Homework 5 Solution

Exercise 2.1.7. Find a way of identifying pairs of faces of Δ^3 to produce a Δ -complex structure on $S³$ having a single 3-simplex, and compute the simplicial homology group of this Δ -complex.

Proof. We identify faces $[0, 1, 2]$ with $[0, 1, 3]$ and $[0, 2, 3]$ with $[1, 2, 3]$ (see picture). To show that the resulting space is homeomorphic to S^3 , it is helpful to consider the center -1 of the 3-simplex. We can see that two tetrahedra $[-1, 0, 1, 2]$ and $[-1, 0, 1, 3]$ are glued together along one pair of faces, hence creating a homeomorphic copy of D^3 , and the same goes for gluing $[-1, 0, 2, 3]$ with $[-1, 1, 2, 3]$. Now, the two copies of D^3 are glued together via the faces $[-1, 0, 2]$, $[-1, 0, 3]$, $[-1, 1, 2]$, and $[-1, 1, 3]$, which is the same as gluing the boundary of one D^3 with the boundary of the other D^3 (in a consistent manner). This will create S^3 .

We now compute the simplicial homology of this space. The chain complex is

 $0 \xrightarrow{\partial_4} \mathbb{Z}T \xrightarrow{\partial_3} \mathbb{Z}A \oplus \mathbb{Z}B \xrightarrow{\partial_2} \mathbb{Z}a \oplus \mathbb{Z}b \oplus \mathbb{Z}c \xrightarrow{\partial_1} \mathbb{Z}x \oplus \mathbb{Z}y \xrightarrow{\partial_0} 0$

where $A = [0, 1, 2] = [0, 1, 3], B = [0, 2, 3] = [1, 2, 3]$ $a = [0, 1], b = [2, 3],$ and $c = [1, 2] =$ $[1, 3] = [0, 2] = [0, 3]$, and $x = 0 = 1$, $y = 2 = 3$. The boundary maps are

$$
\begin{cases}\n\partial_3 T = A - A + B - B = 0 \\
\partial_2 A = a + c - c = a, & \partial_2 B = b + c - c = b \\
\partial_1 a = \partial_1 b = 0, & \partial_1 c = x - y\n\end{cases}
$$

Therefore,

$$
\begin{cases}\nH_0(X) = \text{Ker}(\partial_0) / \text{Im}(\partial_1) = \langle x, y \rangle / \langle x - y \rangle \simeq \mathbb{Z} \\
H_1(X) = \text{Ker}(\partial_1) / \text{Im}(\partial_2) = \langle a, b \rangle / \langle a, b \rangle = 0 \\
H_2(X) = \text{Ker}(\partial_2) / \text{Im}(\partial_3) = 0/0 = 0 \\
H_3(X) = \text{Ker}(\partial_3) / \text{Im}(\partial_4) = \langle T \rangle \simeq \mathbb{Z} \\
n \ge 4.\n\end{cases}
$$

and $H_n(X) = 0$ for $n \geq 4$.

Exercise 2.1.8. Compute the simplicial homology of the space X as constructed in Hatcher p.131.

Proof. Note that the Δ -complex of X has two 0-simplices x (in the center) and y, $n + 2$ 1-simplices a, b, c_1, \ldots, c_n , $2n$ 2-simplices $A_1, \ldots, A_n, B_1, \ldots, B_n$ and n 3-simplices T_1, \ldots, T_n (see picture).

The chain complex is thus

$$
0\xrightarrow{\partial_4} \mathbb{Z}^n \xrightarrow{\partial_3} \mathbb{Z}^{2n} \xrightarrow{\partial_2} \mathbb{Z}^{n+2} \xrightarrow{\partial_1} \mathbb{Z}^2 \xrightarrow{\partial_0} 0
$$

The boundary maps are

$$
\begin{cases}\n\partial_3 T_i = A_i - A_{i-1} + B_{i+1} - B_i \\
\partial_2 A_i = b - c_{i+1} + c_i, & \partial_2 B_{i+1} = c_{i+1} - c_i + a \\
\partial_1 a = \partial_1 b = 0, & \partial_1 c_i = x - y\n\end{cases}
$$

Therefore,

$$
\begin{cases}\nH_0(X) = \text{Ker}(\partial_0) / \text{Im}(\partial_1) = \langle x, y \rangle / \langle x - y \rangle \simeq \mathbb{Z} \\
H_1(X) = \text{Ker}(\partial_1) / \text{Im}(\partial_2) = \langle a, b, c_2 - c_1, \dots, c_n - c_{n-1} \rangle / \langle a + c_{i+1} - c_i, b + c_i - c_{i+1} \rangle = \mathbb{Z}/n\mathbb{Z} \\
H_2(X) = \text{Ker}(\partial_2) / \text{Im}(\partial_3) = \langle A_i - A_{i-1} + B_{i+1} - B_i \rangle / \langle A_i - A_{i-1} + B_{i+1} - B_i \rangle = 0 \\
H_3(X) = \text{Ker}(\partial_3) / \text{Im}(\partial_4) = \langle T_1 + T_2 + \dots + T_n \rangle \simeq \mathbb{Z}\n\end{cases}
$$

and $H_n(X) = 0$ for $n \geq 4$. To explain the computation for $H_1(X)$, note that:

$$
\langle a, b, c_2 - c_1, \dots, c_n - c_{n-1} \rangle = \langle a, a + b, a + c_2 - c_1, a + c_3 - c_2, \dots, a + c_n - c_{n-1} \rangle
$$

since we can always subtract a from the other generators, and

$$
\langle a + c_{i+1} - c_i, b + c_i - c_{i+1} \rangle = \langle a + c_{i+1} - c_i, a + b \rangle
$$

= $\langle a + c_2 - c_1, a + c_3 - c_2, \dots, a + c_n - c_{n-1}, na, a + b \rangle$

and hence Ker(∂_1) quotient by Im(∂_2) this group is $\langle a \rangle / \langle na \rangle \simeq \mathbb{Z}/n\mathbb{Z}$.

Exercise 6. Find a Δ -complex that is homotopy equivalent to the CW complex

$$
S^1 \cup D^2 / \{x \sim \varphi(x), x \in \partial D^2\}
$$

where $\varphi : \partial D^2 = S^1 \to S^1$ is the map that winds n times around S^1 . Compute the simplicial homology of this space.

Proof. The CW complex structure is of a n -gon with all vertices identified, and all edge going counterclockwise identified. We give it a Δ -complex structure as follows:

 \Box

The chain complex is thus:

$$
0 \xrightarrow{\partial_3} \mathbb{Z}A_1 \oplus \dots \mathbb{Z}A_n \xrightarrow{\partial_2} \mathbb{Z}a \oplus \mathbb{Z}b_1 \oplus \dots \oplus \mathbb{Z}b_n \xrightarrow{\partial_1} \mathbb{Z}x \oplus \mathbb{Z}y \xrightarrow{\partial_0} 0
$$

The boundary maps are

$$
\begin{cases} \partial_2 A_i = a + b_i - b_{i+1} \\ \partial_1 a = 0, \qquad \partial_1 b_i = x - y \end{cases}
$$

Therefore,

$$
\begin{cases}\nH_0(X) = \text{Ker}(\partial_0) / \text{Im}(\partial_1) = \langle x, y \rangle / \langle x - y \rangle \simeq \mathbb{Z} \\
H_1(X) = \text{Ker}(\partial_1) / \text{Im}(\partial_2) = \langle a, b_2 - b_1, \dots, b_n - b_{n-1} \rangle / \langle a + b_i - b_{i+1} \rangle = \mathbb{Z}/n\mathbb{Z} \\
H_2(X) = \text{Ker}(\partial_2) / \text{Im}(\partial_3) = 0/0 = 0\n\end{cases}
$$

and $H_n(X) = 0$ for $n \geq 3$. Here, the computation for $H_1(X)$ is similar to the last problem; in particular, we have:

$$
\langle a, b_2 - b_1, \dots, b_n - b_{n-1} \rangle = \langle a, a + b_2 - b_1, \dots, a + b_n - b_{n-1} \rangle
$$

and

$$
\langle a+b_i-b_{i+1}\rangle=\langle na,a+b_2-b_1,\ldots,a+b_n-b_{n-1}\rangle.
$$

 \Box