2cn(L ^ a) where state is the propositonal formula_fq : q 2 Qg.Finally, to capture proper labelling of the acceptance condition, we can obtain a formula which asserts that theproposition AC holds at the beginning of a universal con�guration (respectively, an existential con�guration) i� itholds at the beginning of all successor con�gurations (respectively, some successor con�guration) and AC holds atthe beginning of accepting con�gurations and does not hold at the beginning of rejecting con�gurations. We can alsoassert that AC holds at the root of the tree. It is fairly straightforward to express all such properties using formulaeof length polynomial in n, viz. : AC ^AG((PBEGIN ^ universal)) (AC � AF=2cn(PBEGIN ^ AC)])) ^AG((PBEGIN ^ existential)) (AC � EF=2cn(PBEGIN ^ AC))) ^AG((PBEGIN ^ accept)) AC) ^AG((PBEGIN ^ reject)) :AC)13

where universal denotes the formula A(:PEND U _ fq : q 2 QUNIV g), indicating the state of the con�guration isuniversal, etc. We can also express that the con�guration starting with the root of the tree is the initial con�guration.Let f be the conjunction of all the above formulae. Clearly, the length of f is polynomial in n and from our constructionf is satis�able i� A accepts the input x. 2Regarding expressive power, we have the following.Theorem 7 Each of the quantitative logics RTCTL,RTCTL=,RTCTL� and CRTCTL have equal expressive powercoinciding with that of the qualitative logic CTL. 2Proof: Each of these logics syntactically subsume CTL, and hence are at least as expressive as CTL. Each logic is atmost expressive as CTL because each quantitative modalities can be expressed in CTL using repeated applications ofthe above \�xpoint" characterizations. 2However, the quantitative logics can be exponentially more succinct than CTL because the translation of thebounded modalities into iterated nexttimes amounts to converting the time bound constants from binary to unary.What is interesting is that, despite their exponential succinctness advantage, the quantitative logics can still be modelchecked in polynomial time. Similarly, testing satis�ability for RTCTL and RTCTL� costs single exponential timewhich is the same as for CTL. It is only in the case of RTCTL= and CRTCTL that the exponential succinctness blowsthe complexity up to double exponential.6 Conclusion and Related WorkIn summary, we have shown how to extend the qualitative logic CTL to the quantitative logic RTCTL. RTCTL permitsmodalities such as AF�kq asserting that q is inevitable within k time units. RTCTL is suitable for time-boundedreasoning about hard real-time computing systems.We show that RTCTL model checking can be done in time linear in both the formula size and structure size.We believe that our model checking algorithm may be particularly well-suited to reasoning about embedded real-time systems where multiprogramming of multiple software tasks in a uniprocessor hardware environment makes ourinterleaving semantics quite realistic. In addition, we show that RTCTL satis�ability is decidable in deterministicsingle exponential time.We also consider the related logics RTCTL�, which permits modalities such as AF�kq, RTCTL=, which permitsmodalities such as AF=kq, and CRTCTL which permits modalites with bounds speci�ed in terms of =, �, or �. Modelchecking for each of these logics can still be done in polynomial time. Satis�ability for RTCTL� can also be decidedin single exponential time. Somewhat surprisingly, however, inclusion of the precise equality operator in RTCTL=and CRTCTL makes their decision problem complete for deterministic double exponential time.Among related work we mention the following. The idea of superscripting or subscripting a linear time tem-poral operator to get a time bounded modality such as F�kq can be traced back to \metric" tense logic studied byphilosophers (cf. (van Benthem 1983), (Burgess 1984), (Prior 1957), (Prior 1967)). The application of this naturalidea to the speci�cation of real-time systems was explored by Koymans et al ((Koymans, Vytopil, and de Roever 1983)and (Koymans 1990)), giving the speci�cation of a number of example systems using a linear time metric tense logic.Mechanical reasoning is not considered in these papers, however.Ostro� (Ostro� 1990) considers model checking in the framework of linear time for real-time systems, but notsatis�ability testing. In comparing his approach to model checking and ours, we note interesting di�erences in boththe models and the logics. Ostro� uses timed transition systems, where time is measured by the number of clock ticktransitions interleaved with ordinary computation transitions, that are compiled into a state reachability graph. Inour approach, as in the original papers on model checking of (Clarke and Emerson 1981) and (Clarke, Emerson, andSistla 1983), we start with a state reachability graph model. To incorporate real-time, our model is extended so thateach transition costs a certain amount of time, nominally, unit cost (although nonunit costs can also be handled; cf.Remark 2 following Theorem 1). Ostro�'s logic is a partially interpreted �rst order linear time temporal logic with14

an explicit clock variable. Our logic, in contrast, is a propostional branching time temporal logic with time boundsincorporated directly into the temporal modalities. When interpreted over �nite reachability graphs, the fragmentof Ostro�'s logic for which a model checking algorithm is given is analogous to a fragment of our logic where pathquanti�ers are restricted to only be universal. For example, Ostro�'s speci�cation (p ^ t = T)) 3(q ^ t � T + 5)corresponds (roughly) to our formula p) AF�5q. (The correspondence is not an exact equivalence because of thedi�erent way time is measured in each framework.) Ostro� does not provide model checking algorithms for compoundformulae or formulae analogous to p) EF�5q, which involve existential path quanti�cation. Indeed, the linear timeframework Ostro� has adopted does not permit even the speci�cation of such properties. Such properties involvingexistential path quanti�cation are useful in specifying lower bounds on nondeterminism and concurrency as well as inensuring that the logic is closed under semantic negation (cf. (Emerson and Halpern 1983)). We also remark that thesatis�ability problem for Ostro�'s logic can be shown to be (highly) undecidable (�11-hard).Our work here (cf. (Emerson, Mok, Sistla, and Srinivasan 1989)) appears to be the �rst to propose the use of timebounded modalities in the branching time framework, and to study the complexity of the the related decision problems(including both model checking and satis�ability testing) with an eye toward applications to real-time systems. Ourwork derives historically from the work of (Clarke and Emerson 1981). In particular, (Clarke and Emerson 1981) gavea model checking algorithm for (ordinary, qualitative) CTL which implicitly calculated the bounds on the ful�llmentof eventualities. However, these bounds were not explicitly stated in the logic or explicitly calculated by the algorithm,and there was no consideration of possible applicability to real-time systems. Moreover, the complexity of the algorithmwas quadratic rather than linear. In (Clarke, Emerson, and Sistla 1983) the complexity was improved to be linear. Butthat algorithm worked by an entirely di�erent method which no longer implicitly calculated the bounds for ful�llmentof eventualities. The algorithm presented here runs in linear time and explicitly calculates the eventuality bounds.Our logic, RTCTL, is a branching time, point-based temporal logic. Modalities such as AF�kq, however, inducebounded intervals of the form [0:k] along computation paths. It is worth noting that a number of (linear time)interval-based logics specialized to facilitate speci�cation of real-time systems have been proposed (cf. (Pnueli andHarel 1988), (Melliar-Smith 1987), (Narayana and Aaby 1988), (Alur, Feder and Henzinger 1991)). Interestingly,the metric interval temporal logic (MITL) of (Alur, Feder and Henzinger 1991) su�ers a blowup in the complexity oftesting satis�ability when \singular" intervals [k:k], i.e., precise equalities, are allowed that is analogous to but far moresevere than that encountered in going from RTCTL to RTCTL=: MITL becomes (highly) undecidable. The generalquestion of comparing the appropriateness of point-based versus interval-based logics for reasoning about real-timesystems is an interesting one that awaits further investigation.Subsequent work on branching time logics includes (Lewis 1990) which describes a model checking algorithmand its implementation for a CTL-like logic with interval bounded modalities, but does not analyze its complexityor consider testing satis�ability. It permits modalities such as AF [10:25]q meaning that \along every path, after atleast 10 time units but within 25 time units, q must occur". All modalities of the (Lewis 1990) logic are succinctlyexpressible in our logic CRTCTL, and conversely. For example, AF [10:25]q � AF=10AF�15q. It follows using ourresults of Section 5 that this logic's model checking problem is in polynomial time and its satis�ability problem isdouble exponential time complete.For our logic RTCTL the underlying semantics of time is discrete, and most of the work discussed above hascentered around models where time is discrete. It is also possible to consider real time systems under the assumptionthat time is dense (or, intuitively, \continuous"). A good deal of more recent work focussing on dense time has beendone by Alur [Al91] and Henzinger [He91] and others (cf. (Alur, Courcoubetis, and Dill 1990), (Alur and Dill 1990),(Alur, Feder and Henzinger 1991), (Alur and Henzinger 1989), (Alur and Henzinger 1990)).One interesting recent e�ort concerns reasoning about dense time systems speci�ed in TCTL (Timed CTL),proposed in (Alur, Courcoubetis, and Dill 1990). TCTL has almost the same syntax as RTCTL but is interpretedover branching dense time structures. Because of the denseness of time, satisi�ability testing for TCTL is highlyundecidably (�11-hard). Model checking is PSPACE-complete, being polynomial in the size of the state graph, butexponential in the size of the timing constraints. This remains true when the model checking framework is restrictedto discrete time. The exponential complexity for TCTL model checking should be contrasted with our polynomial (infact, linear) RTCTL model checking algorithm. In particular, contrary to the remark in (Alur, Courcoubetis, and Dill1990), our RTCTL discrete time model checking algorithm does not su�er a similar exponential blowup in the size of15

the time bounds. An alternative formulation of the TCTL logic is described in (Alur 1991) with syntax analogous to\half-order" modal logic (cf. (Henzinger 1990)).Finally, the work of (Hansson and Jonsson 1989) and (Hansson 1991) should be mentioned. It involves anotherreal-time logic called PCTL (Probablistic real-time CTL) intended for \soft" deadlines. A typical PCTL expressibleproperty is \with at least 50% probability p will hold within 20 time units." This is written in an essentially lineartime syntax as F�20�0:50p. A polynomial time model checking algorithm is given and a number of examples are provided.Other work in the fast growing area of formal approaches to real-time systems including real-time logics, spec-i�cation languages, and proof methodologies can be found in of real-time logics can be found in (Jahanian and Mok1986), (Jahanian and Mok 1987), (Gerth and Boucher 1987), (Jahanian and Mok 1988), (Hooman 1991), (Yodaikenand Ramaritham 1990) (Ostro� 1990b), (Ostro� 1991), (Alur 1991), (Henzinger 1991), and (de Roever 1991).

16

References[Ab80] Abrahamson, K. 1980. Decidability and Expressiveness of Logics of Processes, Ph.D. Thesis, Univ. of Washington.[Al91] Alur, R. 1991. Techniques for Automatic Veri�cation of Real-Time Systems, PhD Thesis, Computer Science De-partment, Stanford University, August, Technical Report STAN-CS-91-1378.[ACD90] Alur, R., Courcoubetis, C., and Dill, D. 1990. Model-checking for Real-Time Systems, Proc. of the Fifth IEEESymp. on Logic in Computer Science (LICS), pp. 414-425.[AD90] Alur, R., and Dill, D. 1990. Automata for Modeling Real-Time Systems, in 17th Inter. Conf. on Automata, Lan-guages, and Programming (ICALP90), M. Paterson, ed., Springer-Verlag LNCS no. 443, pp. 322-335.[AFH91] Alur, R., Feder, T., and Henzinger, T. 1991. The Bene�ts of Relaxing Punctuality, Proc. 10th Ann. ACM Symp onPrinciples of Distributed Computing (PODC), pp. 139-152.[AH89] Alur, R., and Henzinger, T. 1989. A Really Temporal Logic, Proc. of the 30th IEEE Symp. on Found. of Comp.Sci. (FOCS), pp. 164-169.[AH90] Alur, R., and Henzinger, T. 1990. Real-Time Logics: Complexity and Expressiveness, Proc. of 5th Ann. Symp. onLogic in Comp. Sci. (LICS), pp. 390-401.[Br86] Browne, M.C. 1986. An Improved Algorithm for the Automatic Veri�cation of Finite State Systems Using TemporalLogic, Proc. Symp. on Logic in Computer Science, Cambridge, pp. 260{266.[Bu84] Burgess, J. 1984. Basic Tense Logic, in Handbook of Philosophical Logic, D. Gabbay and F. Guenthner, eds., D.Reidel Pub. Co,[CKS81] Chandra, A., Kozen, D., and Stockmeyer, L. 1981. Alternation, JACM, vol. 28, no. 1, pp. 114-133.[CE81] Clarke, E.M. and Emerson, E. A. 1981. Design and Synthesis of Synchronization Skeletons Using Branching TimeTemporal Logic, Proc. of the Workshop on Logics of Programs, Yorktown Heights, D. Kozen, editor, LNCS#131,Springer{Verlag, pp. 52{71.[CES83] Clarke, E.M., Emerson, E. A. , and Sistla, A. P. 1983. Automatic Veri�cation of Finite State Concurrent SystemsUsing Temporal Logic Speci�cations, Proc. 10th Annual ACM Symp. on Principles of Programming Languages,Austin, pp. 117{126; journal version appeared in ACM Transactions on Programming Languages and Systems, vol.8, no. 2, pp. 244{263, 1986.[CG87] Clarke, E., and Grumberg, O. 1987. Research on Automatic Veri�cation of Finite State Concurrent Systems, Ann.Rev. Comp. Sci., vol. 2, pp. 269-290.[CBBG87] Clarke E. M., Bose, S., Browne, M., and Grumberg, O. 1987. The Design and Veri�cation of Finite State HardwareControllers, Technical Report CMU-CS-87-145, Carnegie-Mellon Univ.[deR76] de Roever, W.P. 1976. Recursive Program Schemes: Semantics and Proof Theory, Mathematical Centre Tracts 70,Mathematisch Centrum, Amsterdam.[deR91] de Roever, W.-P. 1991., editor, Real-Time: Theory in Practice, Springer-Verlag LNCS, to appear.[Di76] Dijkstra, E.W. 1976. A Discipline of Programming, Prentice{Hall.[Em90] Emerson, E.A. 1990. Temporal and Modal Logic, in Handbook of Theoretical Computer Science, vol. B., J. vanLeeuwen, editor, North{Holland, pp. 995-1072[EC80] Emerson, E.A. and Clarke, E. M., 1980. Characterizing Correctness Properties of Parallel Programs Using Fixpoints,Proc. 7th Annual International Colloquium on Automata, Languages and Programming, LNCS no. 85, Springer{Verlag, pp. 169{181.[EC82] Emerson, E.A., and Clarke, E. M., 1982. Using Branching Time Logic to Synthesize Synchronization Skeletons,Science of Computer Programming, vol. 2, pp. 241{266.[EH82] Emerson, E.A., and Halpern, J. Y., 1982. Decision Procedures and Expressiveness in the Temporal Logic of Branch-ing Time, Proc. of the 14th Annual ACM Symp. on Theory of Computing, San Francisco, pp. 169{180; also appearedin Journal of Computer and System Sciences, vol 30, no. 1, pp. 1{24, 1985.[EH83] Emerson, E. A., and Halpern, J. Y., 1983. Sometimes and Not Never Revisited: On Branching versus Linear TimeTemporal Logic, Proc. 10th. Annual ACM Symp. on Principles of Programming Languages, Austin, pp. 127-140;journal version appeared in Journal of the ACM, vol. 33, no. 1, pp. 151-178.[EL85] Emerson, E.A., and Lei, C.-L., 1985. Modalities for Model Checking: Branching Time Logic Strikes Back, Proc. 12thAnnual ACM Symp. on Principles of Programming Languages, New Orleans, pp. 84{96; also appeared in Science ofComputer Programming, vol. 8, pp. 275{306, 1987.17

[EL86] Emerson, E. A., and Lei, C.-L., 1986. E�cient Model Checking in Fragments of the Mu-Calculus, IEEE Symp. onLogic in Computer Science, pp. 267-278.[EL87] Emerson, E.A., and Lei, C.-L. 1987. New Results on Model-Checking in the Propositional Mu-Calculus, presentedat the Colloquium on Temporal Logic and Speci�cation, Altrincham, England, April 1987.[EMSS89] Emerson, E. A., Mok, A. K., Sistla, A. P., and Srinivasan, J. 1989. Quantitative Temporal Reasoning, Proceedingsof the Workshop on Automatic Veri�cation Methods for Finite State Systems (Participants Version), C-cube, theFrench National Concurrency Project, June 12-14, 1989.[FL79] Fischer, M., and Ladner, R. 1979. Propositional Dynamic Logic of Regular Programs, JCSS, vol. 18, no. 2, pp.194-211.[GB87] Gerth, R., and Boucher, A. 1987. A Timed Failures Model for Extending Communicating Processes, In Proc. of the14th Ann. Int. Conf. on Automata, Languages, and Programming, pp. 95-114, Springer LNCS no. 267.[HJ89] Hansson, H. and Jonsson, B. 1989. A Framework for Reasoning about Time and Reliability, Proc. of 10th AnnualIEEE Real Time Systems Symp., pp. 102-111, Santa Monica, Ca., December 5-7, 1989.[Ha91] Hansson, H. 1991. Time and Probability in Formal Design of Distributed Systems, PhD Dissertation, UppsalaUniversity, Sweden, DoCS91/27, September 1991.[He90] Henzinger, T. 1990. Half-Order Modal Logic: How to Prove Real-Time Properties, Proc. of the 9th. Ann. ACMSymp. on Princ. of Distr. Comp. (PODC), pp. 281-296.[He91] Henzinger, T. 1991. The Temporal Speci�cation and Veri�cation of Real Time Systems, PhD Thesis, ComputerScience Department, Stanford University, August 1991, Technical Report STAN-CS-91-1380.[Ho91] Hooman, J. 1991. Speci�cation and Compositional Veri�cation of Real Time Systems, PhD Thesis, EindhovenUniversity of Technology.[JM86] Jahanian, F., and Mok, A. K. 1986. Safety Analysis of Timing Properties in Real Time Systems, IEEE Trans.Software Eng., SE-12(9), pp. 890-904.[JM87] Jahanian, F., and Mok, A. K. 1987. A Graph-Theoretic Approach for Timing Analysis and its Implementation,IEEE Transactions on Computers, vol. C{36, no. 8, pp. 961{975.[JS88] Jahanian, F., and Mok, A. K. 1988. A Method for Verifying Properties of Modechart Speci�cations, Proc. of theNinth IEEE Real-Time Systems Symposium, pp. 12-21.[Koy89] Koymans, R. 1989. Specifying Message Passing and Time Critical Systems with Temporal Logic, PhD Thesis,Eindhoven University of Technology.[Koy90] Koymans, R. 1990. Specifying Real Time Properties with Metric Temporal Logic, Real Time Systems, vol. 2, no.4., pp. 255-299.[KVD83] Koymans, R., Vytopil, J., and de Roever, W.-P. 1983. Real Time Programming and Asynchronous Message Passing,Proceedings of the Second Annual ACM Symp. on Principles of Distributed Computing (PODC), pp. 187-197.[Le90] Lewis, H. R. 1990. A Logic of Concrete Time Intervals, Proceedings of the Fifth Annual Symposium on Logic inComputer Science (LICS), IEEE Press, pp. 380-399.[LP85] Lichtenstein, O., and Pnueli, A. 1985. Checking That Finite State Concurrent Programs Satisfy Their LinearSpeci�cation, Proc. 12th Annual ACM Symp. on Principles of Programming Languages, New Orleans, pp. 97{107.[LPZ85] Lichtenstein, O., Pnueli, A. and Zuck, L. 1985. The Glory of The Past, Proc. Conf. on Logics of Programs, Brooklyn,R. Parikh, editor, LNCS#193, Springer{Verlag, pp. 196{218.[MW84] Manna, Z., and Wolper, P. 1984. Synthesis of Communicating Processes from Temporal Logic Speci�cations, ACMTransactions on Programming Languages and Systems, vol. 6, no. 1, pp. 68{93.[M-S87] Melliar-Smith, P. M. 1987. Extending Interval Logic to Real Time Systems, Temporal Logic in Speci�cation, B.Banieqbal, H. Barringer, A. Pnueli, eds., pp. 224-242, Springer-Verlag LNCS no. 398, April 1987.[NA88] Narayana, K. T., and Aaby, A. A. 1988. Speci�cation of Real-Time Systems in Real-Time Temporal Interval Logic,Proc. of IEEE Real-Time Systems Symp., pp. 86-95, Dec. 1988.[Os90] Ostro�, J. 1990. Deciding Properties of Timed Transition Models, IEEE Transactions on Parallel and DistributedSystems, vol. 1, no. 2, pp. 170-183, April 1990.[Os90b] Ostro�, J. 1990b. Temporal Logic of Real-Time Systems, Wiley, London, 1990.18

[Os91] Ostro�, J. 1991. Survey of Formal Methods for the Speci�cation and Design of Real-Time Systems, manuscript,Computer Science Department, York University, Ontario, Canada, to appear in \Tutorial on Speci�cation of Time",IEEE Press, forthcoming.[Pn77] Pnueli, A. 1977. The Temporal Logic of Programs, 18th Annual Symp. on Foundations of Computer Science,Providence, pp. 46{57.[PH88] Pnueli, A., and Harel, E. 1988. Application of Temporal Logic to the Speci�cation of Real-Time Systems, in FormalTechniques in Real-Time and Fault Tolerant Systems, M. Joseph (ed.), Springer-Verlag LNCS no. 331.[PR89] Pnueli, A., and Rosner, R. 1989. On the Synthesis of a Reactive Module, Proc. 16th Annual ACM Symp. onPrinciples of Programming Languages, Austin, pp. 179{190.[Pr57] Prior, A. 1957. Time and Modality, Oxford University Press.[Pr67] Prior, A. 1967. Past, Present, and Future, Oxford University Press.[QS81] Queille, J.P., and Sifakis, J. 1981. Speci�cation and Veri�cation of Concurrent Systems in CESAR, Proc. of the 5thInternational Symposium on Programming, LNCS no. 137, Springer{Verlag, pp. 337{350.[SC82] Sistla, A.P., and Clarke, E. M. 1985. The Complexity of Propositional Linear Temporal Logics, Proc. of the 14thAnnual ACM Symp. on Theory of Computing, San Francisco, pp. 159{168, 1982; also appeared in Journal ACM,vol. 32, no. 3, pp. 733{749.[vB83] van Benthem, J. 1983. The Logic of Time, D. Reidel Pub. Co.[YR90] Yodaiken, V., and Ramamritham, K. 1990. Specifying and Veri�ying a Real-Time Priority Queue with ModalAlgebra, Proc. 11th IEEE Symp on Real-Time Systems, pp. 300-311, Dec. 5-7, 1990.

19

