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Abstract. In a recent post on the Seqfan list the third author proposed conjectures concerning
the summatory function of odious numbers (i.e., of numbers whose sum of binary digits is
odd), and of evil numbers (i.e., of numbers whose sum of binary digits is even). We prove
these conjectures here. We will also study the sequences of “generalized” odious and evil
numbers, and their iterations, giving in particular a characterization of the sequences of usual
odious and evil numbers in terms of functional equations satisfied by their compositions.
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[...] The lights hanging
from oak beams above the readers
light and illuminate every page. Each book dusted
each day. Original jackets, no odious numbers glued to spines,
not one decimal, Dewey or otherwise, in the entire place! [...]
(Thomas Lux, The Ambrosiana Library)

1. Introduction

The purpose of this paper, whose title is reminiscent of [11], is revisiting the
study of two families of integers respectively called odious and evil numbers, as
well as the study of some generalizations. A natural integer is called odious if
the sum of its binary digits is odd. A natural integer is called evil if the sum of
its binary digits is even. This terminology was introduced by the authors of [3,
4], see [4, p. 463]; the words “odious” and “evil” were chosen because they begin
respectively like “odd” and “even”. Let a = (a(n))n≥0 denote the increasing
sequence of odious numbers, and b = (b(n))n≥0 denote the increasing sequence

� The author was partially supported by the ANR project “FAN” (Fractals et Numération).
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of evil numbers. Sequences a and b are respectively A000069 and A001969 in
[12], except that we let the indexes start from 0 instead of 1. Sequences a and
b begin like

a = 1 2 4 7 8 11 13 14 16 19 21 22 25 26 28 31 . . .

b = 0 3 5 6 9 10 12 15 17 18 20 23 24 27 29 30 . . .

Remark 1. We seem to remember having read somewhere on the web (but
where was it?) that mathematicians probably do not like numbers, since for
them numbers are necessarily either evil or they are odd! Also note that for
some authors the expression “evil numbers” has a quite different meaning.
This is explained, e.g., in [15]: a number is called evil in that terminology if
the first n decimal digits of its fractional part sum to 666 for some integer n.
The expression “evil numbers” is also used with other meanings, inspiring in
particular artists, like Fabio Mauri (see [6]).

Remark 2. There is a large literature on questions related to the study of
integers that satisfy some congruence, and whose sum of digits in a given base
satisfies some other congruence. The seminal papers are the papers of Fine [7]
and Gel’fond [8].

The purpose of the present paper is twofold: to prove the above conjectures
and to describe iterations of sequences a and b and generalizations. Namely it
was noted by the second author in [12, A000069] that a(a(n)) = 2a(n). We will
generalize this result by proving Theorem 1 below which gives an expression
of aj,d(ai,d(n)), where (aj,d(n))n≥0 denotes the increasing sequence of integers
whose sum of d-ary digits is congruent to j modulo d. The paper is constructed
as follows: first we prove formulas for the iteration of sequences of (generalized)
odious and even numbers; then we compute the summatory functions of these
numbers; Sect. 3 is devoted to proving Shevelev’s conjectures; Sect. 5 gives
a characterization of the sequences of odious and evil numbers in terms of
functional equations satisfied by their compositions.

2. Iteration of the sequences of generalized odious and evil numbers

As recalled in the introduction, it was noted by the second author [12, A000069]
that the increasing sequence of odious numbers a satisfies a(a(n)) = 2a(n).
We will generalize this result by proving Theorem 1 below.

We begin with a definition and a lemma.
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Definition 1.

• Let d ≥ 2 be an integer. For any integer x we let (x)d denote the residue
modulo d of x, i.e., the integer belonging to [0, d − 1] and congruent to x

modulo d. Note that we have x = d�x
d � + (x)d.

• We let sd(n) denote the sum of the d-ary digits of n. We let td = (td(n))n≥0

denote the sequence of integers defined by td(n) ≡ sd(n) mod d and 0 ≤
td(n) ≤ d − 1, i.e., td(n) = (sd(n))d.

• For j ∈ [0, d − 1], we let aj,d = (aj,d(n))n≥0 denote the increasing sequence
of integers k such that sd(k) ≡ j mod d (i.e., td(k) = j).

Lemma 1.

• Sequence td is the fixed point of the morphism defined on {0, 1, . . . , d−1} by
0 → 0 1 . . . d−1, 1 → 1 2 . . . d−1 0, . . . , d−1 → d−1 0 1 . . . d−2.

• If α belongs to [0, d − 1], then, for all n ≥ 0, we have

td(dn + α) = (td(n) + α)d =

{
td(n) + α if td(n) + α ≤ d − 1
td(n) + α − d if td(n) + α ≥ d.

• If j belongs to [0, d − 1], then, for all n ≥ 0, we have

d − 1 − td(dn + d − 1 − j) =

{
j − td(n) if 0 ≤ td(n) ≤ j

d + j − td(n) if j + 1 ≤ td(n) ≤ d − 1.

Proof. The proof of the first two items is easy and left to the reader. The last
item is an easy consequence of the second item. �

Now we prove a helpful proposition.

Proposition 1. The sequence (aj,d(n))n≥0 satisfies

aj,d(n) = dn + (j − td(n))d.

This can also be written as

aj,d(n) = dn +

{
j − td(n) if 0 ≤ td(n) ≤ j

d + j − td(n) if j + 1 ≤ td(n) ≤ d − 1

= dn + d − 1 − td(dn + d − j − 1).

Proof. These equalities are easy consequences of Lemma 1, which implies in
particular that sequence td consists of consecutive blocks taken from (0 1 . . .
d − 1), (1 2 . . . d − 1 0), . . . , (d − 1 0 1 . . . d − 2), where the rth block
begins with td(r). �

We are ready to state and prove the result of this section.
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Theorem 1. For all n ≥ 0, for all i, j ∈ [0, d − 1], we have

aj,d(ai,d(n)) = dai,d(n) + (j − i)d =

{
dai,d(n) + j − i if j ≥ i

dai,d(n) + d + j − i if j < i.

Proof. Using Proposition 1 we can write

aj,d(ai,d(n)) = dai,d(n) + j − td(ai,d(n))d.

But, from the definition of ai,d we have td(ai,d(n)) = i. Hence

aj,d(ai,d(n)) = dai,d(n) + (j − i)d =

{
dai,d(n) + j − i if j ≥ i

dai,d(n) + d + j − i if j < i.

�

3. Summatory function of generalized odious and evil numbers

In order to address Shevelev’s conjectures recalled in the introduction, we have
to study the summatory function of odious numbers. This section is devoted to
studying the summatory function of generalized odious and evil numbers. The
first step is the following proposition. (We keep the notation in Definition 1.)

Proposition 2. Let a and r be integers in [0, d − 1]. Then

r∑
�=0

(a − �)d =

⎧⎪⎨
⎪⎩

a(r + 1) − r(r + 1)
2

if r ≤ a

a(r + 1 − d) + dr − r(r + 1)
2

if r > a.

This can also be written as
r∑

�=0

(a − �)d = a(r + 1) − r(r + 1)
2

+ d max{r − a, 0}.

Proof. If r ≤ a, then
r∑

�=0

(a − �)d = (a)d + (a − 1)d + · · · + (a − r)d

= a + (a − 1) + · · · + (a − r) = a(r + 1) − r(r + 1)
2

·
Now, if r > a, then

r∑
�=0

(a − �)d = (a)d + (a − 1)d + · · · + (0)d + (−1)d + −(r − a)d

= a + (a − 1) + · · · + 0 + (d − 1) + · · · + (d − r + a)

= a(r + 1 − d) + dr − r(r + 1)
2

·
�
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Using Propositions 1 and 2 we obtain the following theorem.

Theorem 2. The summatory function of the sequence aj,d is given by

N∑
k=0

aj,d(k) =
dN(N + 1)

2
+

�N/d�d(d − 1)
2

+ (j − td(�N/d�))d((N)d + 1)

− (N)d((N)d + 1)
2

+ d max
{

(N)d − (j − td(�N/d�))d, 0
}

Proof. We first note that, for any integer a, we have

ad−1∑
k=0

(j − td(k))d =
a−1∑
j=0

(j+1)d−1∑
k=jd

(j − td(k))d =
a−1∑
j=0

d(d − 1)
2

=
ad(d − 1)

2

since for each j, when k runs in [jd, (j + 1)d − 1], td(k) takes exactly once
every value in [0, d − 1], thus (j − td(k))d also takes exactly once every value
in [0, d − 1].

Now, using Proposition 1, we get

N∑
k=0

aj,d(k) =
N∑

k=0

(
dk + (j − td(k))d

)
=

dN(N + 1)
2

+
N∑

k=0

(j − td(k))d

=
dN(N + 1)

2
+

d�N/d�−1∑
k=0

(j − td(k))d +
N∑

k=d�N/d�
(j − td(k))d

=
dN(N + 1)

2
+

�N/d�d(d − 1)
2

+
N∑

k=d�N/d�
(j − td(k))d.

But
N∑

k=d�N/d�
(j − td(k))d =

N−d�N/d�∑
�=0

(j − td(� + d�N/d�))d

=
N−d�N/d�∑

�=0

(
j − (td(�) + td(�N/d�)d

)
d

=
N−d�N/d�∑

�=0

(j − td(�N/d�) − �)d

=
N−d�N/d�∑

�=0

(
(j − td(�N/d�))d − �

)
d
.

Now, using Proposition 2 with a replaced by (j − td(�N/d�))d and r replaced
by N − d�N/d� yields the result. �
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Now we give a corollary of Theorem 2 above, recalling in passing some
notation of the introduction.

Corollary 1. Let t = (t(n))n≥0 be the Thue–Morse sequence defined by t(0) =
0, and for all n ≥ 0, t(2n) = t(n), t(2n + 1) = 1 − t(n). Let a = (a(n))n≥0

be the sequence of odious numbers. Let b = (b(n))n≥0 be the sequence of evil
numbers. Let S(n) = a(0) + a(1) + · · · + a(n) be the summatory function of
sequence a. Let R(n) = b(0) + b(1) + · · · + b(n) be the summatory function of
sequence b. Then

• a(n)=2n+1−t(n)
• b(n)=2n+t(n)

• S(n)=n2+ 3n
2 + 1

2 + 1+(−1)n

4 (1−2t(n))=
{

n2+ 3n
2 + 1

2 if n is odd
n2+ 3n

2 +1 − t(n) if n is even.

• R(n) = n2 + 3n
2 + 1

2 + 1+(−1)n

4 (2t(n)−1) =
{

n2+ 3n
2 + 1

2 if n is odd
n2+ 3n

2 +t(n) if n is even.

Proof. Put d = 2 and j = 0, 1 in Theorem 2. (Also see, e.g., [9, Section 8], [12,
A000069] and [12, A173209].)

Note that it is also possible to give summatory functions of polynomial
expressions for sequences like a and b. For example, we can prove the following
result. �

Corollary 2. We have the relations

b(n)∑
k=0

a(k) = b(n)2 + b(n) + n + 1

a(n)∑
k=0

b(k) = a(n)2 + a(n) + n + 1

a(n)∑
k=0

a(k) = a(n)2 + 2a(n) − n

b(n)∑
k=0

b(k) = b(n)2 + 2b(n) − n2.

We have the relations

∑
a(k)≤n

a(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n2

4 − n
4 + nt(n) if n ≡ 0 mod 4

n2

4 + n
4 − 1

2 + t(n) if n ≡ 1 mod 4
n2

4 − n
4 − 1

2 + (n + 1)t(n) if n ≡ 2 mod 4
n2

4 + n
4 if n ≡ 3 mod 4
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∑
b(k)≤n

b(k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n2

4 + 3n
4 − nt(n) if n ≡ 0 mod 4

n2

4 + n
4 + 1

2 − t(n) if n ≡ 1 mod 4
n2

4 + 3n
4 + 1

2 − (n + 1)t(n) if n ≡ 2 mod 4
n2

4 + n
4 if n ≡ 3 mod 4.

Proof. Left to the reader. Hint for the last two formulas: note that

{k; a(k) ≤ n} = {k; 2k + 1 − t(k) ≤ n}
=

{
k; t(k) = 1, k ≤ �n

2 �} ∪ {
k; t(k) = 0, k ≤ �n−1

2 �}
=

{
0, 1, 2, . . . , �n−1

2 �} ∪ Θn

where

Θn =
{ ∅ if n is odd, or if n is even and t(n) = 0

{�n
2 �} if n is even and t(n) = 1.

Thus ∑
a(k)≤n

a(k) =
∑

k≤� n−1
2 �

a(k) +
1 + (−1)n

2
t(n)a(�n/2�).

�

4. Proof of Shevelev’s conjecture

Before stating Shevelev’s conjectures, we need a definition and a lemma.

Definition 2. If x and y are two integers, we write x <4 y (resp. x ≤4 y) if the
residues modulo 4 of x and y, denoted by x and y, belonging to {0, 1, 2, 3} and
considered as natural integers, satisfy x < y (resp. x ≤ y).

Example 1. For example 17 <4 6 because 17 ≡ 1 mod 4, 6 ≡ 2 mod 4 and
1 < 2.

Lemma 2. Let a and t be as above the increasing sequence of odious numbers
and the Thue–Morse sequence. Then, if n and m are both odd or both even,
then a(n) <4 a(m) (resp. a(n) ≤4 a(m)) if and only if t(m) < t(n) (resp.
t(m) ≤ t(n)).

Proof. Since a(n) = 2n+1− t(n), we see that a(n) = 1− t(n) if n is even, and
that a(n) = 3 − t(n) if n is odd. The statement in the lemma follows. �

Theorem 3 (Shevelev’s conjecture). Let S(n) be the summatory function of
odious numbers, i.e., S(n) = a(0) + a(1) + · · · + a(n). We have, for n ≥ 2,

• if a(n − 1) <4 a(n + 1) and a(n) ≤4 a(n + 2), then S(n) =
a(n)a(n + 1)

4
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• if a(n−1) >4 a(n+1) and a(n) ≥4 a(n+2), then S(n) =
a(n)a(n + 1)

4
+

1
2

• if a(n−1) <4 a(n+1) and a(n) >4 a(n+2), then S(n) =
a(n)(a(n + 1) − 1)

4

• if a(n−1) >4 a(n+1) and a(n) <4 a(n+2), then S(n) =
(a(n) + 1)a(n + 1)

4
·

Proof.

(i) Proof of the first assertion. From Lemma 2 the conditions a(n − 1) <4

a(n + 1) and a(n) ≤4 a(n + 2) are equivalent to t(n + 1) < t(n − 1) and
t(n + 2) ≤ t(n). Thus t(n + 1) = 0, t(n − 1) = 1, and either t(n) = 1
or t(n) = t(n + 2) = 0. But t(n) = t(n + 2) = 0 is impossible because
this would imply ((t(n), t(n + 1), t(n + 2)) = (0, 0, 0) and the Thue–
Morse sequence does not contain any cube (see, e.g., [2] and the references
therein). Thus t(n) = 1, t(n − 1) = 1, t(n + 1) = 0. Furthermore t(n) =
t(n−1)(= 1) implies that n must be even (if n = 2k+1, t(n) = 1−t(k) and
t(n−1) = t(k)). So, using Corollary 1, S(n) = n2+ 3n

2 +1−t(n) = n2+ 3n
2 .

On the other hand a(n)a(n + 1) = (2n + 1 − t(n))(2n + 3 − t(n + 1)) =
2n(2n + 3) = 4n2 + 6n = 4(n2 + 3n

2 ).
(ii) Proof of the second assertion. From Lemma 2 the conditions a(n − 1) >4

a(n + 1) and a(n) ≥4 a(n + 2) are equivalent to t(n + 1) > t(n − 1)
and t(n + 2) ≥ t(n). Hence t(n − 1) = 0, t(n + 1) = 1, and either
t(n) = t(n + 2) = 1 or t(n) = 0. But we cannot have t(n) = t(n + 2) = 1,
because this would give (t(n), t(n+1), t(n+2)) = (1, 1, 1) and this would
give a cube in the Thue–Morse sequence. Thus t(n − 1) = 0, t(n) = 0,
t(n + 1) = 1. As previously t(n − 1) = t(n)(= 0) implies that n must be
even. So, using Corollary 1, S(n) = n2 + 3n

2 + 1 − t(n) = n2 + 3n
2 + 1. On

the other hand a(n)a(n+1)+2 = (2n+1− t(n))(2n+3− t(n+1))+2 =
(2n + 1)(2n + 2) + 2 = 4n2 + 6n + 4 = 4(n2 + 3n

2 + 1).
(iii) Proof of the third assertion. From Lemma 2 the conditions a(n − 1) <4

a(n + 1) and a(n) >4 a(n + 2) are equivalent to t(n + 1) < t(n − 1) and
t(n + 2) > t(n). Thus t(n − 1) = 1, t(n) = 0, t(n + 1) = 0, t(n + 2) = 1.
Since t(n) = t(n+1)(= 0), n must be odd. So, using Corollary 1, S(n) =
n2 + 3n

2 + 1
2 . On the other hand a(n)(a(n+1)−1) = (2n+1− t(n))(2n+

2 − t(n + 1)) = (2n + 1)(2n + 2) = 4(n2 + 3n
2 + 1

2 ).
(iv) Proof of the fourth assertion. From Lemma 2 the conditions a(n − 1) >4

a(n + 1) and a(n) <4 a(n + 2) are equivalent to t(n + 1) > t(n − 1) and
t(n + 2) < t(n). Hence t(n − 1) = 0, t(n) = 1, t(n + 1) = 1, t(n + 2) = 0.
Since t(n) = t(n+1)(= 1), n must be odd. So, using Corollary 1, S(n) =
n2 + 3n

2 + 1
2 . On the other hand (a(n)+1)a(n+1) = (2n+2− t(n))(2n+

3 − t(n + 1)) = (2n + 1)(2n + 2) = 4(n2 + 3n
2 + 1

2 ).

�
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5. Functional equations for sequences a and b

Several studies about iterating increasing sequences of integers can be found
in the literature (see, e.g., [1,5,10,13] and references therein, in particular parts
of Ref. [14] that we discovered thanks to [13]).

With the previous notation, the increasing sequences of odious and evil
numbers satisfy a(n) = a1,2(n) and b(n) = a0,2(n). We thus have the following
relations.

Corollary 3.

• (i) a(a(n)) = 2a(n)
• (ii) b(b(n)) = 2b(n)
• (iii) a(b(n)) = 2b(n) + 1
• (iv) b(a(n)) = 2a(n) + 1
• (v) a(a(n)) = b(a(n)) − 1
• (vi) b(b(n)) = a(b(n)) − 1
• (vii) a(n) − b(n) = 1 − 2t(n) (in particular a(n) − b(n) takes only the values

±1)
• (viii) a(b(n))−b(a(n)) = 4t(n)−2 (in particular a(b(n))−b(a(n)) takes only

the values ±2).

Proof. The first four relations are Theorem 1 for the case d = 2. Relations (v)
and (vi) are easy consequences of relations (i)–(iv). The last two relations are
consequences of the expressions of a(n) and b(n) given in Corollary 1 and of
the properties t(2n) = t(n) and t(2n + 1) = 1 − t(n). �

One might ask which set of relations among relations (i)–(vi) suffices to
characterize sequences a and b. The next three theorems yield three answers
to the question.

Theorem 4. Suppose that the two sets X and Y form a partition of the non-
negative integers. Let x = (x(n))n≥0 be the increasing sequence of the elements
of X, and let y = (y(n))n≥0 be the increasing sequence of the elements of Y .
Suppose that x and y satisfy the following relations

• x(x(n)) = 2x(n) for all n ≥ 0
• y(y(n)) = 2y(n) for all n ≥ 0
• |x(n) − y(n)| = 1 for all n ≥ 0.

Then, either x = a and y = b, or x = b and y = a. In particular the
sequence (x(n)−y(n))n≥0 must be equal to (1−2t(n))n≥0 or to (2t(n)−1)n≥0.

Proof. We must have that {0, 1} = {x(0), y(0)}. Without loss of generality we
may suppose that x(0) = 1 thus y(0) = 0. We thus want to prove that x = a
and y = b. We will prove by induction on n that {2n, 2n + 1} = {x(n), y(n)}.
The property is true for n = 0; suppose it is true for n and let us look at
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{2n + 2, 2n + 3}. Either there exists k such that 2n + 2 = x(k) or there exists
k such that 2n + 2 = y(k) (X and Y form a partition of the integers).

If 2n+2 = x(k) we have necessarily 2n+3 = y(k) (since |x(k)−y(k)| = 1).
Furthermore k ≥ n + 1 (since x and y are increasing). If we had k ≥ n + 2 the
values 2n + 2, 2n + 3 would not be in the range of x nor in the range of y,
hence k = n + 1.

If 2n+2 = y(k), the same reasoning shows that 2n+3 = x(k), and k = n+1.
We thus have {2n + 1, 2n + 3} = {x(n + 1), y(n + 1)} and the induction

is proven. Now, define the sequence (α(n))n≥0 by x(n) = 2n + 1 − α(n). This
implies of course α(0) = 0 and y(n) = 2n + α(n). We then note that, for
any integer m, we have, by applying the formula x(n) = 2n + 1 − α(n) with
n = x(m), on the one hand x(x(m)) = 2x(m) + 1 − α(x(m)), and on the
other hand x(x(m)) = 2x(m). Thus α(x(m)) = 1. In the same way we have
for any integer m, using the relation y(n) = 2n + α(n) for n = y(m), that
y(y(m)) = 2y(m)+α(y(m), while y(y(m)) = 2y(m). Thus α(y(m)) = 0. Since
X and Y form a partition of the integers this gives

n ∈ X ⇔ α(n) = 1 and n ∈ Y ⇔ α(n) = 0.

Now we prove that α(n) = t2(n), i.e., that the sequence (α(n))n≥0 is the Thue–
Morse sequence beginning with 0. It suffices to prove that, for all m ≥ 0, we
have α(2m) = α(m) and α(2m + 1) = 1 − α(m).

If m belongs to X, then there exists a k such that m = x(k). We have just
seen that α(m) = 1. We have x(2m) = 4m + 1 − α(2m). But

x(2m) = x(2x(k)) = x(xx(k)) = xx(x(k)) = 2xx(k) = 4x(k) = 4m.

Hence α(2m) = 1 = α(m). Now, since we thus have that 2m belongs to X, we
must have 2m + 1 belongs to Y , hence α(2m + 1) = 0.

If m belongs to Y , then there exists a k such that m = y(k). Thus α(m) = 0.
We have y(2m) = 4m + α(2m). But

y(2m) = y(2y(k)) = y(yy(k)) = yy(y(k)) = 2yy(k) = 4y(k) = 4m.

Hence α(2m) = 0. Now, since we thus have that 2m belongs to Y , we must
have 2m + 1 belongs to X, hence α(2m + 1) = 1.

Finally we thus have that (α(n))n≥0 = (t2(n))n≥0, and then x = a and
y = b. �

The next two theorems can be seen as variations on Theorem 4.

Theorem 5. Let x = (x(n))n≥0 and y = (y(n))n≥0 be increasing integer se-
quences such that {x(n), n ≥ 0} ∪ {y(n), n ≥ 0} = N satisfying x(0) = 1,
y(0) = 0, and

∀n ≥ 0, x(x(n)) = y(x(n)) − 1 and y(y(n)) = x(y(n)) − 1.

Then x and y are respectively equal to a and b the sequences of odious and
evil numbers.
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Proof. Let X = {x(n), n ∈ N} and Y = {y(n), n ∈ N}. The condition on
x(x(n)) and y(y(n)) can be written as follows

if m ∈ X, then x(m) = y(m) − 1; if m ∈ Y , then y(m) = x(m) − 1.

This implies in particular that X ∩ Y = ∅, thus X and Y form a partition of
the integers. Now let 1X be the characteristic function of X (i.e., 1X(n) = 1 if
and only if n belongs to X). Thus 1 − 1X is the characteristic function of Y .
We will prove by induction on n that, for all n ≥ 0,

x(n) = 2n + 1 − 1X(n), y(n) = 2n + 1X(n).

The property is true for n = 0 since x(0) = 1 and y(0) = 0. If it is true up to
n, we first have {x(n), y(n)} = {2n, 2n + 1}.
• If n + 1 belongs to X, then on the one hand x(n + 1) = y(n + 1) − 1. Since

x(n+1) > max{2n, 2n+1}, this gives x(n+1) ≥ 2n+2 and y(n+1) = x(n+
1)+1 ≥ 2n+3. But X and Y form a partition of the integers, thus x(n+1)
must be equal to 2n+2 (otherwise 2n+2 is missed both by x and by y), and
y(n+1) = x(n+1)+1 = 2n+3. This gives x(n+1) = 2(n+1)+1−1X(n+1)
and y(n + 1) = 2(n + 1) + 1X(n + 1).

• If n + 1 belongs to Y , then on the one hand y(n + 1) = x(n + 1) − 1. Since
y(n+1) > max{2n, 2n+1}, this gives y(n+1) ≥ 2n+2 and x(n+1) = y(n+
1)+1 ≥ 2n+3. But X and Y form a partition of the integers, thus y(n+1)
must be equal to 2n+2 (otherwise 2n+2 is missed both by y and by x), and
x(n+1) = y(n+1)+1 = 2n+3. This gives y(n+1) = 2(n+1)+1X(n+1)
and x(n + 1) = 2(n + 1) + 1 − 1X(n + 1).

We then note that x(n) = 2n + 1 − 1X(n) for all n, implies that x(x(n)) =
2x(n) + 1 − 1X(x(n)) = 2n for all n. Similarly y(n) = 2n + 1X(n) for all n
implies that y(y(n)) = 2y(n) for all n. But we have seen that according to m
being in X or Y , we have y(m) − x(m) = ±1, i.e., |x(m) − y(m)| = 1. We can
then conclude using Theorem 4. �
Theorem 6. Let x = (x(n))n≥0 and y = (y(n))n≥0 be two sequences of integers
defined by x(0) = 1, y(0) = 0, and for each n ≥ 1, x(n) and y(n) are the
smallest integers that did not occur before (i.e., that do not belong to {x(k), k ≤
n − 1} ∪ {y(k), k ≤ n − 1}), with the conditions that for all n ≥ 0
• x(x(n)) and y(y(n)) are even,
• x(y(n)) and y(x(n)) are odd.

Then x = a the sequence of odious numbers, and y = b the sequence of evil
numbers.

Proof. The hypothesis “the smallest numbers that did not occur before” im-
plies that x and y do not miss any integer. In other words, defining X =
{x(n), n ≥ 0} and Y = {y(n), n ≥ 0}, we have X ∪ Y = N. On the other
hand the intersection of X and Y is empty: if n belongs both to X and Y ,
then there exist k, � with n = x(k) = y(�). But then x(n) = x(x(k)) is even,
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while x(n) = x(y(�)) should be odd, which is impossible. Thus X and Y form
a partition of the integers. We will prove as above that, letting 1X denote the
characteristic function of X,

x(n) = 2n + 1 − 1X(n) and y(n) = 2n + 1X(n).

The property is true for n = 0. Suppose that it is true up to n, which implies
in particular that {x(n), y(n)} = {2n, 2n + 1}.
• If n+1 belongs to X, i.e., n+1 = x(k) for some k, then x(n+1) = x(x(k))

must be even, while y(n + 1) = y(x(k)) must be odd. All integer values
being taken, this implies that x(n + 1) = 2n + 2 and y(n + 1) = 2n + 3.
This can also be written as x(n + 1) = 2(n + 1) + 1 − 1X(n + 1) and
y(n + 1) = 2(n + 1) + 1X(n + 1).

• If n + 1 belongs to Y , i.e., n + 1 = y(k) for some k, then x(n + 1) = x(y(k))
must be odd, while y(n + 1) = y(y(k)) must be even. All integer values
being taken, this implies that y(n + 1) = 2n + 2 and x(n + 1) = 2n + 3.
This can also be written as y(n + 1) = 2(n + 1) + 1X(n + 1) and x(n + 1) =
2(n + 1) + 1 − 1X(n + 1).

Since for all n we clearly have |x(n) − y(n)| = 1 we conclude as in Theorem 5.
�

6. Conclusion

We would like to add that all the functional equations given above for the
sequences of odious and evil numbers can be translated in terms of character-
izations of the Thue–Morse sequence. Furthermore analogous results can be
proven for the sequences ad,j .
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