
A Survey of High-Level Parallel Programming Models

Evgenij Belikov∗, Pantazis Deligiannis, Prabhat Totoo,
Malak Aljabri, and Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh, UK

Abstract

Increasingly heterogeneous and hierarchical parallel architectures are now
mainstream, however, most of the traditional programming models are low-
level and explicit, limiting portability, scalability, and productivity. More-
over, performance of applications that overspecify evaluation degree and or-
der will suffer as they fail to adapt to changing architectures.

This paper surveys the properties, advantages, and disadvantages of high-
level approaches to parallel programming that are deemed more flexible for
efficiently utilising modern and future heterogeneous architectures. First,
we introduce the challenges that arise from recent architectural trends and
continue by surveying and characterising the high-level approaches to paral-
lel programming. Subsequently, we review parallelism management policies
and mechanisms to control them by comparing several representative im-
plementations, focussing on heterogeneous hardware. Thereafter, we briefly
illustrate the high-level approach based on recent case studies. Finally, we
conclude by summarising our findings and views on what we believe are most
suitable programming models to efficiently harness heterogeneous architec-
tures without reducing productivity.

Keywords: High-Level Parallel Programming Models, Performance
Portability, Parallel Patterns, Multi-Level Parallelism, Inherently Parallel Data
Structures, Declarative Parallel Programming, Heterogeneous Computing

∗Corresponding author: eb120@hw.ac.uk, School of Mathematical and Computer Sci-
ences, Heriot-Watt University, EH14 4AS, Edinburgh, UK; +441314513432 (fax: -327)

Technical Report HW-MACS-TR-0103, Heriot-Watt University, December 16, 2013

1. Introduction

The multi-core revolution has brought the issue of parallel programming
to the forefront of software development in general. Many parallel pro-
gramming models have been developed in the past, however, there is no
solidly established technology to pick up as the obvious choice for exploit-
ing parallelism on today’s mainstream multi-cores and on networks of multi-
cores, serving as affordable high-performance platforms. Even more seriously,
many of the established technologies are tied to one particular class of par-
allel machines, and are ill-suited to deal with radical architectural changes.
To further boost computational capabilities, often graphics processing units
(GPUs) or co-processors are added to this configuration, resulting in a highly
heterogeneous computing platform. Programming such a platform is chal-
lenging for parallel computing experts, let alone domain experts new to par-
allel programming. The programming models for such a platform therefore
need to strike a balance between simplifying the task of parallel programming
while still delivering high performance on heterogeneous hardware, which is
the motivation for using these platforms in the first place.

In this survey we aim to give guidance to domain experts in search of a
high-level programming model that can exploit such heterogeneous hardware
with minimal programmer effort. We explore the realm of parallel program-
ming models, classify the established technologies on language as well as on
system level, and assess their suitability for sustainable parallel programming
in the long run, in particular envisioning further heterogeneity in the underly-
ing platform, as discussed in Section 2. We identify several major challenges
of parallel programming in Section 3: programmer productivity, performance
portability, scalability, and adaptivity, which need to be addressed, since ex-
ploiting parallelism is the main source of increased performance.

We then explore several implementation technologies, dealing with these
challenges. In particular, we classify the existing parallel programming mod-
els in Table 1 of Section 4 based on their respective level of abstraction over
parallel coordination. In Section 5, we present a selection of low- and high-
level models for programming heterogeneous architectures and discuss the
current trends in GPU programming. Furthermore, we overview several rep-
resentative policy control mechanisms in Table 2 of Section 6, and discuss the
major system-level technologies that have proven successful across a range of
parallel architectures. We summarise our findings from this in-depth study
of models and systems in Section 8.

2

Throughout this survey we emphasise the importance of high-level ap-
proaches to parallel programming, as the most suitable basis for addressing
architectural differences in heterogeneous machines and for facing further
radical changes in hardware design, for example in the form of many-core
co-processors. We believe that with the shift of parallel programming from
supercomputing parallelism, performed by expert parallel programmers on
specialised hardware with huge investment of time and effort, to desktop par-
allelism, performed by domain experts on off-the-shelf hardware with only
minimal effort, such high-level programming models are the best technology
to meet programmers’ demands. Since they do not tie the parallel application
to one particular architecture, they offer high potential in terms of scalability,
when moving to clusters of multi-cores, and in terms of added heterogeneity,
when adding GPUs or other non-standard computing engines to the config-
uration. Of course, this imposes further challenges on the underlying system
that implements such a high-level parallel programming model.

We don’t aim to give a comprehensive survey of implementation tech-
niques, which would be much beyond the scope of this report, but we classify
and discuss essential aspects of the existing implementation approaches of
high-level models, and give references for further reading beyond our discus-
sion. We separate the discussion in this survey into a section on programming
models (Section 4) and underlying systems (Section 6). We specifically fo-
cus on applying high-level programming models to heterogeneous hardware
in Section 5. While undoubtedly supercomputing parallelism will remain a
strong research area, we don’t survey this part of technology landscape, and
focus our study on the area of desktop parallelism, presenting a comprehen-
sive survey of literature in this field, hoping to guide computer scientists,
who are now entering this area and are in search of a suitable technology
today, that will remain relevant tomorrow.

2. Trends in Parallel Architectures

Hardware architecture substantially affects application performance [1].
Therefore, it is important to take the characteristics of the target architecture
into account, especially as novel parallel architectures are increasingly hetero-
geneous and hierarchical. Most of them fit into single-instruction-multiple-
data (SIMD) or multiple-instruction-multiple-data (MIMD) category of the
well-known Flynn’s taxonomy [2] that classifies architectures according to
the number of data streams and instruction streams.

3

MIMD category is futher subdivided into shared-memory and distributed-
memory architectures. Moreover, shared-memory architectures can be classi-
fied as either symmetric multiprocessors with uniform memory access (UMA)
or as non-uniform memory access (NUMA) architectures that have recently
gained popularity [3, 4]. Finally, the architectures can be distinguished based
on differences in cache sharing, number of hierarchy levels, and degree of
heterogeneity of the components. In this section, the focus is on the recent
architectural trends that substantially complicate parallel programming.

2.1. Towards Many-cores

Since the end of the frequency scaling era [5], there is a clear trend towards
many-core architectures. Whilst mobile phones readily have multiple cores,
architectures such as Intel’s TeraScale and Tilera’s TILE-Gx100 use 80 and
100 cores respectively, whereas NVIDIA’s GT300 GPU uses 512 scalar pro-
cessors [6]. However, scalability of current shared-memory designs is limited
by increasing the overhead of maintaining coherent view of shared caches [7],
leading to non-cache-coherent and Network-on-Chip-based designs [8].

Furthermore, it is likely that no one-fits-all architecture will emerge in the
near future, due to the trade-offs between raw performance, power-efficiency,
manufacturing costs, and programmability. Additionally, different architec-
tures appear particularly suitable for specific kinds of applications. For ex-
ample, GPUs excel at regular data-parallel applications that use floating-
point operations [9], whereas FPGAs are suitable for streaming applica-
tions that use integer or logic operations [10, 6], and clusters, Grids, or
Clouds [11, 12, 13, 14] provide scalability beyond a single node being most
suitable for large-scale and High-Performance Computing (HPC) applica-
tions. Although facing diminishing returns, the number of cores is expected
to continue increasing in the foreseeable future.

2.2. Heterogeneity and Dark Silicon

Another trend in parallel architectures is to include cores of differing
capabilities [15, 16, 17]. In contrast to homogeneous designs, heterogeneous
ones are more versatile for general purpose computing, since they are more
flexible in utilising the available transistor budget and power envelope [18].
Whilst larger CPUs are suitable for handling task parallel and sequential
program sections, on-chip GPUs excel at regular data-parallelism [9, 19, 20].

Further heterogeneity results from the need to reduce power consumption
and due to physical limitations that make it impossible to simultaneously

4

power-up all the available transistors, an effect referred to as Dark Silicon [7].
This effect leads to architectures that are capable of dynamically changing
their characteristics during program execution. This diversity and rapid
architectural evolution mandate automated and adaptive solutions.

2.3. Memory and Network Hierarchy

Parallel architectures are increasingly hierarchical regarding memory ac-
cess and network interconnect. Multi-level caches are used to reduce the
frequency of accesses to the relatively slow main memory to increase mem-
ory bandwidth and to hide access latency. In many modern architectures
over 80% of the chip area is devoted to latency hiding.

By sharing the same cache, cores may communicate more efficiently, how-
ever pathological cases such as cache thrashing need to be avoided [21]. More-
over cache coherence protocols are not likely to scale to manycores due to
increasing overheads, making non-cache-coherent architectures a viable alter-
native. Hence, although the instruction count was predominantly used in the
past, currently, the amount and structure of memory accesses should be taken
into account to exploit data locality for performance. Network hierarchy can
be viewed as generalisation of the memory hierarchy, thus highlighting the
impact of latency and bandwidth on performance of applications that rely
on significant amount of communication [22]. Moreover, the actual topology
of and congestion within the network may severely impact performance and
hence should be taken into account.

All the aforementioned trends pose substantial challenges for parallel pro-
gramming models and language design as they complicate efficient utilisation
of the available resources. Attacking the challenges presented below is criti-
cal, since exploiting parallelism emerges as the main source of further gains
in application performance.

3. Challenges in Exploiting Parallelism

Exploiting parallelism for performance is difficult due to well-known chal-
lenges that arise from the increasing number of processing elements (PEs)
and from the need to coordinate access to shared resources, exacerbated by
the heterogeneity of components and deep memory and network hierarchies.

5

3.1. The Complexity of Parallel Programming
Parallel programming, i.e. the translation of an algorithmic solution to

a problem (the what) into a correct and efficient program that fully ex-
ploits the underlying parallel architecture, is substantially more difficult than
sequential programming due to the added complexity of coordination as-
pects [23, 24], i.e. how the computation is decomposed, mapped to, commu-
nicated among, and synchronised across the available PEs [25, 26, 27].

Whilst exploitation of hardware-specific features remains crucial for per-
formance [28, 29, 30], rapid architectural evolution, increasing software com-
plexity, and large non-linear design space render manual code adaptation
infeasible, due to reduced productivity and compromised portability. Hence,
there is a need for a unified high-level parallel programming model that
transparently adapts to a wide range of target architectures, achieving high
performance without sacrificing high productivity and portability.

Coordination. Coordination deals with access to shared resources, paral-
lelism management, and inter-process communication. The computation
needs to be partitioned to enable parallel execution. Often, complex data
structures need to be serialised by the sender and deserialised by the receiver.
There is a trade-off between the communication overhead of balancing the
load to increase resource utilisation and preserving data locality to reduce
communication overhead. Thus, determining a good mapping of tasks to PEs
poses yet another challenge. Alas, most coordination decisions are NP-hard,
so it is difficult to obtain optimal solutions, and all coordination mechanisms
contribute to the overhead which may cancel out the benefits of parallelism.

Unfortunately, many mainstream languages were not designed with par-
allelism in mind and are poorly suited for exploiting parallel architectures.
For example, the model of threads that explicitly share memory is non-
deterministic and is difficult to use to achieve deterministic goals, as the
programmer has to employ such low-level mechanisms as locks to ensure mu-
tually exclusive access to shared resources. Programming mistakes can lead
to race conditions and non-composability makes using multiple locks prone
to deadlocks or livelocks [31, 32, 33] — errors that are notoriously hard to
detect and correct. Furthermore, using too coarse-grained locks reduces par-
allelism, whereas too fine-grained locks result in excessive overheads, both
limiting scalability and overall performance.

Performance Portability. To fully exploit modern heterogeneous architec-
tures, there is a need to achieve high performance portability, i.e. the ability

6

of software to maintain high performance across a wide range of parallel
architectures. Rapid architectural evolution renders manual code adapta-
tion infeasible and mandates adaptive solutions. To adapt, architectural and
system information, such as the number of PEs, memory hierarchy, commu-
nication latency, and system load, should influence coordination decisions
alongside the inferred sub-task size for a given application and input [34].

Productivity. Productivity gains are responsible for the popularity of struc-
tured, object-oriented, and declarative approaches to programming, since
using higher-level languages requires less programmer effort to solve more
complex problems.

The expected lifetime and a large user base of some systems justify the
large development effort of using an error-prone low-level language that offers
high degree of control for peak performance. However, this programming
model requires intricate knowledge of the target architecture on par of the
programmer and encourages non-portable optimisations. Non-determinism
and the associated difficulty of verification and performance analysis due to
exponentially larger behaviour space often prohibitively limit productivity.

Hence, since many programmers were trained using the sequential model
of computation, a solution is desirable that handles parallelism as trans-
parently as possible. Ideally, no specialist architectural knowledge would
be required, since the infrastructure would implicitly manage parallelism.
Although feasible for restricted parallel patterns or data structures, fully
automatic parallelisation unfortunately proved intractable in general. This
requires programmers to change their mindset to think parallel. Nevertheless,
a high-level programming model seems to offer higher productivity an flexi-
bility by automating a large fraction of lower-level decisions where possible.

Scalability. Scalability refers to the ability of a program to utilise increas-
ing available resources, e.g. memory size and the number of PEs, to solve
larger problems faster. Although some problems that comprise independent
compute-bound tasks that require negligible volume of communication are
pleasingly parallel, many problems have non-obvious upper bounds on re-
sources they could efficiently utilise before the benefit of parallelisation is
overwhelmed by the associated overheads in addition to the inherent limits
imposed by the sequential fraction of the algorithm [35].

Fine-grained parallelism is potentially more scalable and flexible in adapt-
ing to changing conditions, since sub-tasks can be inlined if necessary or pro-
ceed in parallel, depending on the architecture and on the execution state [36].

7

In many cases, programs written in low-level languages suffer losses in
performance if moved to an architecture for which the implicit assumptions
made by the programmers no longer hold. For example, fixing granularity
is likely to result either in load imbalance, if the tasks are too coarse, or
in excessive overhead, if the tasks are too fine-grained. Both cases lead to
substantial performance degradation and reduced scalability [37, 38].

3.2. Automated Management of Parallelism

Finding a system-driven and adaptive way of transparently mapping high-
level language constructs to diverse target architectures in response to chang-
ing conditions is crucial for scalability and performance portability. This in-
volves analysing the cost of parallel execution based on relevant parameters
and dynamically controlling different policies.

Analysis of Parallel Execution Costs. Exploiting parallelism is worthwhile
only if the cost of parallelisation and of parallel execution is lower than
the benefit compared to the sequential version. Therefore, to dynamically
decide whether a computation should be split up and run in parallel requires
information on the cost of parallel computation and the cost of coordination.

Modelling these costs is non-trivial, since the cost information needs to
be accurate despite noise and uncertainty, up-to-date, and reflect tightly the
actual execution costs [34]. Many traditional models have a small set of
parameters and are intended for use at design time [39, 40]. However, such
models often neglect parameters that have substantial effect on performance,
e.g. memory access and network latencies or system load.

Dynamic Policy Control. Based on the execution model and obtained infor-
mation, policies can be dynamically controlled to improve the management
of parallelism. Many mechanisms suggested in the literature are based on
heuristics, which work excellently in certain situations, but fail in others.
Thus, the promise of dynamic control is to detect a failing heuristic and
to switch to a better one. Scalable decentralised mechanisms such as work-
stealing [41], enhanced by incorporating architectural and system information
to improve adaptation potential, appear particularly promising.

Dynamic adaptation requires change detection or inference based on a
set of observed parameter values, which are then analysed and compared to
the desired outcome, whereafter adaptation is planned and executed. This is
similar to the cognition cycle used in self-managing systems [42, 43] and to
feedback-directed control [44].

8

3.3. Multi-Level Parallelism

To exploit the increasingly hierarchical architectures, several hybrid pro-
gramming models have been proposed (e.g. MPI + OpenMP + CUDA [45])
that use a different programming model at different hierarchy level to exploit
shared-memory, distributed-memory, and massive data parallelism. However,
these models are low-level and non-uniform prohibitively reducing produc-
tivity and performance portability [46, 47].

The OpenCL framework and OmpSs are geared towards unifying multi-
level parallel programming across CPUs and GPUs [48, 49]. Unfortunately,
the adopted model is rather low-level, leaving many coordination decisions
to the programmer.

By contrast, more structured higher-level approaches shift many of the
parallelism management responsibilities to the OS, the compiler, and the
run-time system (RTS), thus increasing productivity and performance porta-
bility [50, 51]. The challenge is to integrate potentially nested data and task
parallelism and to design composable language constructs.

3.4. Inherently Parallel Data Structures

Many traditional data structures such as linked lists have sequential repre-
sentations that encourage sequential operations making it difficult to exploit
parallelism by unnecessarily restricting the degree and order of evaluation.
Sequential operations increase the serial fraction of the program, which ac-
cording to Amdahl’s Law reduces the upper bound on speedup [35]. There-
fore, parallel data structures that are optimised to exploit parallelism, both in
the representation and in the associated operations, are crucial for developing
efficient parallel applications and systems [52]. Novel data structures need
more flexibility to maintain high performance across diverse heterogeneous
parallel architectures.

In multithreaded environments, concurrent data structures can help to
avoid blocking in order to improve scalability, facilitate parallel programming
by hiding low-level synchronisation details, and ensure thread-safe access to
shared data. The main challenge is to devise operations on data structures
that are implicitly parallel and hide the coordination issues from the pro-
grammer. To achieve this, careful selection of appropriate representation
of data structures in memory is important. For instance, many algorithms
can be rewritten to take advantage of parallel operations over a tree-like
data representation which lends itself to parallelisation, instead of using the
inherently sequential alternative [53].

9

4. High-Level Parallel Programming Models

Finding a clear-cut classification of parallel programming models, sys-
tems and languages is difficult since there are several meaningful ways of
grouping them. In Figure 1, we present an overview of models across the
dimensions of computation (i.e. the algorithmic solution) and coordination
(the management of parallelism).

Table 1 provides a more detailed classification based on seven main classes,
listed in the first column in ascending order of abstraction within each group.
In each class, a representative number of languages is presented and for each
language we report on some key properties regarding the type of parallelism,
the memory model, determinism, and embedding of the constructs for par-
allelism into the host language.

4.1. Language Properties

The properties are listed across the columns and highlight key character-
istics of a language.

4.1.1. Coordination Abstraction

The coordination abstraction refers to the degree of explicit control re-
quired by the programmer to manage parallelism and access to shared re-
sources. Higher level of abstraction leads to higher productivity and reduced
risk of introducing errors in the parallel program at the potential cost of
decreased performance.

Low-Level Models. Such models, e.g. Java Threads or MPI, expose most co-
ordination issues such as problem decomposition, communication, and syn-
chronisation to the programmer [54]. These issues are orthogonal to the
algorithmic problem, require additional effort, and thus reduce productivity.
Dealing with these is notoriously difficult, which constitutes the challenge of
parallel programming. Low-level models offer extensive tuning opportunities
for expert programmers at the cost of significant effort.

Mid-Level Models. Models in this category hide some of the coordination is-
sues from the programmer, in particular thread and memory management,
and mapping of work units to threads. For instance, in OpenMP, the pro-
grammer uses directives to identify parallel regions and the compiler gener-
ates the threaded code.

10

The Task Parallel Library [55] can also be classified as mid-level. Al-
though it provides task abstraction and the run-time system automatically
maps tasks that represent distinct units of work to worker threads, the pro-
grammer is still responsible for synchronisation and splitting work into tasks.

Mid-level models attempt to strike a balance between the performance
benefits through available tuning opportunities and the productivity advan-
tage through the increased level of abstraction.

High-Level Models. These models abstract over most of the coordination,
often leaving only advisory identification of parallelism to the programmer.
Usually built on top of basic parallel constructs, e.g. Java threads or the par
combinator in GpH, these models provide a more structured way of describ-
ing parallelism through the use of abstractions that encapsulate common
patterns of computation and coordination.

For instance, algorithmic skeletons can offer an architecture-independent
interface while providing multiple parallel back-ends to retain performance
across different architectures [56]. The programmer needs merely to select
suitable skeletons and get parallelism for free. High-level models offer the
most powerful abstractions whilst substantially complicating the efficient im-
plementation of the underlying language or library.

4.1.2. Parallelism Types

There are two common types of parallelism – data parallelism that refers
to performing an operation on separate blocks of data in parallel; and task
parallelism where parallel execution is structured based on inter-dependencies
among separate tasks. Most of the models support both types of parallelism.
Efficiently integrating data, nested data and task parallelism remains an open
issue since implementing each type of parallelism seems to require different
mechanisms.

4.1.3. Memory Model

The memory model describes how threads interact to exchange non-
shared data and synchronise to coordinate the access to shared memory.

Shared Memory. Thread-based parallelism, such as pthreads [57] or Java
Threads [58], replaced processes as a predominant programming model on
shared-memory architectures. However, this explicit approach has proven
too low-level to facilitate structured parallel programming due to the need
to avoid race conditions, specify synchronisation and communication, and

11

prevent deadlocks [33]. Sharing memory often requires fine-grained locking
resulting in scalability issues. Higher-level approaches such as OpenMP [59]
were introduced that hide thread management from the programmers who
use pragmas to demand parallel execution. However, explicit locking is re-
quired to prevent race conditions and the scope of variables needs to be
manually specified.

Transactional Memory. Inspired by result from database research, Transac-
tional memory (TM) [60, 61, 62] is another approach to synchronisation. TM
allows instruction blocks called transactions to execute atomically, i.e. they
either succeed or have no effects at all. This is achieved by optimistically
executing the transaction whilst logging the accesses and rolling back to a
consistent state if the transaction fails due to an access conflict. TM provides
a composable high-level abstraction for shared-memory programming, how-
ever, empirical evidence regarding performance and scalability of software
transactional memory is as yet inconclusive [63, 64].

Message Passing. To exploit distributed-memory architectures, the message-
passing model has emerged as a standard approach to program applications,
in particular for large-scale homogeneous and flat HPC architectures. Al-
though low-level and unstructured, the model avoids most of the issues as-
sociated with the shared-memory model by not sharing any state at the
cost of message-buffering and encoding overheads. Exposure of the low-level
details, tempts the programmer to manually optimise the application for
a given target architecture, often decreasing performance portability. The
level of abstraction is raised by using collective operations [65] akin to al-
gorithmic skeletons, and by delegating their efficient implementation to the
library. The libraries such as PVM [66] and MPI [67] are likely to remain
important as the lower communication layer of higher-level libraries and lan-
guages, where the challenge is in adapting to heterogeneous and hierarchi-
cal architectures. Some languages (e.g. Scala, Erlang) provide support for
light-weight processes based on the Actor model [68, 69]. Despite improved
scalability it is not clear whether message passing needs to remain explicit
or can be efficiently handled by the RTS. Unlike the shared-memory model,
the message-passing model can be used to program both shared-memory and
distributed-memory architectures.

PGAS. The concept of Partitioned Global Address Space (PGAS) enables
the programmer to use the abstraction of virtual shared-memory, while pro-

12

viding possibilities for co-locating data on specific nodes and thereby tune
the parallel execution. PGAS is covered in more detail in Section 4.2.4 below.

4.1.4. Determinism

A deterministic model guarantees that the parallel execution yields the
same results as the sequential execution of a program. For example, invoking
the parallel version of a query on a PLINQ object and the par combinator in
GpH, are both deterministic. Deterministic models can be achieved by design
or implemented by building on top of non-deterministic constructs and pro-
viding a deterministic library, e.g Par monad. Deterministic programming
models abstract over low-level thread management issues such as synchroni-
sation, hence preventing the appearance of race conditions and deadlocks.

By contrast, programming models such as Java Threads that depend on
basic concurrency constructs to implement parallelism are non-deterministic,
requiring the programmer to explicitly manage the synchronisation among
threads to ensure correct program behaviour.

4.1.5. Embedding

There is a range of different technologies to embed support for parallel
programming into a host language. Starting from a fresh language design,
first-class primitives for parallelism are the most obvious choice, maximis-
ing the flexibility and allowing to use standard language concepts. When
extending an existing language, new parallel features can be provided as pre-
processor or compiler directives, or built on top of available low-level concur-
rency primitives. Often libraries are used to provide similar features in a less
invasive way [70, 71]. However, this approach is restricted to the optimisa-
tions available in the host language. Alternatively, a separate coordination
language can be used to specify parallel execution and communication [72],
separating the concerns of computation and coordination. Sufficiently high-
level languages enable seamless embedding of the coordination language in
the host language, as exemplified by Evaluation Strategies [73] for GpH.

4.2. Classes of Parallel Programming Models

We group different programming models based on the emerging clusters as
depicted in Figure 1. Below we discuss each group drawing specific examples
from Table 1.

13

T
ab

le
1:

P
ar

al
le

l
P

ro
g
ra

m
m

in
g

M
o
d

el
s,

L
a
n

g
u

a
g
es

a
n

d
S

y
st

em
s

L
an

gu
ag

e/
ex

te
n

si
on

C
o
or

d
in

at
io

n
ab

st
ra

ct
io

n
T

y
p

e
M

em
o
ry

m
o
d

el
D

et
er

-
m

in
is

ti
c

E
m

b
ed

d
in

g
Par.Im

pe.

M
P

I/
P

V
M

lo
w

ta
sk

,
d

a
ta

m
sg

p
a
ss

(e
x
p

l.
)

n
o

li
b

ra
ry

O
p

en
M

P
m

id
d

a
ta

,
ta

sk
sh

a
re

d
(e

x
p

l.
)

n
o

co
m

p
il
er

d
ir

ec
ti

ve
s

C
il

k
m

id
ta

sk
,

d
a
ta

sh
a
re

d
n

o
C

ex
te

n
si

o
n

T
B

B
m

id
d

a
ta

,
ta

sk
sh

a
re

d
n

o
C

+
+

li
b

ra
ry

Par.OO

J
av

a
T

h
re

ad
s

lo
w

ta
sk

,
d

a
ta

sh
a
re

d
n

o
li

b
ra

ry
F

or
k
/J

oi
n

fr
am

ew
or

k
m

id
ta

sk
,

d
a
ta

sh
a
re

d
n

o
li

b
ra

ry
T

P
L

m
id

ta
sk

,
d

a
ta

sh
a
re

d
n

o
.N

E
T

li
b

ra
ry

C
on

cu
rr

en
t

C
ol

le
ct

io
n

s
h

ig
h

d
a
ta

sh
a
re

d
ye

s
li

b
ra

ry

DataPar.

A
rB

B
m

id
d

a
ta

sh
a
re

d
ye

s
C

+
+

li
b

ra
ry

S
A

C
h

ig
h

d
a
ta

sh
a
re

d
y
es

n
ew

la
n
g
u

a
g
e

H
P

F
h

ig
h

d
a
ta

m
sg

p
a
ss

n
o

F
o
rt

ra
n

ex
te

n
si

o
n

D
P

H
h

ig
h

d
a
ta

sh
a
re

d
ye

s
H

a
sk

el
l
ex

te
n

si
o
n

/
li

b
P

L
IN

Q
h

ig
h

d
a
ta

sh
a
re

d
ye

s
.N

E
T

li
b

ra
ry

PGAS

C
A

F
m

id
d

a
ta

,
ta

sk
P

G
A

S
n

o
F

o
rt

ra
n

ex
te

n
si

o
n

U
P

C
m

id
ta

sk
,

d
a
ta

P
G

A
S

n
o

C
ex

te
n

si
o
n

F
or

tr
es

s
h

ig
h

d
a
ta

,
ta

sk
P

G
A

S
n

o
n

ew
la

n
g
u

a
g
e

C
h

ap
el

h
ig

h
d

a
ta

,
ta

sk
P

G
A

S
n

o
n

ew
la

n
g
u

a
g
e

X
10

h
ig

h
d

a
ta

,
ta

sk
P

G
A

S
n

o
n

ew
la

n
g
u

a
g
e

Par.Decl.

C
n

C
m

id
ta

sk
,

d
a
ta

sh
a
re

d
/
m

sg
p

a
ss

ye
s

li
b

ra
ry

P
ar

al
le

l
H

as
k
el

ls
h

ig
h

ta
sk

,
d

a
ta

sh
a
re

d
/
m

sg
p

a
ss

ye
s/

n
o

ex
te

n
si

o
n

s/
li

b
ra

ri
es

E
rl

an
g

h
ig

h
ta

sk
,

d
a
ta

m
sg

p
a
ss

(e
x
p

l.
)

n
o

n
ew

la
n

g
u

a
g
e

M
an

ti
co

re
h

ig
h

ta
sk

,
d

a
ta

m
sg

p
a
ss

y
es

/
n

o
S

M
L

ex
te

n
si

o
n

GPGPU

O
p

en
C

L
,

C
U

D
A

lo
w

d
a
ta

h
ie

ra
r.

m
em

n
o

p
a
r

co
m

p
./

se
q

ke
rn

el
R

en
d

er
sc

ri
p

t
m

id
d

a
ta

h
ie

ra
r.

m
em

n
o

C
-e

x
te

n
si

o
n

/
li

b
C

+
+

A
M

P
m

id
d

a
ta

h
ie

ra
r.

m
em

n
o

C
+

+
ex

te
n

si
o
n

/
li

b
O

ffl
oa

d
m

id
d

a
ta

,
ta

sk
h

ie
ra

r.
m

em
n

o
C

+
+

ex
te

n
si

o
n

/
li

b
S

ke
P

U
h

ig
h

d
a
ta

,
ta

sk
h

ie
ra

r.
m

em
ye

s
li

b
ra

ry

Skel.

H
ad

o
op

M
ap

R
ed

u
ce

h
ig

h
d

a
ta

m
sg

p
a
ss

,
sh

a
re

d
y
es

li
b

ra
ry

P
3L

h
ig

h
ta

sk
,

d
a
ta

im
p

li
ci

t
ye

s
n

ew
la

n
g
u

a
g
e

14

Figure 1: Parallel Programming Models – An Overview

4.2.1. Parallel Imperative

Imperative languages are based on the concepts of state, side-effects,
variable manipulation, pointers, iteration, and program counter to control
execution and are rather low-level closely matching the uniprocessor archi-
tecture [74]. Although low-level of abstraction and explicit control enable
manual optimisation and may result in high performance on a single archi-
tecture, this approach prevents many automatic optimisations which may
result in poor performance across other architectures and reduces portability
as well as programmer productivity Nevertheless, these languages are heavily
used in the industry [75] and are likely to remain at the core of system-level
software, at least in the near future.

4.2.2. Parallel Object-Oriented

Starting from the lowest level, threads are used in object-oriented lan-
guages like Java to run jobs in parallel. The programmer is exposed to

15

the management of threads. Software frameworks such as Fork/Join [76] or
TPL [55] abstract over threads and represent independent units of work as
tasks with less management involved with manually creating threads. This
is left to the RTS which manages a fixed or dynamic pool of threads and au-
tomatically maps tasks to running threads. Even more implicit are libraries
of concurrent collections which have efficient parallel implementations of op-
erations on common data structures, e.g. arrays and hash tables. These
collections hide concurrent access through implicit synchronisation.

4.2.3. Data Parallel

Some languages support only data-parallelism via constructs such as par-
allel for loop and parallel arrays. This fits a large group of applications where
parallelism is identified by domain decomposition. Data parallel languages of-
ten provide a sequential model of computation and most coordination aspects
are almost completely implicit. However, this model is restrictive and unless
the application exhibits data-parallelism, it cannot be used. Most languages
in this category efficiently handle regular data-parallelism. DPH [77] is an
instance of languages well-suited for irregular data-parallelism using flatten-
ing transformation and distributing equal workload to processing units [78].
Data parallel models take advantage of GPUs which are suitable for fine-
grained data-parallel computations. For instance, ArBB [79] and SAC [80]
can generate vector instructions.

4.2.4. PGAS

The Partitioned Global Address Space (PGAS) abstraction, akin to a tun-
able virtual-shared memory view, attempts to unify programming by hiding
communication and by providing a shared-memory view on potentially phys-
ically distributed memory and is becoming increasingly popular in HPC.
Extensions to established languages include Unified Parallel C (UPC) [81]
and Co-Array Fortran (CAF) [82] and new developments include X10 [83],
Chapel [84], and Fortress [85]. Although the level of abstraction is raised, the
difficulty of arranging shared-memory accesses re-appears. Moreover, explic-
itly specifying blocking factors may yield undesirable distributions of shared
data that may lead to performance degradation if data locality is impaired,
making performance prediction difficult unless the programmer is intimately
familiar with the architecture of the underlying target platform.

16

4.2.5. Parallel Declarative

Declarative languages are based on the concepts of immutability, single as-
signment, isolated side-effects, higher-order functions, recursion and pattern
matching, among others. Due to sophisticated compilation techniques and
run-time optimisations available because of their foundation in lambda cal-
culus, declarative programs can deliver competitive performance [86]. More-
over, the performance losses are often offset by productivity gains of the
declarative approach that encourages writing portable and high quality code.
Most importantly, declarative languages better fit modern parallel architec-
tures, since they allow more flexible coordination of parallel execution and
avoid over-specifying evaluation order. For example, Manticore [87] sup-
ports multi-level parallelism whereas Haskell offers diverse extensions and
libraries [88] to exploit parallelism on multi-cores (GpH), GPUs (Acceler-
ate) and distributed-memory architectures (Eden, Cloud Haskell, HdpH),
with Meta-par [89] aiming to unify parallel heterogeneous programming us-
ing these models.

4.2.6. GPU Programming

This class of programming models and languages aims at massively data
parallel computation. OpenCL, being vendor-independent, targets multi-
core CPUs and GPUs, with CUDA targeting only NVIDIA GPUs. At a
higher level of abstraction, SkePU provides skeletons building on top of
OpenCL and CUDA for GPU and OpenMP for CPU as different backends
for heterogeneous computing. Section 5 covers GPU models in more detail.

4.2.7. Algorithmic Skeletons

Algorithmic skeletons [90, 91, 56] encapsulate common parallelism pat-
terns and facilitates structured parallel programming [92, 93] by decoupling
the computational logic and the coordination aspects of a program, and hid-
ing parallelism management from the programmer [94]. This leads to several
advantages, such as portability of the parallel behaviour [95] and performance
predictability through the application of cost models [96] and sophisticated
monitoring techniques [97]. For example, common patterns are MapReduce,
TaskFarm, Pipeline and Divide and Conquer. These skeletons can be nested,
resulting to more advanced skeletal building blocks that implement increas-
ingly complex patterns [98, 99].

17

5. Heterogeneous Computing

A recent trend in computer architecture design is the integration of spe-
cialised hardware such as GPUs, FPGAs and many-core co-processors (such
as the Xeon Phi) to create heterogeneous systems, with very different hard-
ware characteristics, such as memory latency, impacting the style of pro-
gramming on these devices. The combined compute power of these different
devices makes it possible to handle the algorithmic complexity and high
computational demands of today’s increasingly more complex applications.
Parallelism, provided through modern heterogeneous systems, and not in-
creased clock rates, has become today’s primary source of computational
performance [100]. Such systems (e.g. in Figure 2), though, are very com-
plex to efficiently program with, and require the existence of programming
models that are powerful enough to allow the users to exploit all the available
underlying heterogeneity. This section focuses on such programming models:
from lower-level ones such as NVIDIA’S CUDA [101] and OpenCL [102] to
higher-level ones such as Microsoft’s C++ AMP [103], OmpSs [49], Code-
play’s Offload [104], Google’s Renderscript [105] and SkePU [106].

Figure 2: A typical heterogeneous CPU (host)/GPU (device) architecture

5.1. Current, Low-level Heterogeneous Programming Models

Nowadays the most commonly used models for programming heteroge-
neous devices are NVIDIA’s CUDA and OpenCL, an open standard defined
by Khronos Group. In our classification, both of these models are low-level,

18

requiring detailed control of coordination as well as computation, in partic-
ular controlling the access to different levels of the memory hierarchy.

The CUDA [101] programming model enables parallel computing on GPU
architectures. Developers can write GPU kernel functions in a language such
as C, C++ or Fortran in order to issue computational instructions to a GPU.
CUDA requires its users to explicitly move data between host and device,
and have full access to the device’s memory hierarchy (e.g. global, shared and
private — see Figure 2). GPUs are different from CPUs in the sense that
they emphasise high throughput and consist of thousands of threads, which
are able to run in parallel, thus allowing the developers to create powerful
solutions that can solve a large variety of data-intensive problems. NVIDIA
recently announced that CUDA will be available as a compute model on its
upcoming TEGRA 5 architecture for mobile devices, showing that heteroge-
neous computing is slowly becoming more mainstream.

Open Computing Language (OpenCL) [102] is a heterogeneous program-
ming model targeting existing and emerging architectures that consist of
multiple CPUs, GPUs and other accelerators. It is a vendor-independent
standard, developed and maintained by the Khronos Group. The OpenCL
API is based on a subset of C99 and is very similar to CUDA in the sense
that the user writes GPU kernel functions, which are then compiled for the
underlying architecture and explicitly offloaded to the requested accelerator
device. Through read and write data streams, the available data are trans-
ferred to the device, the kernel is executed in parallel and then the results are
transferred back to the host. Listing 1 gives an example of a simple OpenCL
kernel, performing a vector-vector addition.

Listing 1: A simple OpenCL kernel for vector addition

k e r n e l
void vectorAdd (g l o b a l const f loat ∗ a , g l o b a l const f loat ∗ b ,

g l o b a l f loat ∗ sum , const unsigned int count)
{

int i = g e t g l o b a l i d (0) ;

i f (i < count) {
sum [i] = a [i] + b [i] ;

}
}

19

5.2. Emerging, Higher-level Models to Heterogeneous Computing

Current parallel computing models such as CUDA and OpenCL, although
powerful tools for exploiting heterogeneity, are too low-level as they provide
direct access to the device memory, require a lot of boilerplate initialisation
code and are prone to hard to debug errors associated with GPU architec-
tures. Higher-level approaches are necessary towards enabling faster proto-
typing and ease of programming, maintenance and debugging. The current
trend is to move towards heterogeneous programming models that abstract
over the underlying GPU hierarchical memory. As an example of this on-
going effort, the next NVIDIA GPU architecture, Maxwell, will introduce
unified memory, giving the CUDA programmer direct CPU memory access
from the GPU [107].

Microsoft’s C++ Accelerated Massive Parallelism (C++ AMP) [103] is
an open specification and a DirectX 11 implementation for heterogeneous
data parallel computing in C++. The library aims towards performance
portability by allowing the same code to run either on a GPU or a CPU.
If a GPU is not found in the system then the runtime will send code for
execution on the available CPUs. Towards this, Microsoft introduced the
restrict specifier which can be applied to lambda functions passed inside the
C++ AMP system. The compiler then performs a static check on a function
that has this specifier to check if the language features inside the lambda can
be supported by the available GPU. C++ AMP focuses on data parallelism as
the main concept and provides the parallel for each structure, which defines a
parallel loop. The programming model also includes multidimensional arrays,
ways to transfer data between the host and the device, and a library of
common mathematical functions.

Listing 2: Adding two arrays in C++ AMP

void vectorAdd (int n , int ∗ pA, int ∗ pB, int ∗ pSum)
{

concurrency : : array view<int , 1> a (n , pA) , b(n , pB) , sum(n ,
pSum) ;

concurrency : : p a r a l l e l f o r e a c h (sum . extent , [=] (concurrency : :
index<1> i) r e s t r i c t (amp)

{
sum [i] = a [i] + b [i] ;

}) ;
}

20

OmpSs [49] is a single-source model that extends OpenMP by introduc-
ing new pragmas for programming heterogeneous architectures. The source
code is compiled into distinct object files, each one targeting a different pro-
cessing element of the underlying system, which are scheduled at run time.
OmpSs enables incremental parallelisation, where the source code is restruc-
tured and optimised step-by-step, while the architecture specific details are
separated by the implementation. Unlike OpenCL, OmpSs does not require
the programmer to select the concrete back-end. OmpSs is designed to be
portable as the same pragmas can be potentially used by any host language
and target any architecture that has an implemented backend.

Offload [104] is a single-source programming model by Codeplay for semi-
explicitly parallelising C++ code and executing it on a heterogeneous system,
such as the Cell processor [108]. The programmer wraps code in an offload
block, which is compiled for a backend specific to an accelerating device.
The runtime then executes this code asynchronously in a worker thread and
sends the results back to the main thread. Any data that is defined inside
an offload block resides in device memory, and the compiler is responsible for
automatically moving data between the host and the device. This is achieved
by having different pointers for host and device at the type level, and by com-
piling different versions of the same function for the host and the device using
a compiler technique known as automatic call-graph duplication. Offload is
a higher-level approach that aims to provide performance portability by in-
troducing minimal language extensions, and ease-of-programming by lifting
the burden of data management from the programmer.

A trend in mobile devices design is to integrate a multi-core CPU and a
GPU on the same chip. Renderscript [105] is a programming model by Google
that aims to allow programmers to easily harness the available computing
power in such heterogeneous mobile devices. It is part of the Android SDK
since the Honeycomb release. Performance portability is the design principle
of Renderscript, as it enables the developers to write efficient code that can
be executed both on CPU and GPU. The programmer can be agnostic of
the underlying architecture as the Renderscript code is compiled during run
time on the device. Renderscript abstracts over advanced GPU computing
features, such as the underlying GPU memory hierarchy. Although this
could potentially hamper application performance, it allows the code to stay
hardware-independent, which is important in the mobile landscape with the
plethora of different available Android devices.

The highest level of abstraction among the heterogeneous programming

21

models discussed in this section is provided by SkePU, a C++ template li-
brary that abstracts over both parallel computation patterns and hierarchical
memory, providing multi-backend skeletons for heterogeneous architectures.
The library provides implementations in CUDA and OpenCL for execution on
GPUs, and in OpenMP to exploit multicore CPUs. The programmer is able
to create his own user-defined functions through a pre-processor macro-based
approach. SkePU focuses on skeleton computations over arrays and STL-like
vectors, which are a good match for GPU programming. The library provides
multiple data-parallel skeletons (Map, Reduce, MapReduce, MapOverlap,
MapArray and Scan) and a task-parallel skeleton (Farm). SkePU includes
StarPU, a RTS for dynamic scheduling and memory management in hetero-
geneous architectures. StarPU RTS is capable of scheduling tasks generated
by the provided code on a combination of the host and the available acceler-
ating devices.

6. Parallelism Management Policies and Mechanisms

Coordination aspects, as introduced in Section 3, closely correspond to
several policies, i.e. ”rules that define a choice in the behaviour of a sys-
tem” [109], which guide parallel execution. Most relevant parallelism man-
agement policies are thread and memory management, communication, load
balancing, and monitoring. Generally, policy decisions based on local knowl-
edge lead to more scalable mechanisms, however, often some non-local infor-
mation is necessary to avoid pathological cases.

This section covers the above policies by introducing several, represen-
tative implementation approaches, focusing on those for high-level program-
ming models as discussed in Section 4. While an exhaustive survey of these
policies is beyond the scope of this report, we refer to available surveys and
taxonomies for further guidance. First, we discuss the negative effects of
overspecification and review the key coordination policies. We then discuss
several mechanisms to implement these policies at different software layers.

Subsequently, in Table 2 below, we summarise several representative li-
braries and language run-time systems based on the parallelism identification
mechanism, thread management, scheduling, memory management, commu-
nication, synchronisation, and load balancing. We then structure our discus-
sion of the concrete mechanisms based on this table.

Overspecification Considered Harmful. Rewriting major sections of applica-
tions for each architecture is infeasible and requires a flexible approach to

22

software adaptation. For instance, fixing task granularity, i.e. overspecifying
evaluation degree, at implementation or start-up time may lead to load im-
balance, if granularity is too coarse, or to excessive overhead, if granularity
is too fine [37, 38]. Although chiefly an issue for irregular and dynamic ap-
plications, this observation is also relevant if system characteristics change
during the execution or if the program is moved to another architecture.

In turn, overspecifying evaluation order leads to unnecessary dependen-
cies that reduce potential parallelism and hence diminish scalability. There-
fore, architectural trends require embracing the architectural diversity to bet-
ter exploit parallelism through dynamic policy control. However, to achieve
high performance portability the overhead of managing parallelism, change
detection, and adaptation should be minimised.

6.1. Thread Management

Thread management involves identification of parallelism and the cre-
ation, scheduling, and termination of basic units of execution that include
relevant data and associated control structure. For instance, OS-threads
comprise state such as register contents and a stack, which makes creation
and switching between the threads rather expensive. Usually, a pool of OS-
threads is transparently managed and the lightweight threads (or tasks) are
multiplexed among the OS-level threads. Several design decisions are in-
volved when managing thread execution across multiple PEs.

A thread can be represented by a data structure on the stack or allocated
from the heap. Linked-frame models tend to be more flexible, but incur addi-
tional overhead of allocation, de-allocation, and indirection. The implemen-
tation of the pool that holds runnable and blocked threads is important too.
For instance, lock-free data-structures avoid overhead of explicit locking by
exploiting hardware-based atomic operations, e.g. Compare-And-Swap [110].

Parallelism can be identified explicitly by the programmer, or implicitly
by using a suitable parallel data structure [80] or high-level skeleton [56],
which both restrict the coordination and encapsulate parallelism manage-
ment. Moreover, explicit identification may be either mandatory (e.g. most
thread libraries), forcing thread creation (also referred to a eager disconnect),
or advisory (lazy disconnect), where the annotation is treated as a hint and
the final decision rests with the RTS (e.g. GpH). The implicit approach works
best for regular problems and those that match the encapsulated patterns,
whereas the explicit approach is more general but shifts coordination man-
agement either to the programmer, thus lowering productivity, or to the RTS,

23

T
ab

le
2:

O
v
er

v
ie

w
o
f

P
a
ra

ll
el

is
m

M
a
n

a
g
em

en
t

M
ec

h
a
n

is
m

s
P

ar
Id

en
t.

T
h

re
ad

M
g
t.

S
ch

ed
.

M
em

M
g
t.

C
o
m

m
.

S
y
n

c.
L

o
a
d

B
a
l.

M
P

I/
P

V
M

ex
p

l.
p

ro
ce

ss
es

ex
p

l.
ex

p
l.

m
sg

p
a
ss

m
es

sa
g
es

ex
p

l.
O

p
en

M
P

ex
p

l.
d

ir
ec

-
ti

ve
s

im
p

l.
st

a
t.

/
d

y
n

a
.,

m
a
n

d
a
to

ry
im

p
l.

S
A

S
a

ex
p

l.
(l

o
ck

-
/
fe

n
ce

)
W

P
a

(d
y
n

a
.

sc
h

ed
.)

C
il

k
ex

p
l.

p
ri

m
i-

ti
ve

s
im

p
l.

L
IF

O
im

p
l.

S
A

S
ex

p
l.

(m
u

-
te

x
/
w

a
it

)
W

S
a

(F
IF

O
,

ra
n

d
.)

T
B

B
ex

p
l.

im
p

l.
F

IF
O

,
u

n
fa

ir
im

p
l.

S
A

S
ex

p
l.

W
S

(L
IF

O
,

ra
n

d
.)

T
P

L
ex

p
l.

im
p

l.
tu

n
a
b

le
im

p
l.

S
A

S
im

p
l.

W
S

(t
u

n
a
b

le
)

J
av

a
T

h
re

ad
s

ex
p

l.
ex

p
l.

fi
x
ed

-p
ri

o
ri

ty
,

u
n

fa
ir

im
p

l.
S

A
S

ex
p

l.
(l

o
ck

,
m

u
te

x
,

jo
in

)
ex

p
l.

F
or

k
/J

oi
n

ex
p

l.
ex

p
l.

im
p

l.
im

p
l.

S
A

S
ex

p
l.

(j
o
in

)
W

S
/
ex

p
l.

C
on

c.
C

ol
le

c.
ex

p
l.

im
p

l.
im

p
l.

im
p

l.
S

A
S

im
p

l.
ex

p
l.

A
rB

B
im

p
l.

im
p

l.
st

a
t.

/
d

y
n

a
.,

m
a
n

d
a
to

ry
im

p
l.

S
A

S
im

p
l.

W
P

(d
y
n

a
.

sc
h

ed
.)

S
A

C
im

p
l.

im
p

l.
(a

rr
ay

s)
st

a
t.

/
d

y
n

a
.,

a
d

-
v
is

o
ry

im
p

l.
S

A
S

im
p

l.
W

P
(d

y
n

a
.

sc
h

ed
.)

H
P

F
im

p
l.

im
p

l.
st

a
t.

im
p

l.
S

A
S

im
p

l.
sc

h
ed

.
d

ep
en

d
en

t
D

P
H

im
p

l.
im

p
l.

im
p

l.
im

p
l.

S
A

S
im

p
l.

ex
p

l.
P

L
IN

Q
im

p
l.

im
p

l.
im

p
l.

im
p

l.
S

A
S

im
p

l.
im

p
l.

C
A

F
im

p
l.

im
p

l.
im

p
l.

im
p

l.
(P

G
A

S
)

im
p

l.
ex

p
l.

ex
p

l.
(p

re
sc

ri
p

ti
v
e)

U
P

C
/C

h
ap

el
im

p
l.

/e
x
p

l.
2

im
p

l.
im

p
l.

im
p

l.
(P

G
A

S
)

im
p

l.
ex

p
l.

ex
p

l.
(p

re
sc

ri
p

ti
v
e)

F
or

tr
es

s/
X

10
im

p
l.

/e
x
p

l.
im

p
l.

im
p

l.
im

p
l.

(P
G

A
S

)
im

p
l.

ex
p

l.
W

S
C

n
C

im
p

l.
im

p
l.

im
p

l.
im

p
l.

S
A

S
im

p
l.

im
p

l.
G

U
M

(G
p

H
)

an
n

ot
at

io
n

im
p

l.
(a

d
v
i-

F
IF

O
,

u
n

fa
ir

im
p

l.
(V

S
M

)
im

p
l.

im
p

l.
W

S
(F

IF
O

,
ra

n
d

.)
G

H
C

-S
M

P
(G

p
H

)
an

n
ot

at
io

n
im

p
l.

-s
or

y
)

F
IF

O
,

u
n

fa
ir

im
p

l.
S

A
S

im
p

l.
W

S
(F

IF
O

,
ra

n
d

.)
D

R
E

A
M

(E
d

en
)

ex
p

l.
p

ro
ce

ss
im

p
l.

ro
u
n

d
ro

b
in

,
fa

ir
im

p
l.

(D
S

M
)

im
p

l.
im

p
l.

W
P

M
an

ti
co

re
im

p
l.

/e
x
p

l.
im

p
l.

F
IF

O
,

n
es

ta
b

le
im

p
l.

S
A

S
im

p
l.

W
P

O
p

en
C

L
,

C
U

D
A

ex
p

l.
im

p
l.

st
a
ti

c
ex

p
l.

ex
p

l.
ex

p
l.

ex
p

l.
R

en
d

er
sc

ri
p

t
ex

p
l.

im
p

l.
im

p
l.

im
p

l.
im

p
l.

ex
p

l.
ex

p
l.

C
+

+
A

M
P

ex
p

l.
im

p
l.

im
p

l.
im

p
l.

im
p

l.
ex

p
l.

ex
p

l.
O

ffl
oa

d
ex

p
l.

im
p

l.
im

p
l.

im
p

l.
im

p
l.

ex
p

l.
ex

p
l.

S
ke

P
U

sk
el

.
im

p
l.

tu
n

a
b

le
im

p
l.

im
p

l.
im

p
l.

sc
h

ed
.

d
ep

en
d

en
t

H
ad

o
op

M
ap

R
ed

.
sk

el
.

im
p

l.
tu

n
a
b

le
im

p
l.

im
p

l.
im

p
l.

W
P

(d
y
n

a
.

sc
h

ed
.)

P
3L

sk
el

.
im

p
l.

im
p

l.
im

p
l.

im
p

l.
im

p
l.

im
p

l.

a
S

A
S

:
sh

ar
ed

ad
d

re
ss

sp
ac

e;
W

P
:

w
or

k
-p

u
sh

in
g
;

W
S

:
w

o
rk

-s
te

a
li
n

g
b
U

P
C

,
F

or
tr

es
s,

C
h

ap
el

,
X

10
,

M
an

ti
co

re
:

im
p

l.
d

a
ta

p
a
ra

ll
el

co
n

st
ru

ct
s,

ex
p

l.
ta

sk
p

a
ra

ll
el

is
m

24

complicating its implementation. In contrast to eager disconnect, lazy discon-
nect allows for dynamic adjustment of the degree of the exploited parallelism
by either providing a sequential call with enough information to disconnect
and continue execution in a child thread [111] or by inlining child threads in
the parent and un-inlining them if necessary [36]. Manual granularity control
is not scalable due to rapid architectural evolution and since the behaviour
of some applications is dynamic and less predictable. Hence, a mechanism
for thread subsumption is required to ensure that threads are created only if
the benefit of parallel execution outweighs the associated management and
communication overhead.

Scheduling [112, 113, 114] determines when and which thread will ex-
ecute and can be either random, round-robin, queue-based (LIFO, FIFO),
depend on a metric e.g. priority-based or heuristic (e.g. Heterogeneous Ear-
liest Finish Time [115]), among others. Moreover, explicit scheduling is the
responsibility of the user (e.g. in MPI or pthreads), as opposed to static sys-
tem scheduling (e.g. OpenMP, UPC), where the schedule is known at compile
time, or dynamic system-level scheduling at run time (e.g. Cilk, GpH), which
may factor in annotation hints provided by the programmer to judiciously
restrict the available parallelism, which is a less demanding task since decom-
position is rather implicit and focus is on identification of parallelism. Often
the programmer has to select a scheduler from a predefined set and can pa-
rameterise it (e.g OpenMP) or even plug-in a custom implementation of a
scheduler (e.g. Hadoop), which results in increased flexibility and provides a
way to experiment with and tune different scheduling strategies.

6.2. Memory Management

Memory management includes allocation and de-allocation of memory,
garbage collection, and maintaining a consistent view of the shared memory.
For instance, a virtual shared memory abstraction (as used in GUM [116, 117]
a GpH RTS), requires to map local objects that are shared to a global ad-
dress that allows the remote PEs to locate its contents, whereas distributed-
memory view requires using messages (as in DREAM RTS for Eden [118]).

As memory management contributes to the overall management over-
head, it is necessary to minimise sharing, to avoid memory fragmentation,
to reduce the frequency of disruptive garbage collections (e.g. by replacing
stop-the-world mark-and-sweep mechanism by a distributed weight-based or
generational garbage collection).

25

Due to limited scope of this report, we don’t include a detailed discussion.
Please refer to comprehensive handbooks [119, 120]. The main idea behind
efficient parallel garbage collection is to provide mechanisms to reclaim un-
used memory locally in a decentralised and least disruptive fashion.

6.3. Communication and Synchronisation

Communication is required to share computational load and defines a
messaging protocol, packet format, and the serialisation mechanism. It is one
of the main sources of overhead, in particular on hierarchical and high-latency
architectures. Apart from the network topology, latency and bandwidth are
the main parameters that characterise the interconnect and should be taken
into account [39, 40].

On distributed-memory architectures messages passing [67, 66] is used,
whereas on shared memory architectures data is shared using a shared ad-
dress space (SAS). PGAS and Virtual Shared Memory (VSM) provide a
shared memory view on a potentially distributed set of resources [121, 122].
In either case contention may arise if many messages are send to the same
receiver, or many threads attempt to access the same memory location.

Communication overhead can be reduced by hiding latency and sending
less but larger messages and by overlapping communication and computation,
where possible. Moreover, work sent needs to be substantial to offset commu-
nication costs, suggesting that task size information is important. Different
mechanisms can be used to protect a shared resource on shared-memory ar-
chitecture such as semaphores, locks, mutexes, conditional variables, fences,
and barriers. Often explicit locking results in contention and creates a bottle-
neck as the number of cores and threads increases. In some cases, contention
on shared memory can be avoided by using wait-free or lock-free data struc-
tures, but often it is a matter of scalable design, or even more fundamentally
a limitation of the programming model.

6.4. Load Balancing

To exploit parallel architectures, the work needs to be decomposed into
sub-tasks and the data to be partitioned to allow simultaneous computa-
tion. Subsequently, sub-tasks are placed on PEs and sent off in a way that
balances computational load to increase utilisation of the available resources
and preserves data locality to reduce communication overhead.

26

Mapping of sub-tasks to PEs is NP-hard and hence often heuristics or
approximations are used. In particular, if an application dynamically gener-
ates irregular parallelism or as backload varies on non-dedicated systems, a
mechanism is required to dynamically balance the load at run time. Infor-
mation on the task dependencies and communication patterns can be used
to ensure higher data-locality. However, keeping the data local may result in
load imbalance, resulting in a trade-off.

Load balancing (or load sharing) aims to distribute work to better utilise
the available resources and to satisfy a given goal metric such as minimising
run time or power consumption. Migrating executing threads results in a
large overhead and should only be considered as a last resort, since predicting
effects of migration is nontrivial. Migration may pay off in a situation where a
slow machine is engaged in a large computation whilst all other PEs are idle.
Additionally, speculative execution may prove useful, as it creates additional
opportunities for parallelism at the cost of work duplication.

Load Balancing Taxonomy. Load balancing mechanisms can be subdivided
into local and global depending on the effects of the decisions, static or
dynamic depending on the decision time (either at start-up or during the
execution), distributed, hierarchical, or centralised, based on the availability
of holistic information about the system. Moreover, the mechanisms can be
either cooperative or non-cooperative depending on whether the underlying
scheduling policies are preemptive or not, and optimal or sub-optimal regard-
ing the result. This taxonomy is further refined to classify the sub-optimal
approaches as either heuristic or approximative. One further fundamental
difference between two large families of load balancing mechanisms is based
on whether the producers of work actively distribute it or merely reply to
work requests. However, the taxonomy has not been developed with modern
parallel architectures in mind and therefore can be extended, depending on
the support for heterogeneity and multi-level hierarchy.

Work Pushing. Work pushing, also termed active load distribution, refers to
the family of mechanisms, where the generator of work actively pushes work
units to other PEs. This approach is common for eager disconnection model
and in producer/consumer, pipeline, and task farm patterns (e.g. as used
in client/server computing, or in frameworks like MapReduce, or common
SPMD-style HPC applications) and suitable if a clear-cut decision can be
made at design time that several PEs will rather generate work and others will

27

take the worker role and receive work units, perform the computation, and
return partial results. Several flavours of push-based methods exist, based
on the available information (local or global) and on the network topology
(e.g. hierarchical).

Work Stealing. On the other extreme of the continuum, work stealing [123,
124, 125] or passive load distribution, refers to a receiver-initiated family of
mechanisms, where idle PEs attempt to steal work from other PEs.

Commonly, a steal victim is chosen at random, which ensures scalability
since no global knowledge is required for the decision. Moreover, a pull-
based protocol imposes the overhead on otherwise idle PEs, thus amortising
the communication cost. In contrast to a shared-memory architecture, com-
munication costs on a distributed-memory architecture are substantial and
work stealing has been demonstrated to benefit from additional information
such as system load, latencies, or task size [126, 127, 128].

Apart from the question from which PE to steal, work stealing mecha-
nisms differ in the way a PE responds to a steal request (e.g. by sending
the largest work unit, or the one that preserves locality best; or to which
PE to forward a request). For instance, on hierarchical systems, it may be
preferable to steal work from a local cluster rather than from a remote one,
or to send one local and one remote steal request simultaneously. However,
predicting the cost-benefit ratio is an open research question and depending
on the situation different distribution strategy may perform best.

Cost Modelling. One important technique to predict computation costs of
program expressions, and thus to gain important additional information for
the scheduler, is to define cost models for a particular class of hardware and
for a certain programming model. Such cost models provide one solution
to the problem of largely varying costs of memory access on heterogeneous
hardware, provided that the cost model is sufficiently detailed. For more
detailed overview, refer to a survey focussing on parallel hardware [25] and
a recent survey paper [34] with a focus on resource analysis.

Influential cost models that have been developed for distributed compu-
tation are the Parallel Random Access Machine (PRAM) [129], the Bulk
Synchronous Parallel (BSP) [130] and the LogP [131] model. The HLogGP
model [132] extends LogP to take heterogeneity into account by using a pa-
rameter matrix instead of the scalar parameters that include the speed of
compute nodes in a cluster and latency among them.

28

7. Case Studies

In this section, we present some case studies of parallel applications cov-
ering different areas of scientific computing. We start by discussing, in Sec-
tion 7.1, the parallel implementation of image processing algorithms on a
heterogeneous system, using a single-source programming model that also
hides details of the memory hierarchy. We refer to implementations of the
n-body problem as an important classic HPC application in Section 7.2. Fi-
nally, we discuss in Section 7.3 some domain-specific parallel patterns, that
exemplify the high-level parallel programming approach, tailored for one par-
ticular application domain that has not been covered systematically by HPC
so far, namely symbolic computation.

While by no means exhaustive, these examples represent challenging ap-
plications and the chosen techniques for parallelisation are indicative for cur-
rent trends in languages and models for parallel computing. Thus, these
patterns complement the ”dwarfs/motifs” identified in [133], representing
instances from classic supercomputing parallelism. For a detailed descrip-
tion parallel functional applications the interested reader is referred to [134].
A comparative study of the construction of different large symbolic applica-
tions in the parallel functional language GpH is presented in [135].

7.1. Image Processing Filters

Image processing filters are commonly used to enhance the quality of
computer graphics. The parallel execution of such image processing algo-
rithms on a heterogeneous system, such as the Cell processor, is presented
in [136]. The paper demonstrates the use of Offload C++ technology, a
single-source heterogeneous programming model, in five cases of image pro-
cessing: embossing, sharpening, Laplacian edge detection, grey scaling and
noise reduction. Offload technology facilitates parallelisation by hiding the
complexity and automating the process of moving data between the host and
the device. Thus, the programmer does not have to worry about the under-
lying memory hierarchy and can write higher-level code which is easier to
debug, maintain and extend.

In the case of image sharpening, the algorithm receives a set of pixels, cen-
tred around a (x, y) position, as an input, applies the computational kernel
and then produces a (modified) pixel, at the same (x, y) position, as an out-
put. Offload semi-explicitly parallelises such computations by offloading the
execution of the filter on the available Cell Synergetic Processing Elements

29

(SPEs). To achieve this, the programmer encapsulates the entire filter code
inside an offload block, as discussed in Section 5. When the running program
reaches an offload block, the runtime spawns a new SPE thread and sends the
filter code to be executed on this spawned thread while returning a handler
to the main thread. The main thread uses this handler for synchronisation,
by waiting for all the running SPE threads to finish the filter computation
and then perform a join before continuing with the main thread execution.
Experimental results for the image sharpening algorithm showcased speedup
of 2.96 over the serial version on 6 SPEs of the Cell processor [136].

7.2. N-Body Simulation

N-Body simulations represent an important class of problems in many
areas of science. Imperative languages are efficient at solving the naive al-
gorithm which consists of pairwise comparison between bodies, thus usually
requiring two nested loops in the implementation with in-place update of the
positions and the velocities of the bodies. High-level approaches to imple-
ment not only the naive algorithm but also the more advanced Barnes-Hut
approximation method have been covered in detail in [88] and [137]. Both
papers highlight the ease of expressing several versions of the same or differ-
ent algorithms in high-level functional languages including Haskell, F# and
Scala. Adding parallelism to the problem involved either annotating compu-
tations that could usefully be evaluated in parallel or replacing higher-order
function e.g. map with parMap (for which several possible implementations
are given in each language) to benefit from parallel execution. The approach
demonstrates how functional languages raise the level of abstraction and also
enable specifying parallelism in a minimally intrusive way without any major
change to the sequential algorithm. The Eden Haskell implementation is also
shown to be easily portable on clusters of multicores without any algorithmic
changes.

7.3. Symbolic Computation

Typical characteristics of parallel symbolic applications [135, 138] are:
they use complex data structures, e.g. trees and graphs rather than flat ar-
rays; they exhibit large degrees of dynamic parallelism, where massive par-
allelism is generated in bursts throughout the computation; they encompass
a high degree of data dependencies, resulting in unpredictable granularities;
and they build on symbolic rather than numerical computations, e.g. arbi-
trary precision integers rather than floats. These characteristics make them

30

challenging to achieve good speedups, and favour a high-level parallelism
approach with an adaptive, dynamic system implementing this model.

7.3.1. An Orbit Pattern

Orbit calculations are common in symbolic computations, in which, a
solution space is explored given some initial starting values and a number
of generating functions. The Orbit pattern is a frequently occurring task in
computational algebra, and has many implementations including the GAP
system for computational group theory.

The Orbit pattern is implemented as a function in Haskell, which takes
as arguments a list of elements representing the initial state and and a list of
generator functions. The pattern will repeatedly apply the generators to the
elements of the list and append the results to the list. The process continues
until no new elements can be generated for the list without duplication.

The sequential Haskell implementation of the Orbit computation has been
parallelised employing a suitable approach for irregular parallelism building
on the workpool skeleton defined in [139]. Irregularity in the Orbit function is
due to the changing set of input as well as the variation of the computational
costs for the generator functions based on the input that they are applied to.

Since the sequential code maintains a central queue of inputs that have
not yet been processed, a workpool approach for parallelisation effectively
distributes this queue to the available processing elements, on a first-come,
first-served basis, and then merges the results into the central queue for subse-
quent processing. The absolute speedups of the orbit calculations, presented
in [139], are near-linear (up to a factor of 7.67 on all 8 cores of a multi-core
desktop for a set size of 16000).

7.3.2. A Multiple-Homomorphic-Images Pattern

Several computer algebra applications, involving complex data structures,
solve problems using an indirect approach. First, the problem is mapped from
the input domain to simpler domains, considerably reducing the size of the
data structures. Then the problem is solved in these domains, which can be
done in parallel, and finally the result in the original domain is reconstructed
from these results. The main benefit of this approach for sequential perfor-
mance comes from the cheaper operations that can be used when solving the
problem in these simpler domains, provided the simpler domains preserve
basic underlying operations i.e. are homomorphic images.

31

This approach consists of the following stages: map the input data into
several homomorphic images; compute the solution in each of these images,
and combine the results of all images to a result in the original domain. All
homomorphic images can be computed in parallel in the parallel implemen-
tation of this pattern as there is no dependency between them. The combine
phase can also be parallelised using a general fold operation. One particular
instance of this pattern is a linear system solver discussed in [135].

8. Conclusions

In this survey we have presented a classification of current and emerging
programming models for high-level parallel programming, addressing ma-
jor challenges such as performance portability, scalability to larger clusters
and heterogeneity of the underlying hardware. The common theme of these
models is to move away from an explicit notion of threads in the program,
and to use more structured coordination patterns, instead of the unstruc-
tured, explicit synchronisation constructs that have been dominant in low-
level models such as MPI. Increasingly, using low-level primitives such as
send and receive between explicit threads is considered harmful [65]. Thus,
high-level models have to strike a balance between abstraction, to simplify
parallel programming, and coordination control, to give a means of parallel
performance tuning. Mechanisms to tune the parallelism focus on the distri-
bution of large-scale data structures, in predominantly data-parallel models
such as UPC, or annotations in a declarative programming model to tune
the granularity of parallelism, such as in parallel Haskell variants.

Developments on the systems implementing these models show some con-
vergence towards work-stealing-based approaches to load balancing and to-
wards highly-tuned, specific patterns of parallel computation on large-scale,
distributed architectures. The emergence of increasingly hierarchical archi-
tectures, with clusters of clusters of multi-cores, will further add to the hetero-
geneity of the hardware, and is likely to favour dynamic approaches to work
distribution, which avoid being too prescriptive about the possible placement
of work in the system and therefore give an adaptive run-time system the
required flexibility to adjust its behaviour to the load of the system.

One major source of added heterogeneity are GPUs, which are increas-
ingly used not only in large-scale high-performance computing, but also on
a smaller scale in local clusters. Typically, the level of abstraction offered
for these processors is even lower than for for standard parallel architectures.

32

CUDA and OpenCL expose a lot of machine details to the programmer to
achieve maximal performance, such as requiring explicit memory manage-
ment of the GPU hierarchical memory model. We believe that this area
will see a similar movement to higher level abstractions in order to make
these machines accessible to non-experts in parallel programming. In partic-
ular, skeleton-based approaches and specialised data-parallel languages offer
the most promising route to increased programmer productivity, while still
exploiting the specialised nature of the underlying hardware.

While the proliferation of models and systems for parallel programming
might seem intimidating to newcomers to parallel programming, they of-
fer a rich choice of techniques to make best use of the available hardware
with variable effort that needs to be spent on parallel programming. In
particular, mainstream language extensions, such as OpenMP on physical
shared-memory systems and UPC on clusters of multi-cores, provide a good
cost-benefit ratio. Skeleton-based approaches, such as Hadoop, offer a high
degree of scalability and are currently being extended to a richer class of skele-
tons, as promoted by the YARN system. Several data parallel languages have
achieved very good results on modern GPUs. However, an effective combi-
nation of unrestricted task parallelism with such data parallelism still has to
be established, and nested data-parallelism remains a challenge.

In general, purely declarative model offers the best fit with parallel com-
putation, due to the absence of any side effects. Today several variants of
such languages are available, and we have discussed some of these, in partic-
ular parallel Haskell extensions and F#. Other mixed paradigm languages
build on the declarative model to introduce parallelism, e.g. Scala, while
delineating side-effecting from side-effect-free code in the language. In the
long run, such a combination of the conceptually appealing declarative model
with the more mainstream object-oriented approach, seems to be the most
promising route for high-level parallel programming models.

Acknowledgments

This work is partially funded by SICSA, the Scottish Informatics and
Computer Science Alliance. The authors are grateful to the members of the
Dependable Systems Group at Heriot-Watt University for useful discussions
and support, and to the anonymous reviewers for helpful comments.

33

References

[1] J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quantita-
tive Approach, Morgan Kaufmann, 5th edition, 2011.

[2] M. J. Flynn, K. W. Rudd, Parallel architectures, ACM Computing
Surveys 28 (1996) 67–70.

[3] R. Duncan, A survey of parallel computer architectures, IEEE Com-
puter Survey & Tutorial Series 23 (1990) 5–16.

[4] A. D. Kshemkalyani, M. Singhal, Distributed Computing, Cambridge
University Press, 2008.

[5] H. Sutter, The free lunch is over: A fundamental turn toward concur-
rency in software, Dr. Dobb’s Journal 30 (2005).

[6] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, O. O.
Storaasli, State-of-the-art in heterogeneous computing, Scientific Pro-
gramming 18 (2010) 1–33.

[7] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, D. Burger,
Dark silicon and the end of multicore scaling, SIGARCH Comput.
Archit. News 39 (2011) 365–376.

[8] T. Bjerregaard, S. Mahadevan, A survey of research and practices of
network-on-chip, ACM Computing Surveys 38 (2006).

[9] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krueger, A. E.
Lefohn, T. J. Purcell, A survey of general-purpose computation on
graphics hardware, Computer Graphics Forum 26 (2007) 80–113.

[10] I. Kuon, R. Tessier, J. Rose, FPGA Architecture: Survey and Chal-
lenges, Found. Trends Electr. Design Automation 2 (2008) 135–253.

[11] D. Ridge, D. Becker, P. Merkey, T. Sterling, Beowulf: Harnessing
the power of parallelism in a pile-of-PCs, in: Proceedings of IEEE
Aerosspace, 1997, pp. 79–91.

[12] I. Foster, C. Kesselman, The GRID 2: Blueprint for A New Computing
Infrastructure, Morgan Kaufmann Publishers, 2nd edition, 2004.

34

[13] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of cloud
computing, Commun. ACM 53 (2010) 50–58.

[14] I. Foster, Y. Zhao, I. Raicu, S. Lu, Cloud computing and grid comput-
ing 360-degree compared, in: Grid Computing Environments Work-
shop, 2008. GCE ’08, pp. 1–10.

[15] T. Chen, R. Raghavan, J. N. Dale, E. Iwata, Cell broadband engine
architecture and its first implementation – a performance view, IBM
Journal of Research and Development 51 (2007) 559–572.

[16] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, P. Hanrahan, Larrabee: a many-core x86 architecture for
visual computing, ACM Trans. Graph. 27 (2008) 18:1–18:15.

[17] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubi-
atowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel,
K. Yelick, A view of the parallel computing landscape, Commun. ACM
52 (2009) 56–67.

[18] S. Borkar, A. A. Chien, The future of microprocessors, Commun. ACM
54 (2011) 67–77.

[19] M. D. Hill, M. R. Marty, Amdahl’s law in the multicore era, Computer
41 (2008) 33–38.

[20] G. Blake, R. Dreslinski, T. Mudge, A survey of multicore processors,
Signal Processing Magazine, IEEE 26 (2009) 26–37.

[21] D. Chandra, F. Guo, S. Kim, Y. Solihin, Predicting inter-thread cache
contention on a chip multi-processor architecture, Proc. of 11th Intl
Symp. on High-Performance Computer Architecture (2005) 340–351.

[22] T. Feng, A survey of interconnection networks, IEEE Computer 14
(1981) 12–27.

[23] S. Pelagatti, Structured Development of Parallel Programs, Taylor &
Francis, Inc., Bristol, PA, USA, 1998.

35

[24] H. Sutter, J. Larus, Software and the concurrency revolution, ACM
Queue 3 (2005) 54–62.

[25] D. B. Skillicorn, Foundations of Parallel Programming, volume 6 of
Cambridge International Series on Parallel Computation, Cambridge
University Press, 1994.

[26] I. Foster, Designing and Building Parallel Programs: Concepts and
Tools for Parallel Software Engineering, Addison-Wesley, 1995.

[27] C. M. Pancake, Is parallelism for you?, IEEE Computational Science
Engineering 3 (1996) 18–37.

[28] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng,
J. A. Stratton, W. W. Hwu, Program optimization space pruning for
a multithreaded GPU, in: Proc. of the 6th Annual Intl Symposium on
Code Generation and Optimization, IEEE/ACM, 2008, pp. 195–204.

[29] D. Grewe, M. F. P. O’Boyle, A static task partitioning approach for
heterogeneous systems using OpenCL, in: Proc. of the 20th Intl Conf.
on Compiler Construction, LNCS 6601, Springer, 2011, pp. 286–305.

[30] A. Collins, C. Fensch, H. Leather, Auto-tuning parallel skeletons, Par-
allel Processing Letters 22 (2012).

[31] J. K. Ousterhout, Why threads are a bad idea (for most purposes),
Presentation at the USENIX’96 Annual Technical Conference, 1996.

[32] J. Manson, W. Pugh, S. V. Adve, The Java memory model, SIGPLAN
Not. 40 (2005) 378–391.

[33] E. A. Lee, The problem with threads, IEEE Computer 39 (2006)
33–42.

[34] P. W. Trinder, M. I. Cole, K. Hammond, H.-W. Loidl, G. J. Michaelson,
Resource Analyses for Parallel and Distributed Coordination, Concur-
rency and Computation: Practice and Experience (2013) 309–348.

[35] G. M. Amdahl, Validity of the single-processor approach to achieving
large-scale computing capabilities, in: Proceedings of the AFIPS’67
Spring Joint Computer Conference, ACM Press, 1967, pp. 483–485.

36

[36] E. Mohr, D. Kranz, J. Halstead, R.H., Lazy task creation: a tech-
nique for increasing the granularity of parallel programs, Parallel and
Distributed Systems, IEEE Transactions on 2 (1991) 264–280.

[37] H.-W. Loidl, Granularity in Large-Scale Parallel Functional Program-
ming, Ph.D. thesis, Department. of Computing Science, University of
Glasgow, 1998.

[38] K. Hammond, Why parallel functional programming matters: Panel
statement, in: A. Romanovsky, T. Vardanega (Eds.), Ada-Europe
2011, volume 6652 of LNCS, pp. 201–205.

[39] Z. Li, P. H. Mills, J. H. Reif, Models and resource metrics for par-
allel and distributed computation, in: Proc. of the 28th Hawaii Intl
Conference on System Sciences (HICS’95), IEEE, 1995, pp. 133–143.

[40] B. Maggs, L. Matheson, R. Tarjan, Models of parallel computation: A
survey and synthesis, in: Proc. of the 28th Hawaii Intl Conference on
System Sciences (HICSS’95), IEEE, 1995, pp. 61–70.

[41] R. D. Blumofe, C. E. Leiserson, Scheduling multithreaded computa-
tions by work stealing, J. ACM 46 (1999) 720–748.

[42] J. Kephart, D. Chess, The vision of autonomic computing, Computer
36 (2003) 41–50.

[43] S. Dobson, S. Denazis, A. Fernández, D. Gäıti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, F. Zambonelli, A survey of autonomic
communications, ACM Trans. Auton. Adapt. Syst. 1 (2006) 223–259.

[44] K. Astrom, Adaptive feedback control, Proceedings of the IEEE 75
(1987) 185–217.

[45] C.-T. Yang, C.-L. Huang, C.-F. Lin, Hybrid CUDA, OpenMP, and MPI
parallel programming on multicore GPU clusters, Computer Physics
Communications 182 (2011) 266–269.

[46] R. Rabenseifner, Hybrid Parallel Programming on HPC Platforms,
Proc. European Workshop on OpenMP ’03 (2003).

37

[47] R. Rabenseifner, G. Hager, G. Jost, Hybrid MPI/OpenMP parallel
programming on clusters of multi-core SMP nodes, in: Proc. of the
17th Euromicro Intl Conf. on Parallel, Distributed and Network-based
Processing, PDP ’09, IEEE Computer Society, 2009, pp. 427–436.

[48] A. Varbanescu, P. Hijma, R. V. van Nieuwpoort, H. Bal, Towards an
effective unified programming model for many-cores, in: Parallel and
Distributed Processing Workshops and PhD Forum (IPDPSW), 2011
IEEE International Symposium on, pp. 681–692.

[49] A. Duran, E. Ayguade, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, J. Planas, OmpSs: a proposal for programming heterogeneous
multi-core architectures, Parallel Processing Letters 21 (2011) 173–193.

[50] J. Berthold, H.-W. Loidl, A. A. Zain, Scheduling light-weight par-
allelism in ArTCoP, in: D. S. Warren, P. Hudak (Eds.), Proceed-
ings of the Conference on Practical Aspects of Declarative Languages
(PADL’08), volume 4902 of LNCS, Springer, 2008, pp. 214–229.

[51] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, A. Singhania, The Multikernel: A new OS
architecture for scalable multicore systems, in: ACM Symposium on
OS Principles, ACM, 2009.

[52] N. Shavit, Data structures in the multicore age, Commun. ACM 54
(2011) 76–84.

[53] G. L. Steele, Organizing functional code for parallel execution or, foldl
and foldr considered slightly harmful, SIGPLAN Not. 44 (2009) 1–2.

[54] J. Diaz, C. Munoz-Caro, A. Nino, A survey of parallel programming
models and tools in the multi and many-core era, Parallel and Dis-
tributed Systems, IEEE Transactions on 23 (2012) 1369–1386.

[55] D. Leijen, W. Schulte, S. Burckhardt, The Design of a Task Parallel
Library, in: OOPSLA’09 – Intl Conf. on Object Oriented Programming
Systems Languages and Applications, ACM Press, 2009, pp. 227–242.

[56] H. González-Vélez, M. Leyton, A survey of algorithmic skeleton frame-
works: high-level structured parallel programming enablers, Software:
Practice and Experience 40 (2010) 1135–1160.

38

[57] D. R. Butenhof, Programming with POSIX Threads, Addison-Wesley,
2nd edition, 1997.

[58] S. Oaks, H. Wong, Java Threads, O’Reilly, 2nd edition, 1999.

[59] B. Chapman, G. Jost, R. van der Pas (Eds.), Using OpenMP: Portable
Shared Memory Parallel Programming, MIT Press, 2007.

[60] M. Herlihy, J. E. B. Moss, Transactional memory: architectural sup-
port for lock-free data structures, SIGARCH Comput. Archit. News
21 (1993) 289–300.

[61] T. Harris, A. Cristal, O. S. Unsal, E. Ayguade, F. Gagliardi, B. Smith,
M. Valero, Transactional memory: An overview, IEEE Micro 27 (2007)
8–29.

[62] T. Harris, J. Larus, R. Rajwar, Transactional Memory, Morgan and
Claypool Publishers, 2nd edition, 2010.

[63] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chi-
ras, S. Chatterjee, Software transactional memory: Why is it only a
research toy?, ACM Queue 6 (2008) 46–58.

[64] A. Dragojević, P. Felber, V. Gramoli, R. Guerraoui, Why STM can be
more than a research toy, Commun. ACM 54 (2011) 70–77.

[65] S. Gorlatch, Send-receive considered harmful: Myths and realities of
message passing, ACM Transactions on Programming Languages and
Systems (TOPLAS) 26 (2004) 47–56.

[66] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sun-
deram, PVM: Parallel Virtual Machine: A User’s Guide and Tutorial
for networked Parallel Computing, MIT Press, 1994.

[67] M. Snir, S. W. Otto, D. W. Walker, J. J. Dongarra, S. Huss-Lederman,
MPI: The Complete Reference, MIT Press, 1995.

[68] C. Hewitt, P. Bishop, R. Steiger, A universal modular ACTOR for-
malism for artificial intelligence, in: Proceedings of the 3rd Intl Joint
Conf. on Artificial Intelligence, Morgan Kaufmann, 1973, pp. 235–245.

39

[69] G. Agha, ACTORS: A Model of Concurrent Computation in Dis-
tributed Systems, MIT Press, 1986.

[70] S. Marlow, R. Newton, S. Peyton Jones, A monad for deterministic
parallelism, in: Proceedings of the 4th ACM symposium on Haskell,
Haskell ’11, ACM, New York, NY, USA, 2011, pp. 71–82.

[71] P. Maier, P. Trinder, Implementing a high-level distributed-memory
parallel Haskell in Haskell, in: Proc. of the 23rd Intl Conf. on Impl.
and Application of Func. Lang., IFL’11, Springer, 2012, pp. 35–50.

[72] D. Gelernter, N. Carriero, Coordination languages and their signifi-
cance, Commun. ACM 35 (1992) 96–107.

[73] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, P. Trinder, Seq no
more: better strategies for parallel Haskell, in: Proceedings of the 3rd
Symposium on Haskell, Haskell ’10, ACM, 2010, pp. 91–102.

[74] P. Van Roy, Programming paradigms for dummies: What every pro-
grammer should know, New Computational Paradigms for Computer
Music (2009) 9–47.

[75] TIOBE Software, TIOBE programming community index,
www.tiobe.com/index.php/content/paperinfo/tpci/index.html, 2013.

[76] D. Lea, A Java fork/join Framework, in: Java’00 — ACM 2000 Con-
ference on Java Grande, ACM Press, 2000, pp. 36–43.

[77] S. L. Peyton Jones, R. Leshchinskiy, G. Keller, M. M. T. Chakravarty,
Harnessing the multicores: Nested data parallelism in Haskell,
FSTTCS, 2008, pp. 383–414.

[78] G. E. Blelloch, NESL: A Nested Data-parallel Language (version 3.1),
Technical Report CMU-CS-95-170, Carnegie Mellon University, 1995.

[79] C. J. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. D. Toit,
et al., Intel’s Array Building Blocks: A retargetable, dynamic compiler
and embedded language, in: 9th Annual International Symposium on
Code Generation and Optimization, IEEE/ACM, 2011, pp. 224–235.

40

[80] C. Grelck, S.-B. Scholz, SAC – a functional array language for efficient
multi-threaded execution, International Journal of Parallel Program-
ming 34 (2006) 383–427.

[81] UPC Consortium, Unified Parallel C Langauge Spec. v1.2 LBNL-
59208, Technical Report, Lawrence Berkeley National Lab, 2005.

[82] R. W. Numrich, J. Reid, Co-Array Fortran for parallel programming,
ACM SIGPLAN Fortran Forum 17 (1998) 1–31.

[83] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, V. Sarkar, X10: An object-oriented ap-
proach to non-uniform cluster computing, in: Proceedings of OOP-
SLA’05, ACM Press, 2005, pp. 519–538.

[84] B. L. Chamberlain, D. Callahan, H. P. Zima, Parallel programmability
and the Chapel language, International Journal of High Performance
Computing Applications 21 (2007) 291–312.

[85] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. Steele Jr., S. Tobin-Hochstadt, The Fortress Language Specifica-
tion Version 1.0, Technical Report, Sun Microsystems, Inc., 2008.

[86] G. Mainland, S. Peyton Jones, S. Marlow, R. Leshchinskiy, Haskell
beats C using generalised stream fusion, in: ICFP’13, Submitted, 2013.

[87] M. Fluet, M. Rainey, J. Reppy, A. Shaw, Y. Xiao, Manticore: A hetero-
geneous parallel language, in: DAMP 2007: Workshop on Declarative
Aspects of Multicore Programming, ACM Press, 2007, pp. 37–44.

[88] P. Totoo, H.-W. Loidl, Parallel Haskell implementations of the N-body
problem, Concur. and Comp.: Practice and Experience (to appear).

[89] A. Foltzer, A. Kulkarni, R. Swords, S. Sasidharan, E. Jiang, R. Newton,
A meta-scheduler for the Par-Monad: composable scheduling for the
heterogeneous cloud, in: Proc. of the 17th ACM SIGPLAN Intl Conf.
on Functional programming, ICFP ’12, ACM, 2012, pp. 235–246.

[90] M. Cole, Algorithmic skeletons: structured management of parallel
computation, Pitman, 1989.

41

[91] F. Rabhi, S. Gorlatch, Patterns and skeletons for parallel and dis-
tributed computing, Springer-Verlag New York Inc, 2003.

[92] M. Ghanem, Structured Parallel Programming Using Performance
Models and Skeletons, Ph.D. thesis, Department of Computing, Im-
perial College, 1999.

[93] J. Yang, Co-ordination Based Structured Parallel Programming, Ph.D.
thesis, Department of Computing, Imperial College, 1998.

[94] D. B. Skillicorn, Towards a higher level of abstraction in parallel pro-
gramming, In: Proc. of Programming Models for Massively Parallel
Computers (1995) 78–85.

[95] J. Darlington, M. Ghanem, H. To, Structured parallel program-
ming, In: Proc. Programming Models for Massively Parallel Computers
(1993) 160–169.

[96] M. Hamdan, A survey of cost models for algorithmic skeletons, Tech-
nical Report RM/11/99, Heriot-Watt University, 1999.

[97] H. González-Vélez, M. Cole, Adaptive structured parallelism for dis-
tributed heterogeneous architectures: A methodological approach with
pipelines and farms, Concur.: Pract. and Exper. 22 (2010) 2073–2094.

[98] J. Darlington, Y. Guo, H. To, J. Yang, Parallel skeletons for structured
composition, ACM SIGPLAN Notices 30 (1995) 19–28.

[99] G. Michaelson, N. Scaife, P. Bristow, P. King, Nested algorithmic skele-
tons from higher order functions, Parallel Algorithms and Applications
16 (2001) 181–206.

[100] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Mor-
ton, E. Phillips, Y. Zhang, V. Volkov, Parallel computing experiences
with CUDA, Micro, IEEE 28 (2008) 13–27.

[101] NVIDIA Corporation, CUDA programming guide 2.0, 2008.

[102] Khronos OpenCL Working Group, The OpenCL specification, version
1.1, revision 44, 2011.

42

[103] K. Gregory, A. Miller, C++ AMP: Accelerated Massive Parallelism
with Microsoft Visual C++, Microsoft Press, 2012.

[104] P. Cooper, U. Dolinsky, A. F. Donaldson, A. Richards, C. Riley,
G. Russell, Offload–automating code migration to heterogeneous mul-
ticore systems, in: High Performance Embedded Architectures and
Compilers, Springer, 2010, pp. 337–352.

[105] Google Inc., Renderscript, http://developer.android. com/guide/topic-
s/renderscript/compute.html, 2011.

[106] J. Enmyren, C. Kessler, SkePU: a multi-backend skeleton programming
library for multi-GPU systems, in: Proc. of the 4th Intl Workshop on
High-Level Parallel Programming and Applications, ACM, pp. 5–14.

[107] J.-H. Huang, NVIDIA Keynote, GPU Technology Conference, 2013.

[108] H. P. Hofstee, Power efficient processor architecture and the Cell pro-
cessor, in: High-Performance Computer Architecture, 2005. HPCA-11.
11th International Symposium on, IEEE, pp. 258–262.

[109] M. Sloman, Policy driven management for distributed systems, Journal
of Network and Systems Management 2 (1994).

[110] M. Herlihy, N. Shavit, The Art of Multiprocessor Programming, Else-
vier, 2012. Revised first edition.

[111] S. C. Goldstein, K. E. Schauser, D. E. Culler, Lazy threads: imple-
menting a fast parallel call, J. Par. Distrib. Comput. 37 (1996) 5–20.

[112] T. Casavant, J. Kuhl, A taxonomy of scheduling in general-purpose
distributed computing systems, Software Engineering, IEEE Transac-
tions on 14 (1988) 141–154.

[113] F. Dong, S. G. Akl, Scheduling Algorithms for Grid Computing: State
of the Art and Open Problems, TR 2006-504, School of Computing,
Queens University, Kingston, Ontario, 2006.

[114] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, M. Prieto, Survey
of scheduling techniques for addressing shared resources in multicore
processors, ACM Comput. Surv. 45 (2012) 4:1–4:28.

43

[115] H. Topcuoglu, S. Hariri, M.-y. Wu, Performance-effective and low-
complexity task scheduling for heterogeneous computing, Parallel and
Distributed Systems, IEEE Transactions on 13 (2002) 260–274.

[116] P. W. Trinder, K. Hammond, J. S. Mattson Jr., A. S. Partridge, S. L.
Peyton Jones, GUM: a portable parallel implementation of Haskell, in:
Proceedings of the PLDI’96, ACM Press, 1996, pp. 79–88.

[117] H.-W. Loidl, The virtual shared memory performance of a parallel
graph reducer, in: Proc. of the Intl Symposium on Cluster Computing
and the Grid (CCGrid/DSM 2002), IEEE, 2002, pp. 311–318.

[118] R. Loogen, Y. Ortega-Mallén, R. Peña-Maŕı, Parallel functional pro-
gramming in Eden, J. Funct. Program. 15 (2005) 431–475.

[119] R. Jones, R. Lins, Garbage Collection: Algorithms for Automatic Dy-
namic Memory Management, Research Monographs in Parallel and
Distributed Computing, John Wiley and Sons, Inc, New York, 1996.

[120] R. Jones, A. Hosking, E. Moss, The Garbage Collection Handbook:
The Art of Automatic Memory Management, Chapman & Hall/CRC,
1st edition, 2011.

[121] L. Iftode, J. P. Singh, Shared virtual memory: Progress and challenges,
Proceedings of the IEEE 87 (1999) 498–507.

[122] B. Nitzberg, V. Lo, Distributed shared memory: A survey of issues
and algorithms, Computer 24 (1991) 52–60.

[123] F. Burton, M. Sleep, Executing functional programs on a virtual tree of
processors, in: Proceedings of the Conference on Functional Program
Language and Computer Architecture, ACM, 1981, pp. 187–194.

[124] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, Y. Zhou, Cilk: An efficient multithreaded runtime system, in:
Proceedings of the Symposium on Principles and Practice of Parallel
Programming (PPoPP’95), pp. 207–216.

[125] M. Frigo, C. E. Leiserson, K. H. Randall, The implementation of the
Cilk-5 multithreaded language, SIGPLAN Not. 33 (1998) 212–223.

44

[126] R. V. van Nieuwpoort, T. Kielmann, H. E. Bal, Efficient load balancing
for wide-area divide-and-conquer applications, ACM SIGPLAN Not.
36 (2001) 34–43.

[127] A. Al Zain, Implementing High-Level Parallelism on Computational
GRIDs, Ph.D. thesis, Heriot-Watt University, 2006.

[128] V. Janjic, Load Balancing of Irregular Parallel Applications on Hetero-
geneous Computing Environments, Ph.D. thesis, School of Computer
Science, University of St Andrews, 2011.

[129] S. Fortune, J. Wyllie, Parallelism in random access machines, in: Proc.
of the Symposium on Theory of Computing, ACM, 1978, pp. 114–118.

[130] L. G. Valiant, A bridging model for parallel computation, Communi-
cations of ACM 33 (1990) 103–111.

[131] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos,
R. Subramonian, T. von Eicken, LogP: Towards a realistic model of
parallel computation, Proceedings of the 4th ACM Symposium on
Principles and Practice of Parallel Programming (1993) 1–12.

[132] J. Bosque, L. Pastor, A parallel computational model for heterogeneous
clusters, IEEE Trans. on Parallel and Distributed Systems 17 (2006).

[133] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
K. A. Yelick, The Landscape of Parallel Computing Research: A View
from Berkeley, Technical Report UCB/EECS-2006-183, Department of
Electrical Engineering and Computer Sciences, University of California
at Berkeley, 2006.

[134] K. Hammond, G. Michelson (Eds.), Research Directions in Parallel
Functional Programming, Springer-Verlag, London, UK, UK, 2000.

[135] H.-W. Loidl, P. W. Trinder, K. Hammond, S. B. Junaidu, R. G. Mor-
gan, S. L. P. Jones, Engineering Parallel Symbolic Programs in GpH,
Concurrency: Practice and Experience 11 (1999) 701–752.

[136] A. F. Donaldson, U. Dolinsky, A. Richards, G. Russell, Automatic
offloading of C++ for the Cell BE processor: a case study using Offload,

45

in: Intl Conf. on Complex, Intelligent and Software Intensive Systems,
IEEE, 2010, pp. 901–906.

[137] P. Totoo, P. Deligiannis, H.-W. Loidl, Haskell vs. F# vs. Scala: A
High-level Language Features and Parallelism Support Comparison, in:
Proceedings of the Workshop on Functional High-Performance Com-
puting, ACM, 2012, pp. 49–60.

[138] R. H. Halstead, Multilisp: a language for concurrent symbolic compu-
tation, ACM Transactions on Programming Languages and Systems 7
(1985) 501–538.

[139] U. Klusik, R. Loogen, S. Priebe, F. Rubio, Implementation skeletons in
Eden: Low-effort parallel programming, in: IFL ’00: Selected Papers
from the 12th International Workshop on Implementation of Functional
Languages, Springer-Verlag, London, UK, 2001, pp. 71–88.

46

