
A Monadic Multi-stage Metalanguage

Eugenio Moggi and Sonia Fagorzi∗

DISI, Univ. of Genova
v. Dodecaneso 35, 16146 Genova, Italy

moggi@disi.unige.it

25 October 2002

Abstract

We describe a metalanguage MMML, which makes explicit the order of evaluation (in the spirit of
monadic metalanguages) and the staging of computations (as in languages for multi-level binding-time
analysis). The main contribution of the paper is an operational semantics which is sufficiently detailed
for analyzing subtle aspects of multi-stage programming, but also intuitive enough to serve as a reference
semantics. For instance, the separation of computational types from code types, makes clear the distinction
between a computation for generating code and the generated code, and provides a basis for multi-lingual
extensions, where a variety of programming languages (aka monads) coexist. The operational semantics
consists of two parts: local (semantics preserving) simplification rules, and computation steps executed in
a deterministic order (because they may have side-effects). The two parts can be changed independently:
the first by adding datatypes or recursive definitions, the second by adding other computational effects.
We focus on the computational aspects, thus we adopt a simple type system, that can detect usual type
errors, but not the unresolved link errors. Because of its explicit annotations, MMML is suitable as an
intermediate language, but (in comparison to MetaML) it is too verbose as a programming language.

1 Introduction

Staging a computation into multiple steps is a well-known optimization technique used in algorithms, which ex-
ploits information available in early stages for generating code that will be executed in later stages. Multi-stage
programming languages, like MetaML (see [MHP00, TS97, Tah99, TS99, TS00, CMSar]), provide constructs
for expressing staging in a natural and concise manner, and must allow arbitrary interleaving of code genera-
tion and computation. Multi-stage programming is particularly convenient for defining generative components,
which take as input a specification of user requirements and generate on the fly a customized component, or
mobile applications, which need to adapt after each move, e.g. by assembling components downloaded remotely
to generate code tailored to the local environment.
So far most of the theoretical research on multi-stage programming languages has focused on type systems
(for the most recent proposals see [CMSar, Nan02, NT03]). The resulting operational semantics are often
instrumental to a particular type system (thus difficult to relate and compare), and often ignore the subtle
interactions between code generation and computational effects. In this paper, we provide a deeper under-
standing of the computational aspects of multi-stage programming, in the framework of a metalanguage with
computational types Mτ and code types 〈τ〉: computational types classify terms describing computations,
while code types classify terms representing other terms. We believe that in this framework one can have a
fresh look at typing issues, and above all a generic approach for adding staging to a programming language
(described in a monadic style), including a multi-lingual metalanguage.
A very important principle of Haskell [PHA+97] is that pure functional evaluation (and all the optimization
techniques that come with it) should not be corrupted by the addition of computational effects. In Haskell
this separation has been achieved through the use of monads (like monadic IO and monadic state). When
describing MMML we have adopted this principle not only at the level of types, but also at the level of the
operational semantics. More specifically, we distinguish between simplification (described by local rewrite
rules) and computation (that may cause side-effects). This style of presentation is directly inspired by the
distinction between pure and monadic evaluation in [MS01].

∗Supported by MIUR project NAPOLI and EU project DART IST-2001-33477.

1

Summary. Section 2 describes a general pattern for specifying the operational semantics of monadic meta-
languages, which distinguishes simplification from computation. Section 3 exemplifies the general pattern by
considering a monadic metalanguage MML for imperative computations. Section 4 introduces an extension
MMML with staging, and explains how definitions and results for MML have to be modified and extended. Sec-
tion 4.3 gives simple examples of MMML programs, which illustrate the most subtle points of the operational
semantics. Section 5 discusses related work and issues specific to MMML. Appendix A gives a translation from
λ© into MMML, which exemplifies how MMML relates to multi-stage programming languages.

Notation. The following notations and conventions are used throughout the paper.

• m,n range over the set N of natural numbers. Furthermore, m ∈ N is identified with the set {i ∈ N|i < m}
of its predecessors.

• e ranges over the set E∗ of finite sequences (ei|i ∈ m) of elements of E, and |e| denotes its length (i.e. m).

e1, e2 denotes the concatenation of the sequences e1 and e2.

• Term equivalence, written ≡, is α-conversion. FV(e) is the set of variables free in e. If E is a set of terms,
then E0 is the set of e ∈ E s.t. FV(e) = ∅. e[xi: = ei|i ∈ m] (and e[x: = e]) denotes parallel substitution
of ei for xi in e (modulo ≡).

• f :A
fin→ B means that f is a partial function from A to B with a finite domain, written dom(f). We

write {ai: bi|i ∈ m} for the partial function mapping ai to bi (where the ai must be different, i.e. ai = aj

implies i = j). We use the following operations on partial functions:

∅ is the everywhere undefined partial function;

f1, f2 denotes the union of two partial functions with disjoint domains;

f{a: b} denotes the extension of f to a 6∈ dom(f);

f{a = b} denotes the update of f in a ∈ dom(f).

• Given a BNF e: : = P1 | . . . | Pm, we write e+ = Pm+1 | . . . | Pm+n as a shorthand for the extended
BNF e: : = P1 | . . . | Pm+n.

• Given a relation > , we write
∗
> for its reflexive and transitive closure.

2 Monadic metalanguages, simplification and computation

We outline a general pattern for specifying the operational semantics of monadic metalanguages, which dis-
tinguishes between transparent simplification and programmable computation. This is possible because in a
monadic metalanguage there is a clear distinction between term-constructors for building terms of computa-
tional types, and the other term-constructors that are computationally irrelevant. For computationally relevant
term-constructors we must give an operational semantics that ensures the correct sequencing of computational
effects, e.g. by adopting some well-established technique for specifying the operational semantics of program-
ming languages (see [WF94]), while for computationally irrelevant term-constructors it suffices to give local
(semantic preserving) simplification rules.

Combinatory Reduction Systems. We work in the setting of Combinatory Reduction Systems (CRS)
[Klo80], which extends Term Rewriting Systems (TRS) with binders. In Section 4 the uniformity of CRS
descriptions is exploited for defining the extension with staging generically and concisely.
In a CRS the syntax of terms is specified by a set C of term-constructors with given arity #: C → N∗

e ∈ E: : = x | c([xi]ei|i ∈ m) with #c = (ni|i ∈ m) and ∀i ∈ m.|xi| = ni

Variables x belong to an infinite set X, and more complex terms are built by applying a term-constructor c to
a sequence of abstractions [xi]ei binding the free occurrences of the xi in ei, therefore the set of free variables
in c([xi]ei|i ∈ m) is given by

FV(c([xi]ei|i ∈ m)) ∆= ∪{FV([xi]ei|i ∈ m} where FV([x]e) = FV(e)− {x}

2

In CRS rewrite rules e > e′ can be specified as in TRS, for instance the β-rule is @(λ([x]e′), e) > e′[x: = e],
where e and e′ are arbitrary terms. It is possible to give a more schematic syntax for rewrite rules, but it
requires metavariables ranging over abstractions.

Given a set T of (simple) types τ , a type system deriving judgments of the form Γ ` e: τ , where Γ:X
fin→ T is

a type assignment, is specified by assigning to each term-constructor c of arity #c = (ni|i ∈ m) a set of type
schema (τ i⇒τi|i ∈ m)⇒τ consistent with #c, i.e. |τ i| = ni for i ∈ m. More precisely, the typing rules are

x
Γ ` x: τ

Γ(x) = τ c
{Γ ` [xi]ei: τ i⇒τi | i ∈ m}

Γ ` c([xi]ei|i ∈ m): τ
c: (τ i⇒τi|i ∈ m)⇒τ

where Γ ` [x]e: τ⇒τ stands for Γ, {xi: τi|i ∈ m} ` e: τ with x = (xi|i ∈ m) and τ = (τi|i ∈ m). Note that τ⇒τ
is used in type schema, but it is not a type τ ∈ T.

Monadic Metalanguages. To specify a monadic metalanguage we define:

• Types τ ∈ T, including computational types Mτ .

• Terms e ∈ E, including return ret(e) and monadic do do(e1, [x]e2), which corresponds to Haskell do-
notation x ⇐ e1; e2.

• A type system, which amounts to give for each term-constructor a set of type schema, in particular for
ret and do the type schema are ret: τ⇒Mτ and do:Mτ1, (τ1⇒Mτ2)⇒Mτ2

• A simplification relation e > e′ on terms, namely the compatible closure of a set of rewrite rules. By
definition of > , the induced equivalence is always a congruence. In addition, we require that >
satisfies the Church Rosser (CR) and Subject Reduction (SR) properties.

• A computation relation > on configurations. A configuration Id ∈ Conf describes the state of a
closed system, while the relation > describes how a closed system may evolve. Usually there is an
obvious way to extend > to configurations (preserving the CR property). To formulate a type safety
result (along the lines of [WF94]), we must define well-formed configurations ` Id, show that both >
and > preserve well-formedness (for > it should be an easy consequence of SR), and finally
establish a progress property for ===⇒ ∆= > ∪ > .

In general we expect simplification to be orthogonal to computation. More precisely, if Id1
∗
> Id′1 and Id1

can move Id1 > Id2, then Id′1 has a move Id′1 > Id′2 s.t. Id2
∗
> Id′2.

3 MML: a monadic metalanguage for imperative computations

We introduce a monadic metalanguage MML for imperative computations. On one hand, MML exemplifies
the pattern outlined in Section 2 in a familiar case, since MML corresponds to the subset of Haskell with a
simplified IO-monad. On the other hand, MML provides a starting point for the addition of staging.

• The BNF for types is τ ∈ T: : = nat | Mτ | τ1 → τ2 | ref τ The type nat of natural numbers has been
added just to avoid a degenerate BNF for types (we will ignore it most of the time).

• The BNF for term-constructors is c ∈ C: : = ret | do | λ | @ | new | get | set | l where l ranges over an
infinite set L of locations (they are not allowed in user-written programs, but are instrumental to the
operational semantics). We have not spelled out the term-constructors for nat. The type schema for
term-constructors (from which one can infer also their arity) are

– ret: τ⇒Mτ and do:Mτ1, (τ1⇒Mτ2)⇒Mτ2

– @: (τ1 → τ2), τ1⇒τ2 and λ: (τ1⇒τ2)⇒(τ1 → τ2)

– new: τ⇒M(ref τ) , get: ref τ⇒Mτ and set: ref τ, τ⇒M(ref τ)

while the type of locations is given by a signature Σ: L
fin→ T, namely l: ref τ when Σ(l) = τ .

3

• The BNF for terms generated by the term-constructors above is

e ∈ E: : = x | ret(e) | do(e1, [x]e2) | λ([x]e) | @(e1, e2) | new(e) | get(e) | set(e1, e2) | l

λ([x]e) and @(e1, e2) are λ-abstraction λx.e and application e1e2; new, get and set are the operations
ref e, !e and e1: = e2 on references.

• The type system is parametric in Σ, and the rules for deriving judgments of the form Γ `Σ e: τ are

x
Γ `Σ x: τ

Γ(x) = τ l
Γ `Σ l: ref τ

Σ(l) = τ

c
{Γ `Σ [xi]ei: τ i⇒τi | i ∈ m}

Γ `Σ c([xi]ei|i ∈ m): τ
c: (τ i⇒τi|i ∈ m)⇒τ

• Simplification e1 > e2 is β-reduction, i.e. the compatible closure of @(λ([x1]e2), e1) > e2[x1: = e1].
We write = for β-equivalence, i.e. the reflexive, symmetric and transitive closure of > .

We recall the properties of simplification (β-reduction) most relevant for our purposes.

Proposition 3.1 (Congruence) The equivalence = induced by > is a congruence.

Proposition 3.2 (CR for >) The simplification relation > is confluent.

Proposition 3.3 (SR for >) If Γ `Σ e: τ and e > e′, then Γ `Σ e′: τ .

Remark 3.4 Many extensions to MML can be handled at the level of simplification.

• The extension with a datatype, like nat or τ1 × τ2, amounts to add term-constructors for introducing
and eliminating terms of the datatype (e.g. zero: nat, succ: nat⇒nat and case: nat, τ, (nat⇒τ)⇒τ) and
few simplification rules describing how these term-constructors interact (e.g. case(zero, e0, [x]e1) > e0

and case(succ(e), e0, [x]e1) > e1[x: = e]).

• The extension with recursive definitions could be handled at the level of simplification by a term-
constructor fix: (τ⇒τ)⇒τ with the simplification rule fix([x]e) > e[x: = fix([x]e)]. However, if
one wants simplification of well-typed terms to terminate (for our purposes this is not needed), then the
type schema for fix should be fix: (Mτ⇒Mτ)⇒Mτ and fix([x]e) becomes a computational redex.

• Some extensions related to reference types, e.g. a test for equality ifeq: ref τ, ref τ, τ ′, τ ′⇒τ ′, can be
handled by simplification, i.e. ifeq(l, l, e1, e2) > e1 and ifeq(l1, l2, e1, e2) > e2 when l1 6= l2.

3.1 Computation

We now define configurations Id ∈ Conf (and the auxiliary notions of store, evaluation context, computational
redex) and the computation relation Id > Id′ | ok (see Table 1).

• Stores µ ∈ S
∆= L

fin→ E map locations to their contents.

• There are two equivalent BNF for evaluation contexts, we use E ∈ EC: : = � | E[do(�, [x]e)] but the
most familiar is E ∈ EC: : = � | do(E, [x]e).

• A configuration (µ, e, E) ∈ Conf
∆= S× E× EC consists of the current store µ, the program fragment e

under consideration, and the evaluation context E for e.

• The BNF for computational redexes is r ∈ R: : = do(e1, [x]e2) | ret(e) | new(e) | get(l) | set(l, e) . When
the program fragment under consideration is a computational redex, it enables a computation step with
no need for further simplification (see Theorem 3.7).

4

Administrative steps, involve only the evaluation context

A.0 (µ, ret(e),�) > ok

A.1 (µ, ret(e1), E[do(�, [x]e2)]) > (µ, e2[x: = e1], E)

A.2 (µ, do(e1, [x]e2), E) > (µ, e1, E[do(�, [x]e2)])

Imperative steps, involve only the store

I.1 (µ, new(e), E) > (µ{l: e}, ret(l), E), where l 6∈ dom(µ)

I.2 (µ, get(l), E) > (µ, ret(e), E), provided e = µ(l)

I.3 (µ, set(l, e), E) > (µ{l = e}, ret(l), E), provided l ∈ dom(µ)

Table 1: Computation Relation for MML

The confluent simplification relation > on terms extends in the obvious way to a confluent relation
(denoted >) on stores, evaluation contexts, computational redexes and configurations.
A complete program corresponds to a closed term e ∈ E0 (with no occurrences of locations l), and its evaluation
starts from the initial configuration (∅, e,�). The following properties ensure that only closed configurations
are reachable (by > and > steps) from the initial one.

Lemma 3.5

1. If (µ, e, E) > (µ′, e′, E′), then
dom(µ′) = dom(µ) and FV(µ′) ⊆ FV(µ), FV(e′) ⊆ FV(e) and FV(E′) ⊆ FV(E).

2. If Id > Id′ and Id is closed, then Id′ is closed.

Computational redexes enable a computation step, and they are closed w.r.t. simplification.

Lemma 3.6 If (µ, e, E) > , then e ∈ R. If r ∈ R and r > e, then e ∈ R.

Moreover, when the program fragment under consideration is a computational redex, it does not matter
whether further simplification is done before or after computation.

Theorem 3.7 (Bisimulation) If Id ≡ (µ, e, E) with e ∈ R and Id
∗
> Id′, then

1. Id > D implies ∃D′ s.t. Id′ > D′ and D
∗
> D′

2. Id′ > D′ implies ∃D s.t. Id > D and D
∗
> D′

where D and D′ range over Conf ∪ {ok, err}.

Proof An equivalent statement, but easier to prove, is obtained by replacing
∗
> with one-step parallel

reduction. A key observation for proving the bisimulation result is that simplification applied to a computa-
tional redex r and an evaluation context E does not change the relevant structure (of r and E) for determining
the computation step among those in Table 1.

3.2 Type safety

We go through the proof of type safety. The result in itself is standard and unsurprising, we make only some
minor adjustments to the Subject Reduction (SR) and Progress properties for ===⇒ ∆= > ∪ > ,
in order to stress the role of simplification > and computation > , when they are not bundled in
one deterministic reduction strategy on configurations. First of all, we define well-formedness for evaluation
contexts �:Mτ `Σ E:Mτ ′ and configurations `Σ Id.

Definition 3.8 We write `Σ (µ, e, E) ∆⇐⇒

5

�
�:Mτ ′ `Σ �:Mτ ′

do
�:Mτ2 `Σ E:Mτ ′ `Σ [x]e: τ1⇒Mτ2

�:Mτ1 `Σ E[do(�, [x]e)]:Mτ ′

Table 2: Well-formed Evaluation Contexts for MML

• dom(Σ) = dom(µ)

• µ(l) = el and Σ(l) = τl imply `Σ el: τl

• exists τ such that `Σ e:Mτ is derivable

• exists τ ′ such that �:Mτ `Σ E:Mτ ′ is derivable (see Table 2)

Theorem 3.9 (SR for ===⇒ ∆= > ∪ >)

1. If `Σ Id1 and Id1 > Id2, then `Σ Id2

2. If `Σ1 Id1 and Id1 > Id2, then exists Σ2 ⊇ Σ1 s.t. `Σ2 Id2

Proof The first claim is an easy consequence of Proposition 3.3. The second is proved by case-analysis on the
computation rules of Table 1.

Theorem 3.10 (Progress for ===⇒) If `Σ (µ, e, E), then one of the following holds

1. e 6∈ R and e > , or

2. e ∈ R and (µ, e, E) >

Proof When e ∈ R (in particular when e is get(l) or set(l, e′)) we have (µ, e, E) > (because l ∈ dom(µ) by
well-formedness of the configuration). When e 6∈ R, then e cannot be a > -normal form, otherwise we get
a contradiction with `Σ e:Mτ .

4 MMML: a multi-stage extension of MML

We describe a monadic metalanguage MMML obtained by adding staging to MML of Section 3. At the
level of syntax, type system and simplification the extension is generic, i.e. it is applicable to any monadic
metalanguage (as defined in Section 2).

• The BNF for types τ ∈ T+ = 〈τ〉 is extended with code types

• The BNF for term-constructors c ∈ C+ = up | dn | cV | cM is extended with two term-constructors up

and dn and two recursive productions cV and cM , which capture the reflective nature of the extension
(in particular the set of term-constructors for MMML is infinite, although that for MML is finite). The
type schema for the additional term-constructors are as follows

– up: τ⇒〈τ〉 is inclusion of binary in code (aka MetaML cross-stage persistence)
– dn: 〈τ〉⇒Mτ is compilation of (potentially open) code. An attempt to compile open code causes an

unresolved link error (an effect not present in MML), thus dn has a computational result type
– if c: (τ i⇒τi|i ∈ m)⇒τ , then

∗ cV : (〈τ i〉⇒〈τi〉|i ∈ m)⇒〈τ〉 builds code representing a term of the form c(. . .)
∗ cM : (〈τ i〉⇒M〈τi〉|i ∈ m)⇒M〈τ〉 generates code representing a term of the form c(. . .)

where 〈τi|i ∈ m〉 stands for the sequence (〈τi〉|i ∈ m).
In particular, for λ one has λV : (〈τ1〉⇒〈τ2〉)⇒〈τ1 → τ2〉 and λM : (〈τ1〉⇒M〈τ2〉)⇒M〈τ1 → τ2〉.
The key difference between cV and cM (reflected in their type schema) is that generating code
with cM may have computational effects, while building code with cV does not. For instance, the
computation λM ([x]e) generates a fresh name (a new effect related to computation under a binder),
performs the computation e to generate the code e′ for the body of the λ-abstraction, and finally
returns the code λV ([x]e′) for the λ-abstraction.

6

• The BNF for terms e ∈ E and the type system (for deriving judgments of the form Γ `Σ e: τ) are extended
in the only possible way, given the type schema for the term-constructors.

In MMML (unlike λ© and MetaML) there is no need to include level information in typing judgments,
since it is already explicit in types and terms. For instance, a MetaML type τ at level 1 becomes 〈τ〉 in
MMML, and a λ at level 1 becomes a λV or λM .

• Simplification e1 > e2 is unchanged, i.e. no new simplification rules are added.

The properties of simplification established in Section 3 (i.e. Proposition 3.1, 3.2 and 3.3) continue to hold and
their proofs are unchanged.

4.1 Computation

We now define configurations Id ∈ Conf and the computation relation Id > Id′ | ok | err for MMML (see
Table 3), where err indicates an unresolved link error at run-time. We have to account for run-time errors,
because we have adopted a permissive (and simple) type system, which is more appropriate for our purposes,
i.e. to model the operational aspects. There is not a generic way of defining > when adding staging, thus
we have to proceed in a more ad hoc way. In the following we stress what auxiliary notions need to be changed
when going from MML to MMML.

• Stores µ ∈ S
∆= L

fin→ E are unchanged.

• The BNF for evaluation contexts E ∈ EC+ = E[cM (v, [x]�, f)] is extended with one production, where

c ∈ C, f : : = [x]e is an abstraction, v: : = [x]ret(e) is a value abstraction, and v, x and f must be consis-
tent with the arity of c. For instance, one has E[λM ([x]�)], E[doM (�, [x]e)] and E[doM (ret(e), [x]�)].
Intuitively E[λM ([x]�)] says that the program fragment under consideration is generating code for the
body of a λ-abstraction.

• A configuration (X|µ, e, E) ∈ Conf
∆= Pfin(X)× S× E× EC has an additional component X, namely

the set of fresh names generated so far. A fresh name may leak outside the scope of its binder, therefore
the set X becomes bigger and bigger as the computation progresses.

• The BNF for computational redexes r ∈ R+ = cM (f) | dn(vc) is extended with two productions, where

c ∈ C, f must be consistent with the arity of c, and vc ∈ VC: : = x | up(e) | cV ([xi]vci|i ∈ m) is a code

value. The redex cM (f) may generate fresh names, while dn(vc) may cause an unresolved link error.

Compilation dn takes a code value vc of type 〈τ〉 and computes the term e of type τ represented by vc (or
fails if e does not exist). The represented term e is given by an operation similar to MetaML’s demotion.

Definition 4.1 (Demotion) The partial function ↓ mapping vc ∈ VC to the represented term is given by

• x↓ is undefined;
up(e)↓= e (this is a base case, like x);
cV ([xi]vci|i ∈ m)↓= c([xi]ei|i ∈ m) when ei = vci[xi: = up(xi)]↓ for i ∈ m

where up(x) is the sequence (up(xi)|i ∈ m) when x = (xi|i ∈ m)

In an evaluation context for MMML, e.g. E[λM ([x]�)], the hole � can be within the scope of a binder, thus
an evaluation context E has not only a set of free variables, but also a sequence of captured variables.

Definition 4.2 The sequence CV(E) of captured variables and the set FV(E) of free variables are defined
by induction on the structure of the evaluation context E

• CV(�) ∆= ∅
CV(E[do(�, [x]e)]) ∆= CV(E)
CV(E[cM (v, [x]�, f)]) ∆= CV(E), x in particular CV(E[λM ([x]�)]) ∆= CV(E), x

7

Administrative and Imperative steps are like in Table 1, and do not modify the set X of fresh names.
Code generation steps, involve only the set of fresh names and the evaluation context

G.0 (X|µ, cM , E) > (X|µ, ret(cV), E) when the arity of c is ()

G.1 (X|µ, cM ([x]e, f), E) > (X, x|µ, e, E[cM ([x]�, f)]) with x renamed to avoid clashes with X

in particular (X|µ, λM ([x]e), E) > (X, x|µ, e, E[λM ([x]�)])

G.2 (X|µ, ret(e), E[cM (v, [x]�)]) > (X|µ, ret(cV (f, [x]e)), E) where v = ([xi]ret(ei)|i ∈ m) and
f = ([xi]ei|i ∈ m). Note that the free occurrences of x in e get captured by [x] of cV .

In particular (X|µ, ret(e), E[λM ([x]�)]) > (X|µ, ret(λV ([x]e)), E)

G.3 (X|µ, ret(e1), E[cM (v, [x1]�, [x2]e2, f)]) > (X, x2|µ, e2, E[cM (v, [x1]ret(e1), [x2]�, f)]) with
x2 renamed to avoid clashes with X, and the free occurrences of x1 in e1 captured by [x1] of cM .

Compilation step, may cause a run-time error

C.1 (X|µ, dn(vc), E) >

{
(X|µ, ret(e), E) if e = vc↓
err if vc↓ undefined

Table 3: Computation Relation for MMML

• FV(�) ∆= ∅
FV(E[do(�, [x]e)]) ∆= FV(E) ∪ (FV([x]e)− CV(E))
FV(E[cM (v, [x]�, f)]) ∆= FV(E) ∪ (FV(v, f)− CV(E))

As in the case of MML, the confluent simplification relation > on terms extends to a confluent relation on
the other syntactic and semantic categories. Also for MMML we can prove that only closed configurations are
reachable (by > and > steps) from an initial one, i.e. (∅|∅, e, �) with e ∈ E0. However, the second
clause of Lemma 4.3 is far more subtle, in particular it ensures that FV(E) and CV(E) remain disjoint.

Lemma 4.3

1. If (X|µ, e, E) > (X ′|µ′, e′, E′), then X ′ = X, dom(µ′) = dom(µ), CV(E′) = CV(E),
FV(µ′) ⊆ FV(µ), FV(e′) ⊆ FV(e) and FV(E′) ⊆ FV(E).

2. If (X|µ, e, E) > (X ′|µ′, e′, E′), FV(µ, e) ∪ CV(E) ⊆ X and FV(E) ⊆ X − CV(E), then
X ⊆ X ′, dom(µ) ⊆ dom(µ′), FV(µ′, e′) ∪ CV(E′) ⊆ X ′ and FV(E′) ⊆ X ′ − CV(E′).

The properties of computational redexes (Lemma 3.6) and the bisimulation result (Theorem 3.7) are basically
unchanged, but the proofs must cover additional cases corresponding to the computation rules in Table 3.

4.2 Type Safety

In MMML the definitions of well-formed evaluation context ∆,�:Mτ `Σ E:Mτ ′ and configuration ∆ `Σ Id
have to take into account the set X of fresh names. For this reason we need a type assignment ∆ which maps
fresh names x ∈ X to code types 〈τ〉.

Definition 4.4 We write ∆ `Σ (X|µ, e, E) ∆⇐⇒

• dom(Σ) = dom(µ) and dom(∆) = X

• µ(l) = el and Σ(l) = τl imply ∆ `Σ el: τl

• exists τ such that ∆ `Σ e:Mτ is derivable

• exists τ ′ such that ∆,�:Mτ `Σ E:Mτ ′ is derivable (see Table 4).

8

�
∆,�:Mτ ′ `Σ �:Mτ ′

do
∆,�:Mτ2 `Σ E:Mτ ′ ∆ `Σ [x]e: τ1⇒Mτ2

∆,�:Mτ1 `Σ E[do(�, [x]e)]:Mτ ′

cM

∆,�:M〈τ〉 `Σ E:Mτ ′

{∆ `Σ vi: 〈τ i〉⇒M〈τi〉 | i ∈ m}
{∆ `Σ fi: 〈τm+1+i〉⇒M〈τm+1+i〉 | i ∈ n}

∆, {xk: 〈τ ′k〉|k ∈ p},�:M〈τm〉 `Σ E[cM (v, [x]�, f)]:Mτ ′

v = (vi|i ∈ m) and f = (fi|i ∈ n)
cM : (〈τ i〉⇒M〈τi〉|i ∈ m + 1 + n)⇒M〈τ〉
τm = (τ ′k|k ∈ p) and x = (xk|k ∈ p)

in particular λM

∆,�:M〈τ1 → τ2〉 `Σ E:Mτ ′

∆, x: 〈τ1〉,�:M〈τ2〉 `Σ E[λM ([x]�)]:Mτ ′

Table 4: Well-formed Evaluation Contexts for MMML

Remark 4.5 The formation rule (cM) for an evaluation context E[cM (v, [x]�, f)] says that the captured
variables x must have a code type (this is consistent with the code generation rules (G.1) and (G.3) of Table 3)
and that they should not occur free in E, v or f (this is consistent with the second property in Lemma 4.3).

Lemma 4.6 If Γ `Σ vc: 〈τ〉 and e = vc↓, then Γ `Σ e: τ .

We can now formulate the SR and progress properties for MMML.

Theorem 4.7 (SR for ===⇒)

1. If ∆ `Σ Id1 and Id1 > Id2, then ∆ `Σ Id2

2. If ∆1 `Σ1 Id1 and Id1 > Id2, then exist Σ2 ⊇ Σ1 and ∆2 ⊇ ∆1 s.t. ∆2 `Σ2 Id2

Proof The first claim is straightforward (see Theorem 3.9). The second is proved by case-analysis on the
computation rules, so we must cover the additional cases for the computation rules in Table 3, e.g.

(G.1) if Id1 is (X|µ, λM ([x]e), E), then Id2 is (X, x|µ, e, E[λM ([x]�)]) and the typings ∆1, x: 〈τ1〉 `Σ1 e:M〈τ2〉
and ∆1,�:M〈τ1 → τ2〉 `Σ1 E: τ ′ are derivable. Therefore we can take Σ2 ≡ Σ1 and ∆2 ≡ ∆1, x: 〈τ1〉.

(C.1) if Id1 is (X|µ, dn(vc), E), then Id2 is (X, x|µ, ret(e), E) with e = vc ↓ and the typings ∆1 `Σ1 vc: 〈τ〉
and ∆1,�:Mτ `Σ1 E: τ ′ are derivable. By Lemma 4.6 ∆1 `Σ1 e: τ is derivable, therefore we can take
Σ2 ≡ Σ1 and ∆2 ≡ ∆1.

Lemma 4.8 If ∆ `Σ e: τ and e is a > -normal form, then

• τ ≡ nat implies e is a natural number

• τ ≡ Mτ implies e is a computational redex

• τ ≡ ref τ implies e is a location

• τ ≡ 〈τ ′〉 implies e is a code value

• τ ≡ (τ1 → τ2) implies e is a λ-abstraction

Proof By induction on the derivation of ∆ `Σ e: τ . The base cases are: x, up, l, λ, ret, do, new and cM . The
inductive steps are: get, set, dn, cV and @ (@ is impossible because by the IH one would have a β-redex).

Theorem 4.9 (Progress for ===⇒) If ∆ `Σ (X|µ, e, E), then one of the following holds

1. e 6∈ R and e > , or

2. e ∈ R and (X|µ, e, E) >

Proof When e ∈ R (in particular when e is get(l) or set(l, e′)) we have (µ, e, E) > (because l ∈ dom(µ) by
well-formedness of the configuration). When e 6∈ R, then e cannot be a > -normal form. otherwise we get
a contradiction with ∆ `Σ e:Mτ and Lemma 4.8.

9

4.3 Examples

We give some simple examples to illustrate subtle points of the operational semantics. For readability, we use
Haskell’s do-notation x ⇐ e1; e2 (or e1; e2) for do(e1, [x]e2) (when x 6∈ FV(e2)) and write λBx.e for λB([x]e).

• Example of scope extrusion: a bound variable x leaks in the store

l ⇐ new(0V); (λMx.set(l, x); ret(x)) : M〈nat → nat〉

1. (∅ | ∅, new(0V), l ⇐ �;λMx.set(l, x); ret(x)) create a new location l

2. (∅ | l = 0V , λMx.set(l, x); ret(x), �) generate a fresh name x

3. (x | l = 0V , set(l, x), λMx.�; ret(x)) assign x to l

4. (x | l = 0V , ret(x), λMx.�) complete code generation of λ-abstraction
5. (x | l = x, ret(λV x.x), �) x is bound by λV , but a copy of x left in the store.

The operational semantics in [CMSar] is more conservative, namely when a variable x leaks into the
store it is bound by a dead-code annotation, but the two semantics agree when storing closed values.

• Example of extruded variable that is recaptured by its binder

λMx. l ⇐ new(x); get(l) : M〈(τ → τ〉

1. (∅ | ∅, λMx. l ⇐ new(x); get(l), �) generate x, then create l

2. (x | l = x, λMy. get(l), λMx.�) get content of l

3. (x | l = x, ret(x), λMx.�) complete code generation of λ-abstraction
4. (x, y | l = x, ret(λV x.x), �) x is bound by λV

The recapturing of extruded variables is allowed also by [TD99], while the operational semantics of
[CMSar] does not allow the recapturing, namely the result would be (λV x.(x)x), i.e. x is bound by the
dead-code annotation (x) rather than by λV x. .

• Example of extruded variable that is not accidentally captured by another binder using the same name

l ⇐ new(0V); (λMx.set(l, x); ret(x)); z ⇐ get(l); ret(λV x.z) : M〈τ1 → τ2〉

1. (∅ | l = 0V , (λMx.set(l, x); ret(x)), �; z ⇐ get(l); ret(λV x.z)) generate x and assign it to l

2. (x | l = x, ret(λV x.x), �; z ⇐ get(l); ret(λV x.z)) first code generation completed
3. (x | l = x, get(l), z ⇐ �; ret(λV x.z)) get content of l

4. (x | l = x, ret(x), z ⇐ �; ret(λV x.z)) complete code generation of λ-abstraction
5. (x | l = x, ret(λV x′.x), �) bound variable x renamed by substitution ret(λV x.z)[z: = x]

• Example of extruded variable that is not recaptured by its binder after code generation.

l ⇐ new(0V); z ⇐ (λMx.λMy.set(l, y); ret(x)); f ⇐ dn(z);u ⇐ get(l); ret(f u) : M(nat → 〈nat〉)

1. (x, y | l = y, ret(λV x.λV y.x), z ⇐ �; f ⇐ dn(z);u ⇐ get(l); ret(f u))
code generation completed, y is bound by λV and leaked in the store

2. (x, y | l = y, dn(λV x.λV y.x), f ⇐ �;u ⇐ get(l); ret(f u)) compile code
3. (x, y | l = y, ret(λx.λy.x), f ⇐ �;u ⇐ get(l); ret(f u)) get content of l and apply f to it
4. (x, y | l = y, ret((λx.λy.x) y),�)

the result simplifies to (λy′.y), because the bound variable y is renamed by β-reduction

When y is recaptured by λV , it becomes a bound variable and can be renamed. Therefore, the connection
with the (free) occurrences of y left in the store (or the program fragment under consideration) is lost.

5 Related work and discussion

We discuss related work and some issues specific to MMML. A more general discussion of open issues in
meta-programming can be found in [She01].

10

Comparison with MetaML, λ© and λM. The motivation for looking at the interactions between computa-
tional effects and run-time code generation comes from MetaML [MHP00, TS97, Tah99, TS99, TS00, CMSar].
We borrow code types from MetaML (and λ© of [Dav96]), but use annotated term-constructors as in λM

of [Dav96] (see also [GJ95]), so that simplification and computation rules are level insensitive. Indeed, the
term-constructors of MMML can be given by an alternative BNF

c ∈ C: : = retB | doB | λB | @B | newB | getB | setB | lB | upB | dnB with B ∈ {V,M}∗

For instance, λB is λ when B is empty; if c is λB , then cV and cM are given by λBV and λBM respectively.
However, MMML’s annotations are sequences B ∈ {V,M}∗, while those of λM are natural number n. A
sequence B identifies a natural number n, namely the length of B, moreover for each i < n it says whether
computation at that level has been completed, as expressed by the different typing for cV and cM . The refined
annotations of term-constructors (and computational types) allow to distinguish the following situations:

• (λMx.e, E) we start generating code for a λ-abstraction

• (e,E[λMx.�]) we have generated a fresh name x, and start generating code for the body

• (e,E[λMx.E′]) we are somewhere in the middle of the computation generating code for the body

• (ret(e), E[λMx.�]) we have the code for the body of the λ-abstraction

• (ret(λV x.e), E) we have the code for the λ-abstraction

All operational semantics proposed for MetaML or λ© do not make these fine-grain distinctions. Only [Nan02],
which extends λ� of [DP96] with names a la FreshML (and intensional analysis), has an operational semantics
with steps modeling fresh name generation and recapturing, but its relations with λ© and MetaML have not
been investigated, yet.
The up and dn primitives of MMML are related to cross-stage persistence %e and code execution run e of
MetaML. In MMML demotion vc↓ is partial, and thus evaluation of dn(vc) may raise an unresolved link error,
while in MetaML demotion is total, and an unresolved link error is raised only when evaluating x (at level 0).
However, in [CMSar] demotion is applied only to closed values, during evaluation of well-typed programs.

Multi-lingual extensions. It is straightforward to extend a monadic metalanguage, like MMML, to cope
with a variety of programming languages: each programming language PLi is modeled by a different monad
Mi with its own set of operations. However, one should continue to have one code type constructor 〈τ〉,
i.e. the representation of terms should be uniform. Therefore, there should be one up: τ⇒〈τ〉 and one cV (for
each c), but several dni: 〈τ〉⇒Miτ and cMi , one for each monad Mi. In this way, we could have terms of type
M1〈M2τ〉, which correspond to a program written in PL1 for generating programs written in PL2.

Compilation strategies. The compilation step (C.1) in Table 3 uses the demotion operation of Defini-
tion 4.1, which returns the term vc ↓ of type τ represented by a code value vc of type 〈τ〉 (if such a term
exists). One could adopt a lazier compilation strategy, which delays the compilation of parts of the code. A
lazy strategy has the effect of delaying unresolved link errors, including the possibility of never raising them
(when part of the code is dead). For instance, a possible clause for lazy demotion is retV (e)↓= dn(e).
A more aggressive approach is to replace the compilation step with local simplification rules

dn(up(e)) > e dn(cV ([xi]ei|i ∈ m)) > c([xi]dn(ei[xi: = up(xi)])|i ∈ m)

However, one must modify the type system to ensure that the subject reduction and progress property for
===⇒ continue to hold (changing the type schema for dn to 〈τ〉⇒τ is not enough).

Type systems. We have adopted a simple type system for MMML, which does not detect statically all
run-time errors, but allows to consider operationally interesting programs. In particular, we have not included
the closed type constructor [τ] of MetaML for two reasons:

1. there are alternative approaches to prevent link errors incomparable with the closed type approach (e.g.
the region-based approach of [TD99] and the environment classifier approach of [NT03])

2. it requires dead-code annotations (x)e that are instrumental to the proof of type safety.

11

Better type systems are desirable not only for detecting errors statically, but also to provide more accurate type
schema for dn, e.g. dn: [〈τ〉]⇒τ , which could justify replacing the compilation step by local simplification rules
(see above). [Nan02] is the best attempt up-to-date in addressing typing issues, although it does not explicitly
consider computational effects. The adaptation of Nanevski’s type system to MMML, e.g. refining code types
〈τ |C〉 with a set C of names, is a subject for further research. Also the type system of [NT03] (where one has
several code type constructors 〈τ〉α, corresponding to different ways of representing terms) could be adapted
to MMML, but at a preliminary check it seems that the more accurate type schema (∀α.〈τ〉α)⇒∀α.τ for dn is
insufficient to validate the local simplification rules for compilation.

Uniform representation in Logical Frameworks. The code types of MMML provide a uniform repre-
sentation of terms, similar to the (weak) Higher-Order Abstract Syntax (HOAS) encoding of object logics in
a logical framework (LF). Of course, in a LF there are stronger requirements on HOAS encodings, but any
advance in the area of LF is likely to advance the state-of-the-art in meta-programming. Recently [Nan02] has
made significant advances in the area of intensional analysis, i.e. the ability to analyze code (see [She01]), by
building on [PG00].

Monadic intermediate languages. [BK99] advocates the use of MIL for expressing optimizing transfor-
mations. Also MMML could be used for this purpose, but for having non-trivial optimizations one has to
introduce more aggressive simplifications (than those strictly needed for defining the operational semantics)
and refine monadic types with effect information as done in [BK99]. In general, we expect β-conversion
@(λ([x]e2), e1) ≈ e2[x: = e1] and the following equivalences to be observationally sound

(β.do) do(ret(e1), [x]e2) ≈ e2[x: = e1]

(β.cM) cM ([xi]ret(ei)|i ∈ m) ≈ ret(cV ([xi]ei|i ∈ m))

while other equivalences, like @V (λV ([x]e2), e1) ≈ e2[x: = e1], are more fragile (e.g. they fail when the language
is extended with intensional analysis).

Acknowledgments

We would like to thank Amr Sabry and Walid Taha for discussions.

References

[BHM00] Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects. Lecture notes for Int. Summer
School on Applied Semantics, APPSEM’00, Caminha, Portugal, 9–15 Sept. 2000, September 2000.

[BK99] N. Benton and A. Kennedy. Monads, effects and transformations. In Proceedings of the Third Inter-
national Workshop on Higher Order Operational Techniques in Semantics (HOOTS-99), volume 26
of Electronic Notes in Theoretical Computer Science, Paris, September 1999. Elsevier.

[CMSar] C. Calcagno, E. Moggi, and T. Sheard. Closed types for a safe imperative MetaML. Journal of
Functional Programming, to appear.

[Dav96] Rowan Davies. A temporal-logic approach to binding-time analysis. In the Symposium on Logic
in Computer Science (LICS ’96), pages 184–195, New Brunswick, 1996. IEEE Computer Society
Press.

[DP96] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In the Symposium
on Principles of Programming Languages (POPL ’96), pages 258–270, St. Petersburg Beach, 1996.

[GJ95] Robert Glück and Jesper Jørgensen. Efficient multi-level generating extensions for program spe-
cialization. In S. D. Swierstra and M. Hermenegildo, editors, Programming Languages: Implemen-
tations, Logics and Programs (PLILP’95), volume 982 of Lecture Notes in Computer Science, pages
259–278. Springer-Verlag, 1995.

[Klo80] J. W. Klop. Combinatory Reduction Systems. PhD thesis, University of Utrecht, 1980. Published
as Mathematical Center Tract 129.

12

[MHP00] The MetaML Home Page, 2000. Provides source code and documentation online at
http://www.cse.ogi.edu/PacSoft/projects/metaml/index.html.

[Mog97] E. Moggi. Metalanguages and applications. In Semantics and Logics of Computation, volume 14
of Publications of the Newton Institute. CUP, 1997.

[MS01] E. Moggi and A. Sabry. Monadic encapsulation of effects: a revised approach (extended version).
Journal of Functional Programming, 11(6):591–627, November 2001.

[Nan02] Aleksandar Nanevski. Meta-programming with names and necessity. In Proceedings of the Sev-
enth ACM SIGPLAN International Conference on Functional Programming (ICFP-02), ACM SIG-
PLAN notices, New York, October 2002. ACM Press.

[NT03] Michael Florentin Nielsen and Walid Taha. Environment classifiers. In Proceedings of the ACM
Symposium on Principles of Programming Languages (POPL), N.Y., January 15–17 2003. ACM
Press.

[PG00] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with bound names modulo
renaming. In Mathematics of Programme Construction, volume 1837 of Lecture Notes in Computer
Science, pages 230–255. Springer-Verlag, 2000.

[PHA+97] Simon Peyton Jones, John Hughes, Lennart Augustsson, Dave Barton, and et. al. Haskell
1.4: A non-strict, purely functional language. Technical Report YALEU/DCS/RR-1106, De-
partment of Computer Science, Yale University, Mar 1997. World Wide Web version at
http://haskell.cs.yale.edu/haskell-report.

[She01] T. Sheard. Accomplishments and research challenges in meta-programming. In W. Taha, editor,
Proc. of the Int. Work. on Semantics, Applications, and Implementations of Program Generation
(SAIG), volume 2196 of LNCS, pages 2–46. Springer-Verlag, 2001.

[Tah99] Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon
Graduate Institute of Science and Technology, 1999. Available from ftp://cse.ogi.edu/pub/tech-
reports/README.html.

[TD99] Peter Thiemann and Dirk Dussart. Partial evaluation for higher-order languages with state. Avail-
able from http://www.informatik.uni-freiburg.de/̃thiemann/papers/index.html, 1999.

[TS97] Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In Proceedings of
the Symposium on Partial Evaluation and Semantic-Based Program Manipulation (PEPM), pages
203–217, Amsterdam, 1997. ACM Press.

[TS99] Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit annotations.
Technical Report CSE-99-007, Department of Computer Science, Oregon Graduate Institute, 1999.
Extended version of [TS97]. Available from ftp://cse.ogi.edu/pub/tech-reports/README.html.

[TS00] Walid Taha and Tim Sheard. MetaML: Multi-stage programming with explicit annotations. The-
oretical Computer Science, 248(1-2), 2000.

[WF94] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38–94, 1994.

13

e ∈ E: : = x | c(fi|i ∈ m)
c ∈ C: : = ret | do | up | dn | @ | λ | cV | cM

E ∈ EC: : = � | do(E, [x]e) | cM (v, [x]E, e) unchanged
vc ∈ VC: : = x | up(e) | cV ([xi]vci|i ∈ m) unchanged

r ∈ R: : = do(e1, [x]e2) | cM (f) | ret(e) | dn(vc)

A.0 (ret(e),�) > ok

A.1 (do(e1, [x]e2), E) > (e1, E[do(�, [x]e2)])

A.2 (ret(e1), E[do(�, [x]e2)]) > (e2[x: = e1], E)

G.0 (cM (), E) > (ret(cV ()), E)

G.1 (cM ([x]e, e), E) > (e,E[cM ([x]�, e)]) with x renamed to avoid clashes with CV(E)

G.2 (ret(e), E[cM (v, [x]�)]) > (ret(cV (e, [x]e)), E) with v = ([xi]ret(ei)|i ∈ m) and e = ([xi]ei|i ∈ m)

G.3 (ret(e1), E[cM (v, [x1]�, [x2]e2, e)]) > (e2, E[cM (v, [x1]ret(e1), [x2]�, e)])

C.1 (dn(vc), E) >

{
(ret(e), E) if e = vc↓
err if vc↓ undefined

Table 5: Syntax and Computation relation for MMML without references

A Translation

We define a translation from λ© of [Dav96] into MMML and establish its properties w.r.t. typing and opera-
tional semantics. The translation achieves two goals:

1. to make explicit the order of evaluation, by extending the CBV translation of a functional language into
a monadic metalanguage [Mog97, BHM00];

2. to make explicit the binding-time annotation in terms, by refining the translation from λ© into λM given
in [Dav96] (Davies defines also an inverse translation from λM into λ©, in our case there is no inverse
because MMML is more expressive than λ©).

For instance, the translation x∗n of a variable at level n has to make explicit that at all levels from 0 to n
there is nothing to compute.

Simplifications to MMML. For defining the translation we can ignore references (and we could ignore also
up and dn). Table 5 summarizes the syntax and computation relation for this restriction of MMML. We
have taken as configurations pairs (e,E), because without scope extrusion the sequence x of fresh names may
be handled as a stack (rather than a heap) and identified with CV(E). This is justified a posteriori by the
following property (i.e. the counterpart of Lemma 4.3)

Lemma A.1
If (e,E) > (e′, E′), FV(E) = ∅ and FV(e) ⊆ CV(E), then FV(E′) = ∅ and FV(e′) ⊆ CV(E′).

Figure 6 summarizes syntax, type system and big-step operational semantic of λ©. The judgment Γ `n e: τ
means that in Γ and at level n e has type τ . The pattern of the translation from λ© into MMML is:

• a λ© type τ is mapped to a MMML type τ∗;

• a λ© term e at level n is mapped to a MMML term e∗n;

• a λ© value v at level n is mapped to a MMML term v†n.

The translation is given in Table 7, and its key properties are stated in Proposition A.2 and A.7.

14

Types, terms and values

τ ∈ T : : = X | τ1 → τ2 | © τ types

e ∈ E : : = x | λx.e | e1e2 | next e | prev e terms

v0 ∈ V0 : : = λx.e | next v1

vn+1 ∈ Vn+1 : : = x | λx.vn+1 | vn+1
1 vn+1

2 | next vn+2 values
vn+2 ∈ Vn+2 + = prev vn+1

Γ:X
fin→ (T× N) type-and-level assignment

Type system

(V)
Γ `n x: τ

Γ(x) = τn (→ I)
Γ, x: τn

1 `n e: τ2

Γ `n λ x.e: τ1 → τ2

(→ E)
Γ `n e1: τ1 → τ2 Γ `n e2: τ1

Γ `n e1e2: τ2

(© I)
Γ `n+1 e: τ

Γ `n next e:©τ
(© E)

Γ `n e:©τ

Γ `n+1 prev e: τ

Evaluation

λx.e
0

↪→ λx.e
e1

0
↪→ λx.e e2

0
↪→ v2 e[x: = v2]

0
↪→ v

e1e2
0

↪→ v

x
n+1
↪→ x

e
n+1
↪→ v

λx.e
n+1
↪→ λx.v

e1
n+1
↪→ v1 e2

n+1
↪→ v2

e1e2
n+1
↪→ v1 v2

e
n+1
↪→ v

next e
n
↪→ next v

e
0

↪→ next v

prev e
1

↪→ v

e
n+1
↪→ v

prev e
n+2
↪→ prev v

Table 6: λ©: syntax, type system and evaluation

Proposition A.2 (Typing)

1. If xi: τni
i `n e: τ , then xi:Nniτ∗i ` e∗n: (MN)nMτ∗

2. If v ∈ Vn and xi: τni
i `n v: τ , then xi:Nniτ∗i ` v†n: (NM)nτ∗

Proof By induction on the derivation of the typing judgments in λ©.

Remark A.3 All CBV translations have a caveat, namely values of certain types (e.g. product and ©-types)
are not mapped to terms of the form ret(e), however their translation is provably equivalent to a term in such
a form modulo some axioms for computational types. For instance, consider the pair of values (v1, v2), its CBV
translation (v1, v2)∗0 as a term would be do(v∗01 , [x1]do(v∗02 .[x2]ret(x1, x2))), while its translation (v1, v2)†0 as
a value is (v†01 , v†02). If v∗0i = ret(v†0i) is provable (from the axioms for computational types), then it is easy to
prove also (v1, v2)∗0 = ret(v1, v2)†0.

Lemma A.4 If v ∈ Vn, then v
∗
a
> ret(v†n), where

a
> is the reduction induced by

(β.do) do(ret(e1), [x]e2) > e2[x: = e1] and

(β.cM) cM ([xi]ret(ei)|i ∈ m) > ret(cV (ei|i ∈ m))

If v ∈ Vn+1, then v†n+1 ∈ VC.

Proof By induction on the structure of v ∈ Vn.

The following Lemma says that the auxiliary reduction
a
> commutes with simplification > and may

anticipate some steps of computation.

15

• translation τ∗ of a type τ ∈ T

– (τ1 → τ2)∗
∆= τ∗1 → Mτ∗2

– (©τ)∗ ∆= NMτ∗

where Nτ = 〈τ〉, C1C2τ = C1(C2τ) and Cnτ is the n-fold application of C to τ

• translation e∗n at level n of a term e ∈ E

– x∗n
∆= retn(retV nx)

– (λx.e)∗n ∆= retMn(λMn([x]e∗n))

– (e1 e2)∗n
∆= doMn(e∗n1 , [x1]doMn(e∗n2 , [x2]retn(@V n(x1, x2)))), with x1 and x2 fresh

– (next e)∗n ∆= e∗n+1

– (prev e)∗n+1 ∆= e∗n

where cMn denotes c annotated n times with M (and similarly for cV n), and

retn = (retV 0 ◦ . . . ◦ retV n−1):NnMτ → (MN)nMτ with retV i :N i(NM)n−iτ → N iM(NM)n−iτ

• translation v†n of a value v ∈ Vn at level n

– x†n+1 ∆= retVn+1x

– (λx.e)†0 ∆= λ([x]e∗0) (λx.v)†n+1 ∆= retMnV (λMnV ([x]v†n+1))

– (v1 v2)†n+1 ∆= doMnV (v†n+1
1 , [x1]doMnV (v†n+1

2 , [x2]retVn (@V n+1(x1, x2))))

– (next v)†n ∆= v†n+1

– (prev v)†n+2 ∆= v†n+1

where retVn = (retV 1 ◦ . . . ◦ retV n):Nnτ → (NM)nτ with retV i :N i(NM)n−iτ → N iM(NM)n−iτ

Table 7: Translation of λ© to MMML

Lemma A.5

1. If e0
∗
> e1 and e0

∗
a
> e2, then exists e3 s.t. e1

∗
a
> e3 and e2

∗
> e3

2. If (e1, E[E1])
a
> (e2, E[E2]) and (e1, E[E1]) > (e′1, E[E′

1]), then

• either exist e′2 and E′
2 s.t. (e2, E[E2]) > (e′2, E[E′

2]) and (e′1, E[E′
1])

∗
a
> (e′2, E[E′

2])

• or (e′1, E[E′
1])

∗
> (e2, E[E2]) using only the steps (A.2), (G.2) and (G.3)

The translation is level dependent, thus several of its properties hold only when the terms involved are well-
typed (in fact, it suffices to know that variables are used at the same level they have been declared).

Lemma A.6 (Properties of Translation)

If Γ, x: τ0 `n e: τ ′ and Γ `0 v: τ with v ∈ V0, then (e[x: = v])n ∗
a
> e∗n[x: = v†0].

Proof By induction on the derivation of Γ, x: τ0 `n e: τ ′. In the base case Γ, x: τ0 `0 x: τ use Lemma A.4

Proposition A.7 (Evaluation)

If Γ `n e: τ and e
n
↪→ v, then exists e′ s.t. v†n

∗
a
> e′ and (e∗n, E) ===

∗
⇒ (ret(e′), E) for any E ∈ EC.

Proof By induction on the derivation of e
n
↪→ v, and by exploiting Lemma A.4 and A.5.

16

