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Does Independent Component Analysis Play a Role
in Unmixing Hyperspectral Data?

José M. P. Nascimento, Student Member, IEEE, and José M. Bioucas Dias, Member, IEEE

Abstract—Independent component analysis (ICA) has recently
been proposed as a tool to unmix hyperspectral data. ICA is
founded on two assumptions: 1) the observed spectrum vector is
a linear mixture of the constituent spectra (endmember spectra)
weighted by the correspondent abundance fractions (sources);
2) sources are statistically independent. Independent factor
analysis (IFA) extends ICA to linear mixtures of independent
sources immersed in noise. Concerning hyperspectral data, the
first assumption is valid whenever the multiple scattering among
the distinct constituent substances (endmembers) is negligible,
and the surface is partitioned according to the fractional abun-
dances. The second assumption, however, is violated, since the
sum of abundance fractions associated to each pixel is constant
due to physical constraints in the data acquisition process. Thus,
sources cannot be statistically independent, this compromising the
performance of ICA/IFA algorithms in hyperspectral unmixing.
This paper studies the impact of hyperspectral source statistical
dependence on ICA and IFA performances. We conclude that the
accuracy of these methods tends to improve with the increase of
the signature variability, of the number of endmembers, and of the
signal-to-noise ratio. In any case, there are always endmembers
incorrectly unmixed. We arrive to this conclusion by minimizing
the mutual information of simulated and real hyperspectral mix-
tures. The computation of mutual information is based on fitting
mixtures of Gaussians to the observed data. A method to sort ICA
and IFA estimates in terms of the likelihood of being correctly
unmixed is proposed.

Index Terms—Independent component analysis (ICA), indepen-
dent factor analysis (IFA), mixture of Gaussians, unmixing hyper-
spectral data.

I. INTRODUCTION

THE DEVELOPMENT of high spatial resolution airborne
and spaceborne sensors has improved the capability of

ground-based data collection in the fields of agriculture, geog-
raphy, geology, mineral identification, detection, and classifica-
tion of targets activities [1]–[7].

Hyperspectral sensors use many contiguous bands of high
spectral resolution covering the visible, near-infrared, and short-
wave infrared spectral bands (0.3–2.5 m) [8], [9]. Letting alone
the effects of the atmosphere, the signal read by a hyperspectral
sensor at a given band and from a given pixel is a mixture of the
energies scattered by the constituent substances located in the
respective pixel spatial coverage [10].

Manuscript received July 22, 2003; revised October 3, 2004. This work
was supported by the Fundação para a Ciência e Tecnologia under Projects
POSI/34071/CPS/2000 and PDCTE/CPS/49967/2003.

J. M. P. Nascimento is with the Instituto de Telecomunicações and Insti-
tuto Superior de Engenharia de Lisboa, 1949-001 Lisbon, Portugal (e-mail:
zen@isel.pt).

J. M. B. Dias is with the Instituto de Telecomunicações and Instituto Superiror
Técnico, 1949–001 Lisbon, Portugal (e-mail: bioucas@lx.it.pt).

Digital Object Identifier 10.1109/TGRS.2004.839806

Hyperspectral unmixing is the decomposition of the pixel
spectra into a collection of constituent spectra, or spectral signa-
tures, and their corresponding fractional abundances that indi-
cates the proportion of each endmember present in the pixel. De-
pending on the mixing scales at each pixel, the observed mixture
is either linear or nonlinear [4], [11]. The linear mixing model
holds when the mixing scale is macroscopic [12]. The nonlinear
model holds when the mixing scale is microscopic (or intimate
mixtures) [13], [14]. The linear model assumes negligible in-
teraction among distinct endmembers [15], [16]. The nonlinear
model assumes that incident solar radiation is scattered by the
scene through multiple bounces involving several endmember
[17].

Under the linear mixing model, and assuming that the number
of endmembers and their spectral signatures are known, hyper-
spectral unmixing is a linear problem, which can be addressed,
for example, under the maximum-likelihood setup [18], the
constrained least squares approach [19], the spectral signature
matching [20], the spectral angle mapper [21], and the sub-
space projection methods [19], [22], [23]. Orthogonal subspace
projection was introduced in [22]. This technique reduces the
data dimensionality, suppresses undesired spectral signatures,
and detects the presence of a spectral signature of interest.
The basic concept is to project each pixel onto a subspace that
is orthogonal to the undesired signatures. As shown in [18],
the orthogonal subspace projection technique is equivalent to
the maximum-likelihood estimator. This projection technique
was extended by three unconstrained least squares approaches
[23] (signature space orthogonal projection, oblique subspace
projection, target signature space orthogonal projection). Other
works using maximum a posteriori probability framework [24]
and projection pursuit [25], [26] have also been applied to
hyperspectral data.

In most cases, the number of endmembers and their signatures
are not known. Independent component analysis (ICA) is an un-
supervised source separation process [27] that has shown success
in blind source separation, feature extraction, and unsupervised
recognition [28]. ICA consists in finding a linear decomposition
of observed data into statistically independent components.

Given that hyperspectral data are, in given circumstances,
linear mixtures, ICA comes to mind as a possible tool to unmix
this class of data. In fact, the application of ICA to hyperspectral
data has been proposed in [29], where endmember signatures
are treated as sources and the mixing matrix is composed by
the abundance fractions, and in [24], [30]–[36], where sources
are the abundance fractions of each endmember. However, ICA
is based on the assumption of mutually independent sources,
which is not the case of hyperspectral data, since the sum of the
abundance fractions is constant, implying dependence among

0196-2892/$20.00 © 2005 IEEE



176 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 1, JANUARY 2005

abundances. This dependence compromises ICA applicability
to hyperspectral images. In addition, hyperspectral data is im-
mersed in noise, which degrades the ICA performance.

Independent factor analysis (IFA) [37] was introduced as a
method for recovering independent hidden sources from their
observed noisy mixtures. IFA is divided in two steps. First,
source densities and noise covariance are estimated from the
observed data by maximum likelihood. Second, sources are
reconstructed by an optimal nonlinear estimator. Although IFA
is a well suited technique to unmix independent sources under
noisy observations, the dependence among abundance fractions
in hyperspectral imagery compromises, as in the ICA case, the
IFA performance.

This paper addresses hyperspectral data source dependence
and its impact on ICA and IFA performances. The study
considers simulated and real data and is based on mutual
information minimization. Hyperspectral observations are
described by a generative model. This model takes into account
the degradation mechanisms normally found in hyperspectral
applications, namely signature variability [38]–[40], abundance
constraints, topography modulation, and system noise. The
computation of mutual information is based on fitting mixtures
of Gaussians (MOG) to data. The MOG parameters (number
of components, means, covariances, and weights) are inferred
using the minimum-description-length (MDL)-based algorithm
[41]. We study the behavior of the mutual information as
function of the unmixing matrix. The conclusion is that the
unmixing matrix minimizing the mutual information might
be very far from the true one. Nevertheless, some abundance
fractions might be well separated, mainly in the presence of
strong signature variability, large number of endmembers, and
a high signal-to-noise ratio (SNR).

This paper is organized as follows. Section II presents a
spectral radiance model and formulates the spectral unmixing
as a linear problem accounting for abundance constraints,
signature variability, topography modulation, and system noise.
Section III presents a brief resume of ICA and IFA algorithms.
Section IV illustrates the performance of IFA and of some
well-known ICA algorithms with experimental data. Section V
studies the impact of hyperspectral source dependence on
the mutual information. Section VI studies the performance
of ICA and IFA on hyperspectral data, based on simulated
data. Section VII presents results of ICA based on real data.
Section VIII concludes with some remarks.

II. SPECTRAL RADIANCE MODEL

Fig. 1 schematizes a typical passive remote sensing scenario.
The sun illuminates a random media formed by the earth sur-
face and by the atmosphere; a sensor (airborne or spaceborne)
reads, within its instantaneous field of view (IFOV), the scat-
tered radiance in the solar-reflectance region extending from
0.3–2.5 m, encompassing the visible, near-infrared, and short-
wave infrared bands. Angles and , with respect to the normal

on the ground, are the colatitude and the longitude, respec-
tively. The solar and sensor directions are and ,
respectively.

The total radiance at the surface level is the sum of three com-
ponents, as schematized in Fig. 1: the sunlight (ray 1), the sky-
light (ray 2), and the light due to the adjacency effect (ray 3),

Fig. 1. Schematic diagram of the main contributions to the radiance read by
the sensor in the solar spectrum.

i.e., due to the successive reflections and scattering between the
surface and the atmosphere. Following [42] and [43], the spec-
tral radiances of these components, are, at a given wavelength

, respectively, given by the following.

1) , where is the solar flux at the top of the
atmosphere, , is the downward
transmittance.

2) , where is the downward diffuse
transmittance factor.

3) , where
, is the mean reflectance of the surroundings

with respect to the atmospheric point spread function, and
is the spherical albedo of the atmosphere.

The total radiance incident upon the sensor location is the sum
of three components: the light scattered by the surface (ray 4),
the light scattered by the surface and by the atmosphere (ray 5),
and light scattered by the atmosphere (ray 6), the so-called path
radiance. Assuming a Lambertian surface, and again following
[42] and [43], these radiances at the top of the atmosphere are,
at wavelength , respectively, given by the following.

1) , where is the sur-
face reflectance and is the upward transmit-
tance.

2) , where
is the upward diffuse transmittance factor.

3) , where is the at-
mosphere reflectance.

The total radiance incident upon the sensor location is thus

where

(1)

(2)

Let us assume that the sensor has channels (wavebands).
Assuming linear receivers and narrow wavebands, the signal at
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the output the th channel (waveband centered at wavenumber
) is given by

where and are proportional to and , respectively,
and denotes the receiver electronic noise at channel plus the
Poisson (photonic) signal noise (e.g., see [44]).

Terms and in (1) and (2) depend in a complex way of the
sun and sensor directions, of the atmosphere composition, of
the topography, and of the scene materials and configurations
[42], [43], [45]. The compensation for this terms, the so-called
atmospheric correction, is a necessary step in many quantitative
algorithms aimed at extracting information from multispectral
or hyperspectral imagery [43], [46], [47].

This paper addresses linear unmixing of fractional abun-
dances at the pixel level. The term linear means that the
observed entities are linear combinations of the endmembers
spectral signatures weighted by the correspondent fractional
abundances. Therefore, we assume that atmospheric correction
has been applied to a degree assuring a linear relation between
the radiance and the reflectance , i.e., for each channel, the
relation between the radiance and the reflectivity is linear with
coefficients not depending on the pixel.

The details of the atmospheric correction necessary to achieve
such a linear relation are beyond the scope of the paper. Notice,
however, that it may happen that no correction is necessary. That
is the case when the scene is a surface of approximately con-
stant altitude, the atmosphere is horizontally homogeneous, and

, the mean reflectance of the surroundings, exhibits negligible
variation.

A. Linear Spectral Mixture Model

In spectral mixture modeling, the basic assumption is that the
surface is made of a few number of endmembers of relatively
constant spectral signature or, at least, constant spectral shape.
If the multiple scattering among distinct endmembers is negli-
gible and the surface is partitioned according to the fractional
abundances, then the spectral radiance upon the sensor location
is well approximated by a linear mixture of endmember radi-
ances weighted by the correspondent fractional abundances [4],
[10], [11], [33], [48].

Under the linear mixing model and assuming that the sensor
radiation pattern is ideal, i.e., constant in the IFOV and zero
outside, the output of channel from a given pixel is

(3)

where denotes the reflectance of endmember at
wavenumber , denotes the fractional abundance of
endmember at the considered pixel, and is the number of
endmembers.

Fractional abundances are subject to

(4)

For a real sensor, the output of channel is still formally given
by (3), but depends on sensor point spread function (PSF)

according to

where denotes the set of points on the surface belonging to
the th endmember. The PSF may be spatially variant
(i.e., it depends on surface coordinates and ), and it includes
the effect of finite aperture and receiver impulse response. No-
tice that the meaning of depends not only on the true frac-
tional abundance, but also on the endmember distribution inside
the IFOV and on the surface point . Wu and Schowengerdt
[49] propose an image-restoration-based approach to mitigate
the errors introduced by the nonideal nature of the PSF.

Herein, and for simulation purposes, we assume that the
signal at the output of the channel is given by (3). Endmember
radiances were extracted from a hyperspectral subimage of
Indian Pine Test Site in Northwestern Indiana acquired by an
Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
instrument in June 1992. Noisy channels and water absorption
channels were removed (channels 1–4, 107–113, 150–166,
and 221–224). Since only high SNR channels are considered,
Poisson noise is neglected. Concerning atmospheric correction,
this image has been processed to remove path radiance (ray 5
in Fig. 1) and the light scattered by interaction between surface
and the atmosphere (ray 6 in Fig. 1). Notice, however, that the
corrected image is still in radiance units.

Let be an vector, where is the total number of
bands, and is the so-called
signature of the th endmember. Equation (3) can be written as

(5)

where is a matrix with the sig-
natures of the endmembers present in the covered area,

, and models additive receiver elec-
tronic noise. The notation indicates vector transposed.

Model (5) is an oversimplification of reality, as it does not
take into account signature variability (from pixel to pixel) due
to changes in the configuration and in the composition of sub-
stances, surface contaminants, variation in the substances such
as age-induced color fading due to oxidation or bleaching, un-
compensated atmospheric and environmental effects, and un-
compensated errors in the sensor. Signature variability has been
studied and accounted for in a few unmixing algorithms (e.g.,
see [50]–[52]).

Signature variability is primarily characterized by spectral
shape invariance [38], i.e., while the spectral shapes of the end-
members are fairly consistent, their amplitude varies consider-
ably over the scene. Based on this rationale, we model spectral
variability of the th endmember at a given pixel as

(6)

where is a scale factor, and is a zero-mean random
vector. Noise accounts for signature variability not modeled
by . Introducing (6) into (5), we obtain, for a given pixel

(7)
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where diag is a diagonal matrix.
Having in mind that illumination variability due to surface

topography affects equally all bands and that we are assuming
additive system noise, then we can write

(8)

where models surface topography. Model (8) is still linear.
If is known, estimating is an ordinary linear problem. If

is unknown, the problem is more difficult. Considering in-
dependent sources and no noise, unmixing (8) can be solved
under the ICA framework. This has been addressed in [29]–[33].
Linear unmixing of independent sources in the presence of noise
has been addressed in [37], where the IFA algorithm was in-
troduced. Herein, and in the presence of noise we adopt this
algorithm.

Signature variability introduces randomness among the
sources and thereby attenuates their statistical dependencies.
This can be understood by computing the correlation factor
between sources and . Assuming that
is independent of and that is independent of , we have
(9)–(11), shown at the bottom of page, where
was invoked to obtain the right hand side of (10) and (11). We
conclude then that signature variability does not increase source
correlation. Of course, decorrelation does not imply indepen-
dency. It is, however, plausible that increasing decorrelation
means increasing independency. In fact, in the next sections we
give experimental evidence that increasing signature variability
improves ICA and IFA results.

III. ICA AND IFA

ICA [28], [53], [54] is an unsupervised source separation
process, which has been applied to linear blind separation
problems [55]–[57]. The goal of ICA is to recover independent
sources, given only sensor observations that are unknown linear
mixtures of the unobserved independent sources.

Let be an observation column vector, such as

(12)

where is an unknown mixing matrix and
is an unknown random data vector of mutually

independent sources having unknown distributions, although, at
most, one might be Gaussian distributed. ICA finds a
separating matrix , such that

(13)

where is a vector of independent components, and and
are permutation and scale matrices, respectively.

ICA looks for a linear representation that maximizes a non-
gaussianity measure [58]. A commonly objective function used
in ICA algorithms is the mutual information [28] of vector

given by

(14)

where , , and are the entropy of random vari-
able , of random vector , and of random vector , respectively
(e.g., see [56] and [57]). The mutual information is a measure
of dependence between random variables. It is nonnegative and
equals to zero if and only if variables are statistically indepen-
dent.

Most ICA algorithms find the separating matrix by mini-
mizing (14), or an equivalent objective function, with respect to

. The Negentropy (e.g., see [55] and [58]), an entity closely
related with the mutual information, has also been used as an
objective function to obtain . It is defined as

(15)

where is a Gaussian random vector with the same mean
and covariance as [59]. Negentropy is nonnegative and is equal
to zero if and only if has Gaussian distribution. Assuming that
components , , are uncorrelated, it follows that

(16)

which means that finding maximum of Negentropy directions,
i.e., maximizing with respect to , is equivalent to
minimize the mutual information.

Well-known ICA methods are fastica [55], jade [56], and
the Bell and Sejnowski algorithm [57]. Fastica is based on a
fixed-point procedure and uses the absolute value of kurtosis as a
measure of nongaussianity. Jade uses the fourth-order cross cu-
mulants of the data to separate sources. The Bell and Sejnowski
algorithm use the stochastic gradient ascent learning rule to min-
imize the mutual information.

IFA [37] was proposed as a method for recovering indepen-
dent hidden sources from their observed mixtures immersed in
additive noise. IFA is divided in two steps. First, source densities
and noise covariance are estimated from the observed data by
maximum likelihood. Second, sources are reconstructed by an
optimal nonlinear estimator. IFA assumes the observation model

(17)

(9)

(10)

(11)
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where sources are independent with unknown distributions (at
most one is Gaussian), and is Gaussian noise with covariance

, a matrix not necessarily diagonal. To make the model an-
alytically tractable, each source density is modeled by a MOG.
An expectation–maximization (EM) algorithm [60], [61] is ap-
plied to compute the maximum-likelihood estimate of the noise
covariance and the Gaussian mixture parameters.

The classical principal component analysis (PCA) [62] seeks
for a linear decomposition that best represents data in a least
squares sense. PCA finds a linear transformation where
each row vector of corresponds to the normalized orthogonal
eigenvector of the data covariance matrix. While PCA uses
only second-order statistics, ICA looks for components which
are statistically independent rather than uncorrelated; thus, it
requires statistics of orders higher than the second [58].

In the next section, we give evidence that the most well-
known ICA and IFA algorithms do not correctly unmix hy-
perspectral data. This study is based on several experiments,
where the degradation mechanisms normally found in hyper-
spectral applications, namely signature variability, abundance
constraints, topography modulation, and system noise, are sim-
ulated in our model.

IV. ICA AND IFA EVALUATION WITH SIMULATED DATA

In this section, we apply ICA (fastica [55], jade [56], and Bell
and Sejnowski [57]) and the IFA [37] algorithms to simulated
data. Four experiments are conducted: in the first, modeling a
canonical ICA scenario, the abundance fractions are indepen-
dent; in the second, modeling an ideal hyperspectral scenario,
we enforce only constraint (4), meaning that abundance frac-
tions are dependent; in the third, modeling a real hyperspectral
scenario, we generate abundance fractions according to (8), thus
modeling abundance fraction dependence, signature variability,
topography modulation, and system noise; in the fourth, we gen-
erate sources according to (8) and evaluate the mean magnitude
of the cross-correlation factor between sources and their esti-
mates by fastica algorithm, as function of the SNR, of signature
variability, and of the number of sources. We have adopted the
cross-correlation factor as a performance measure, because ICA
and IFA unmixes abundance fractions up to a constant factor.

In all experiments, the scene dimension is of 30 30 pixels
and endmember signatures were extracted from a hyperspectral
subimage of Indian Pine Test Site in northwestern Indiana ac-
quired by an AVIRIS instrument in June 1992.1 Noisy channels
and water absorption channels were removed (channels 1–4,
107–113, 150–166, and 221–224). Concerning atmospheric cor-
rection, this image has been processed to remove path radiance
and the light scattered by the interaction between surface and
the atmosphere. Table I presents the name of the substances ex-
tracted. Fig. 2 shows the angle between pairs of extracted sig-
natures. The lowest and the highest angles are, approximately,
4 (between second and seventh signatures) and 48 (between
fourth and ninth signatures), respectively. Endmember 9 has
the highest angle with respect to the closest endmember. In the
first three experiments, three endmembers were selected [see
Fig. 2(a)]; in the fourth experiment, the number of endmembers
vary from three to ten.

1Available at http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/.

TABLE I
SUBSTANCES EXTRACTED FROM THE DATASET

In the first experiment, the abundance fractions are mutually
independent following a Dirichlet distribution given by

, where is the expected value of the
th endmember fraction, denotes the expectation operator,

and denotes the Gamma function. Note that and
. Mean values are set to , , and

. In the remaining experiments, abundance fractions
follow a joint Dirichlet distribution given by

(18)

Table II presents the sample mean of the cross-correlation co-
efficients between the abundance fractions and their estimates
and the sample cross-correlation coefficients between the end-
member signatures and their estimates. These coefficients are
based on 256 Monte Carlo runs. It shows that under this condi-
tion (independent abundance fractions) the first three algorithms
work very well; they unmix the abundance fractions and extract
the signatures of each endmember. The Bell and Sejnowski al-
gorithm did not correctly unmix the endmembers.

In the second experiment, abundance fractions are dependent,
following a Dirichlet distribution with parameters ,

, and . Such distribution constrains abun-
dance fractions to and . It is clear
that none of the algorithms correctly unmix the original depen-
dent data. IFA and fastica algorithms only estimate two abun-
dance fractions because they implement a preprocessing step to
whiten the observed data and to reduce the dimension, where
only two endmember were correctly found (note that the con-
straint decreases by one the dimension of the ob-
served data).

In the third experiment, abundance fractions are dependent
following a Dirichlet distribution with parameters ,

, and for each endmember. Scale , con-
trolling signature variability, is uniformly distributed with in the
interval [0.9, 1.1]; parameter is Beta distributed2 with parame-
ters , . Noise in (8) is zero-mean white Gaussian

2The Beta density is p(
) = (�(� +� )=�(� )�(� ))
 (
�1)
for 
 � 0.
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(a) (b)

Fig. 2. (a) Angle between pairs of radiances spectra used to generate simulated scenes. (b) Radiance spectra of the first second and fifth substances used in
experiments I, II, and III.

TABLE II
SAMPLE CROSS CORRELATION BETWEEN ABUNDANCE FRACTIONS AND THE CORRESPONDENT ESTIMATES (% ) AND

SAMPLE CROSS CORRELATION BETWEEN ENDMEMBER SIGNATURES AND THE CORRESPONDENT

ESTIMATES (% ). RESULTS BASED ON 256 MONTE CARLO RUNS

with variance in each band such that the SNR defined as the
ratio between the signature power and the noise power, i.e.,

SNR (19)

is set to 30 dB. As in the previous experiments, ICA and IFA al-
gorithms do not correctly unmix the three abundance fractions.
IFA, however, yields the best results being able to approximately
unmix two abundance fractions.

In the fourth experiment, we compute the cross-correlation
factor between abundance fractions and their estimates as func-
tion of the SNR, number of endmembers, and signature vari-
ability. Two abundance fraction distributions are considered:
1) symmetric Dirichlet distributions ( , );
2) asymmetric Dirichlet distributions [ , ,
2; , ]. Signature variability is con-
trolled by the distribution of the scale random vector . In this
experiment, we assume that is uniformly distributed within
the interval [ , 1], where . Thus means absence
of variability, whereas means maximum variability.

Although IFA was conceived to recover independent sources
from linear mixtures immersed in noise, this algorithm was not

Fig. 3. Mean magnitude of the cross-correlation factors between abundance
fractions and their estimates % as function of the SNR, for p = 10 and � =
0:8. Results are based on 256 Monte Carlo runs.

considered in this experiment, because IFA computational com-
plexity increases exponentially with the number of emdmem-
bers. In this experiment, only the fastica algorithm was applied.

Figs. 3–5 present the sample mean cross-correlation factors,
, between each abundance fraction and the correspondent es-

timate based on 256 Monte Carlo runs.
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(a) (b)

Fig. 4. Mean magnitude of the cross-correlation factors between abundance fractions and their estimates. Results are based on 256 Monte Carlo runs. (a) % as
function of the number of endmembers p in the scene for � = 0:6. (b) % as function of p, for each individual source (� = 0:6, symmetric sources, SNR = 30 dB).

(a) (b)

Fig. 5. Mean magnitude of the cross-correlation factors between abundance fractions and their estimates. Results are based on 256 Monte Carlo runs. (a) % as
function of parameter �, for p = 10. (b) % as function of parameter �, for all sources (p = 10, asymmetric sources, SNR = 30 dB).

Fig. 3 shows an increasing as function of the SNR (15,
20, 25, 30, dB), for and . Asymmetry of
abundance fraction distributions affects little the unmixing re-
sults. Fig. 4(a) shows as function of the number of endmem-
bers, for , SNR dB, and . As
the number of endmembers increases, the statistical dependence
among sources decreases and we expect a better performance of
ICA algorithms. This trend can be observed in Fig. 4(a), at least
for high SNR. In Fig. 4(b), the sample mean of the magnitude of
the cross-correlation factor is shown for each source separately,
with SNR dB, , and symmetric source distribu-
tion. In this figure, we can see that there is always endmembers
correctly unmixed and others incorrectly unmixed, regardless
the number of endmembers. Fig. 5(a) shows as a function
of signature variability, for SNR dB, and .
Unmixing performance is quasi constant for and
takes higher values in noiseless scenes. As approaches to 1,
meaning smaller signature variability and higher statistical de-
pendence among sources, ICA performance decays as expected.
In Fig. 5(b), we can see for each sources separately, with
SNR dB, , and asymmetric source distribution.
Second, fifth, and seventh endmembers are clearly incorrectly

unmixed. Note that with respect to Fig. 2(a), endmember 7,
which jointly with endmember 2 form the closest pair, shows
the worst unmixing result, whereas endmember 9, which has the
highest angle with respect to the closest endmember, displays a
good unmixing result.

The pattern of behavior exhibited in experiments I–IV was
systematically replicated regardless the source statistics (con-
straint (4) is understood). Basically, we conclude that the accu-
racy of ICA applied to hyperspectral data tends to increase with
the signature variability, the number of sources, and the SNR.
There are, however, always endmembers incorrectly unmixed,
regardless the unmixing scenario.

In the next sections, the estimation of the unmixing matrix
is considered. This study is based on the minimization of the
mutual information, which give some evidence on the reasoning
underlying ICA and IFA limitations in unmixing hyperspectral
data.

V. MINIMIZATION OF MUTUAL INFORMATION

This section addresses the behavior of the mutual information
in the neighborhood of the true unmixing matrix. The aim is
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(a) (b) (c)

Fig. 6. Rayleigh probability density function (dashed line) fitted with a Gaussian mixture (solid line) using the algorithm [41]. (a) Initial parameters (ten Gaussian
modes). (b) Solution with five Gaussian modes. (c) Solution constrained to three Gaussian modes.

to show that when sources are dependent, minimizing mutual
information does not yield the true unmixing matrix.

A brief introduction to ICA and IFA was presented in Sec-
tion III. Given an unknown linear mixture of the unobserved
independent sources , ICA and IFA look for a ma-
trix that maximizes a nongaussianity measure of the vector

. An objective function commonly used in ICA algo-
rithms is the mutual information [28].

Assuming constant, the minimization of the mutual in-
formation reduces to finding [see (14)]

(20)
where

(21)

with being the probability density function of . To com-
pute (21), we need to estimate , for . This esti-
mate is based on fitting a mixture of Gaussians [63]

(22)

where is the number of Gaussians modes to fit the th source
and , , and are the weight, the mean, and the co-
variance of the th Gaussian mode, respectively. The number
of Gaussians modes, and respective parameters (means, co-
variances and weights) are obtained via the MDL-based
expectation-maximization algorithm (MDL-EM) [41]. The
entropy (21) is computed via numerical integration.

Fig. 6 shows an example of a Rayleigh probability density
function fitted with a Gaussian mixture using algorithm [41].
Fig. 6(a)–(c) presents the probability density functions obtained

with, respectively, the initial parameters, the solution, and the
solution constrained to three Gaussian modes.

Various authors [37], [55] have referred to the fact that the
maxima of with respect to are not
very sensitive to the shape of . For example, Attias [37]
uses only three Gaussian modes to fit whatever density shape.
Herein, however, we use all modes given by the MDL-EM
algorithm [41], as we are interested, not only in the unmixing
matrix , but also in computing the mutual information

as function of .

VI. EXPERIMENTAL RESULTS

In the next five experiments, we study the behavior of the
mutual information , for in the neigh-
borhood of the true unmixing matrix . In all ex-
periments, we assume constraint . This setting does
not constraint the unmixed results, as they are defined up to a
constant.

Experiment I: The first experiment considers independent
abundance fractions with uniform distribution to test our setup
under canonical mixing conditions. This experiment assumes

(number of endmembers), (number of bands),
, , , and .

Fig. 7(a) shows the mutual information as function of and
in a grayscale ( and define a rotation in . We term

this angles azimuth and elevation, respectively). The minimum
is global and occurs for and , i.e., .

As mentioned above, abundance fractions in hyperspec-
tral data are not independent. In order to test ICA with this
constraint, we generate abundance fractions according to the
Dirichlet distribution [see (18)] parameterized with ,

, and (recall that is the expected value
of the th abundance fraction).

Experiment II: In this experiment, we set , ,
, , , .

In Fig. 7(b), we present the mutual information as function of
angles and . No ICA algorithm could ever correctly unmix
the original dependent data, since ( , ),
far from the true unmixing matrix, i.e., ( , ).

Experiment III: In this experiment, the abundance fractions
are dependent and Dirichlet distributed ( , ,
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Mutual information as function of parameters � (azimuth angle) and � (elevation angle). (a) Three independent sources. (b) Dependent sources.
(c) Dependent sources with illumination perturbations and signature variability. (d) Noisy scene (SNR = 25 dB). (e). Noisy scene (SNR = 20 dB). (f) Noisy
scene (SNR = 15 dB).

). The remaining parameters are , ,
, , uniformly distributed in the interval [0.9, 1.1] and
Beta distributed with parameters and .
Fig. 7(c) presents the mutual information as function of an-

gles and . Although there is a local minimum at
and , the absolute minimum occurs at and

.
Experiment IV: This experiment is similar to experiment III,

but now we add zero-mean white Gaussian noise. Herein we
considered three scenarios: SNR dB.

Fig. 7(d)–(f) shows the obtained mutual information for
SNR dB, respectively. The surface exhibits a
random pattern as the noise level increases. The global min-
imum occurs at , for SNR dB [see
Fig. 7(d)], , for SNR dB
[see Fig. 7(e)], and , for
SNR dB [see Fig. 7(f)]. All these global minima are
far from ( , ). Notice, however, the presence of a
local minimum at and .

Experiment V: The last simulation considers ten endmem-
bers with asymmetric Dirichlet distributions ( ,

, ; ). The remaining parame-
ters are , , uniformly distributed in the in-
terval [0.9, 1.1], and Beta distributed with parameters
and . The mixture is immersed in zero-mean white
Gaussian noise, corresponding to SNR dB.

Fig. 8(a) shows the mutual information (up to a constant) as
function of the rotation matrix

. . .

Notice that has the meaning of an angle between the first and
second components. Note that the minimum occurs at ,
which means that first and second component could be correctly
unmixed; on the right, the mutual information is presented as
function of . We can observe a local minima at the origin
but the global minimum is at . We conclude that,
under these conditions, although might exist local minima cor-
responding to the true unmixing matrix, the global minimum of
the mutual information might be very far from true one.

The pattern of behavior described in experiments II, III, IV,
and V was systematically observed in a series of experiments
with different abundance fraction distributions. Basically, we
concluded that in linear hyperspectral data unmixing, the un-
mixing matrix minimizing the mutual information might be
very far from the true one, at least for a few number of endmem-
bers. This is basically in agreement with conclusions drawn in
Section IV.
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(a) (b)

Fig. 8. Ten dependent components are mixed with noise added. (a) Mutual information (up to a constant) as function of rotation angle � angle between first
and second components. (b) Mutual information (up to a constant) as function of rotation angle � angle between second and fourth components.

Fig. 9. Indiana Pines hyperspectral dataset, band 29 (� = 667:3 nm).

VII. FASTICA ALGORITHM APPLIED TO REAL DATA

In this section, we consider a subimage of the hyperspectral
dataset from Indian Pine Test Site in Northwestern Indiana ac-
quired by an AVIRIS in June 1992.3 The dataset is composed
of 220 spectral channels with 10 nm bandwidth acquired in the
0.4–2.5- m region. It contains 145 145 pixels (21 025 pixels)
with a ground pixel resolution of 17 m [64]. This region con-
tains a mixture of agriculture and forestry. However, due to the
early season date of data collection, the cultivated land appears
to have very little canopy cover yet. There is a major dual lane
highway (U.S. 52 and U.S. 231), a rail line crossing near the
top, a major secondary road (Jackson Highway) near the middle,
several other county roads, and houses (Fig. 9 shows band 29
of the dataset). The ground truth of the region can be found in
[65]. It classifies the ground covered area to 16 classes and ig-
nores many small variations within fields that can be seen in
the image data (see Fig. 9). With respect to atmospheric correc-
tion, this dataset has been processed to remove path radiance
and the light scattered by interaction between surface and the
atmosphere. Notice, however, that the corrected image is still in
radiance units.

A PCA preprocessing step was implemented to whiten the
observed data and to reduce dimension: every pixel vector

3Available at http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/.

is transformed into a vector of dimension 16 with zero-mean
and identity covariance matrix: , such that

and , where the identity matrix.

The Fastica algorithm was applied to the processed dataset.
Fig. 10 presents the first 16 components. First, second, fourth,
tenth, and eleventh components correspond to houses or man
made materials that exist in a few locations in the scene [see
Fig. 10(b), (d), (j), and (k)]. We can see that maximum contrast
of sources occurs in house locations, stone-steel towers, Jackson
highway, and rail line. Third and fifth components are a mixture
of grass with pasture and trees, respectively [see Fig. 10(c) and
(e)]. The sixth component [see Fig. 10(f)] represents a mixture
of grass, soybeans, and corn. Apparently the seventh compo-
nent is hay-windrowed [see Fig. 10(g)]. Ninth component repre-
sents vegetation mowed [see Fig. 10(i)]. Components presented
in Fig. 10(a), (h), (l), and (m) do not represent any class of the
available ground truth [65]. Fig. 10(n)–(p) are mainly noise. We
conclude that six sources are unmixed and ten are a mixture of
several materials present in the scene or are manly noise. This
is basically in accordance with our findings based on simulated
data.

A pertinent question is what sources are correctly unmixed.
To address this question we computed the entropy of each com-
ponent, normalized to unit variance, following the procedure
described in Section V. The underlying idea is that a mixed
source tends to exhibit higher entropy, the maximum value being

achieved by a Gaussian source. Table III shows
the entropy for each component shown in Fig. 10(a)–(p). By in-
spection of Table III, we can identify two subsets: the first, with
smaller values of entropy, corresponds to components correctly
unmixed [see Fig. 10(b)–(g)]; the second, with larger values of
entropy, corresponds to components with mixed sources [see
Fig. 10(a) and (h)–(p)]. The larger values, near , corre-
spond to the last three component which are mostly noise. Ob-
serving Table III, we conclude that it might be possible to design
a threshold to define which components are correctly unmixed
and which ones are incorrectly unmixed. This question is to be
addressed in future work.
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Fig. 10. Independent components extracted from a subimage of the Indiana Pine test site, with fastica algorithm. (a) Not classified. (b) Houses. (c) Grass/pasture.
(d) Stone steel towers, rail line, and highways. (e) Grass/trees. (f) Grass, soybeans, and corn. (g) Hay-windrowed. (h) Not classified. (i) Vegetation mowed.
(j) Houses. (k) Houses. (l) Not classified. (m) Not classified. (n) Noise. (o) Noise. (p) Noise.

VIII. CONCLUDING REMARKS

Blind hyperspectral linear unmixing aims at estimating the
number of reference substances, also called endmembers, their
spectral signatures, and their fractions at each pixel, called abun-
dance fractions, using only the observed data (mixed pixels).
Geometric approaches have been used whenever pure pixels are
present in data [66]–[70]. In most cases, however, pure pixels
can not be found in data. In such cases, unmixing procedures
become a difficult task.

In the recent past, ICA has been proposed as a tool to unmix
hyperspectral data [24], [29]–[36]. ICA consists in finding
a linear decomposition of data into statistically independent
components. IFA extends ICA concepts when noise is present.
Crucial assumptions of ICA and IFA are that each pixel is

a linear mixture of endmember signatures weighted by the
correspondent abundance fractions and these abundances
are independent. Concerning hyperspectral data, the first as-
sumption is valid whenever the multiple scattering among the
distinct endmembers is negligible and the surface is partitioned
according to the fractional abundances. The second assump-
tion, however, is not valid due to physical constraints on the
acquisition process.

This paper addresses the impact of the abundance fraction
(sources) dependence on unmixing hyperspectral data with
ICA/IFA. The study considers simulated and real hyperspectral
data. Hyperspectral observations are described by a generative
model which includes degradation mechanism such as signa-
ture variability, abundance constraints, topography modulation,
and system noise.
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TABLE III
ENTROPY OF EACH COMPONENT

IFA and three well-known ICA algorithms were tested on
simulated data. Our main findings were the following.

1) ICA/IFA performance increases with the SNR.
2) ICA/IFA performance tends to increase with the signa-

ture variability and/or with the number of endmembers.
The underlying reason is that by increasing the signature
variability and/or the number of endmembers the statis-
tical dependence among endmembers is attenuated.

3) There are always endmembers incorrectly unmixed, re-
gardless the unmixing scenario.

In order to assess the impact of hyperspectral abundance frac-
tion dependence on the ICA/IFA algorithms, we studied the be-
havior of the mutual information of the unmixed sources in the
neighborhood of the true unmixed data. We conclude that in hy-
perspectral linear unmixing, the unmixing matrix minimizing
the mutual information might be vary far from the true one, at
least for a few number of endmembers.

Finally, ICA and IFA algorithms were tested in a subimage
of the hyperspectral dataset from Indian Pine test site in
Northwestern Indiana acquired by an AVIRIS in June 1992.
According to the available ground truth of the region, we
conclude that six sources are correctly unmixed and ten are
uncorrectly unmixed. This is in line with the conclusion drawn
from simulated data. A method based on the source entropy
to sort the output of ICA or IFA algorithms according to the
likelihood of being correctly separated was proposed.

As future work, we intend to extend ICA/IFA concepts under
a Bayesian framework [24] to linear mixtures of dependent
sources, which is the case of hyperspectral data.
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