MATH GU4053: INTRODUCTION TO ALGEBRAIC TOPOLOGY

Homework 2 Due: 02/06/20 beginning of class

- (1) Hatcher 1.2.3 (p. 53)
- (2) Hatcher 1.2.8 (p. 53)
- (3) Hatcher 1.2.9 (p.53)
- (4) Hatcher 1.2.11 (p.53)
- (5) Hatcher 1.2.16 (p.54)
- (6) Hatcher 1.2.22 (p.55) Parts a) and b)

c) Use part a) to compute presentations for $\pi_1(\mathbb{R}\setminus K)$, where K is one of the following three knots:



and use these presentations to show that $\pi_1(\mathbb{R}\backslash K)$ are all isomorphic

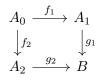
Remark: if K_1, K_2 are isotopic knots (i.e. there is a family of embeddings $f_t : S^1 \hookrightarrow \mathbb{R}^3$ interpolating between K_1, K_2), then $\pi_1(\mathbb{R}^3 \setminus K_1), \pi_1(\mathbb{R}^3 \setminus K_2)$ are isomorphic groups.

Optional:

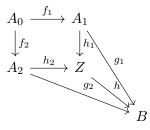
Let A_0, A_1, A_2 be topological spaces and $f_1 : A_0 \to A_1, f_2 : A_0 \to A_2$ be continuous maps. Then the *pushout* of the diagram

$$\begin{array}{c} A_0 \xrightarrow{f_1} A_1 \\ \downarrow^{f_2} \\ A_2 \end{array}$$

is a space Z (and maps $h_1 : A_1 \to Z, h_2 : A_2 \to Z$) if it satisfies the following "universal" property: for any other space B and commutative diagram



there exists a map $h: Z \to B$ so that the following diagram commutes:



7)

a) Show that Z, if it exists, is unique up to homeomorphism.

b) Show that $Z = A_1 \coprod A_2/(f_1(x) \sim f_2(x))$ for all $x \in A_0$) satisfies this universal property. In particular, if a space X is covered by two subspaces A_1, A_2 and $A_0 = A_1 \cap A_2$ and $f_1 : A_0 \to A_1, f_2 : A_0 \to A_2$ are the inclusions, then X is the pushout of f_1, f_2 . If A_0 is the empty set, then $Z = A_1 \coprod A_2$.

c) Now replace all the words 'space' with 'group' and 'continuous map' with 'group homomorphism.' Namely, suppose that A_0, A_1, A_2, B, Z are groups and the maps $f_1, f_2, h_1, h_2, g_1, g_2, h$ are group homomorphisms. Then show that if the pushout Z satisfying the universal property exists, it is unique up to group homomorphism.

d) Show that the group $Z = A_1 * A_2/N$, where N is the normal subgoup generated by words of the form $f_1(x) * f_2(x^{-1})$ for all $x \in A_0$, satisfies this universal property. If A_0 is the trivial group, then $Z = A_1 * A_2$.

Hence van Kampen's theorem can be reformulated as follows: the fundamental group of the topological pushout of $f_1 : A_0 \hookrightarrow A_1, f_2 : A_0 \hookrightarrow A_2$ (namely the space X covered by A_1, A_2) is the group-theoretic pushout of induced maps on fundamental groups $(f_1)_* :$ $\pi_1(A_0) \to \pi_1(A_1), (f_2)_* : \pi_1(A_0) \to \pi_1(A_2).$