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Ṽ Set-up cost process

V Liquidation value process

S Trading strategies initiated with zero cost

(M, P ask, P bid) Market model

vii



H0 Set of cash flows generated by strategies in S

H Set of cash flows that can be super-hedged by strategies in S
at zero cost

ag Acceptability ask price

bg Acceptability bid price
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ABSTRACT

This thesis consists of two major parts, and it contributes to the fields of

mathematical finance and statistics.

The contribution to mathematical finance is made via developing new theoreti-

cal results in the area of conic finance. Specifically, we have advanced dynamic aspects

of conic finance by developing an arbitrage free theoretical framework for modeling

bid and ask prices of dividend paying securities using the theory of dynamic accept-

ability indices. This has been done within the framework of general probability spaces

and discrete time. In the process, we have advanced the theory of dynamic subscale

invariant performance measures. In particular, we proved a representation theorem

of such measures in terms of a family of dynamic convex risk measures, and provided

a representation of dynamic risk measures in terms of BS∆Es.

The contribution to statistics is of fundamental importance as it initiates the

theory underlying recursive computation of confidence regions for finite dimensional

parameters in the context of stochastic dynamical systems. In the field of engi-

neering, particularly in the field of control engineering, the area of recursive point

estimation came to great prominence in the last forty years. However, there has been

no work done with regard to recursive computation of confidence regions. To par-

tially fill this gap, the second part of the thesis is devoted to recursive construction

of confidence regions for parameters characterizing the one-step transition kernel of

a time-homogeneous Markov chain.

x
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CHAPTER 1

INTRODUCTION

Risk management and no-arbitrage pricing are among the core research and

applications areas in mathematical finance. Recursive estimation of unknown param-

eters is one of the core research and applications areas in the statistics of stochastic

processes. This thesis contributes to these areas, and it consists of two main parts. In

the first part – Chapter 2 – we develop a unified pricing theory for modeling bid and

ask prices of dividend paying securities in a discrete time market model with frictions.

In particular, we contribute here to the so called dynamic conic finance theory. In the

second part – Chapter 3 – motivated by the applications to the problem of adaptive

robust hedging, we develop a methodology for recursive construction of confidence

regions.

Dynamic conic finance theory was originated in Bielecki et al. [BCIR13]. As

in [BCIR13], we extend here the conic finance methodology initiated by Cherny and

Madan [CM10] in the static case. The idea behind conic finance is to use coherent

acceptability indices to define bid/ask prices in the spirit of the no-good deal method

proposed by Cochrane and Saa-Requejo [CSR00]. The coherent acceptability index is

a measure of performance of financial portfolios, and it is essentially a generalization

of the well known measures of performance such as the Sharpe Ratio or the Gain-to-

Loss Ratio. Also in [CM10], it was shown that the conic finance pricing framework

can be used as a tool to shrink the arbitrage–free price interval.

The extension of conic finance to multiperiod markets is quite delicate, espe-

cially if the underlying securities pay dividends and bear transaction costs themselves.

The main challenges are due to the fact that the wealth process associated with a self-

financing trading strategy is not a linear functional of trading strategies. Based on the

dynamic version of coherent acceptability indices introduced in Bielecki, Cialenco, and
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Zhang [BCZ14] (see also Biagini and Bion-Nadal [BBN14]), Bielecki et al. [BCIR13]

studied dynamic conic finance theory. This was done for the case of discrete time

and a finite probability space. There, the authors also investigated the connection

between dynamic conic finance framework and classical arbitrage theory, based on

the arbitrage theory for the corresponding markets developed in Bielecki, Cialenco,

and Rodriguez [BCR15].

Although dynamic conic finance theory is a flexible nonlinear pricing frame-

work, it does not fully capture the liquidity risk. More precisely, due to the scale

invariance of the dynamic coherent acceptability indices, the bid/ask prices are ho-

mogeneous in the number of shares traded. However, the typical market phenomenon

is that the more shares one buys the higher price per share one pays; similarly, more

shares one sells, lower price per share is received. It turns out, as observed in Rosazza

Gianin and Sgarra [RGS13], and Bion-Nadal [BN09], that replacing the scale invari-

ance postulate by sub-scale invariance yields a pricing framework that captures the

liquidity charge describe above. Accordingly, a ‘dynamic conic finance’ framework

generated by sub-scale invariant acceptability indices was develped in [RGS13]. They

consider a continuous time set-up for pricing terminal payoffs defined on a general

probability space. Similarly to the original conic finance case of [CM10], the authors

derive a representation theorem for bid/ask prices in terms of convex risk measures,

and consequently in terms of solutions of some Backward Stochastic Differential Equa-

tions (BSDEs) and g-expectations.

Our work in Chapter 2 builds upon the ideas described above. By applying a

time consistent, quasi-concave acceptability based approach, we develop a nonlinear

pricing framework on a general probability space, in the discrete time set-up. The

pricing framework leads to arbitrage-free prices, and it takes into account the market

impact effect. The advantage of establishing the link between Backward Stochastic
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Difference Equations (BS∆Es) and dynamic acceptability indices comes up in two

ways. On one hand, we derive robust representations of bid and ask prices via g-

expectations (which are solutions of BS∆Es). On the other hand, BS∆Es allow for

efficient numerical computations. The results presented in this chapter are the basis

for Bielecki, Cialenco, and Chen [BCC15].

Chapter 3 develops a recursive construction of confidence regions for a finite

dimensional parameter in a discrete time stochastic dynamical systems. Motivated

by discrete time adaptive robust stochastic control problems subject to model uncer-

tainty (cf. Bielecki, Cialenco, Chen, Cousin, and Jeanblanc [BCC+16b]), we consider

in this chapter discrete time, time-homogeneous Markov chain models. The set of

possible one-step transition kernels of the Markov chain models is parameterized in

terms of a finite dimensional parameter θ taking values in the known parameter space.

We postulate that all these models are possible descriptions of some reality, and that

only one of the models, say the one corresponding to θ∗, is the adequate, or true, de-

scription of this reality. The true parameter θ∗ is unknown. In Chapter 3 we derive a

recursive (in time) construction of confidence regions for θ∗ that satisfy some desired

properties, such as desired asymptotic properties, when the time series of observa-

tions increases. The results presented in this chapter underlie Bielecki, Cialenco, and

Chen [BCC16a].

There is a vast literature devoted to recursive computation, also known as on-

line computation, of point estimators. It is fair to say though, that we are the first to

study a recursive construction of confidence regions. The geometric idea that underlies

such recursive construction is motivated by recursive representation of confidence

intervals for the mean of one dimensional Gaussian distribution with known variance,

and by recursive representation of confidence ellipsoids for the mean and variance

of a one dimensional Gaussian distribution, where in both cases observations are
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generated by i.i.d. random variables. The recursive representation is straightforward

in the former case, but it is not so any more in the latter one.

The key step to the recursive construction of confidence regions for θ∗ is to

establish an appropriate recursive point estimator and prove its asymptotic normality.

For this purpose we developed an appropriate version of the so called stochastic

approximation algorithm. Initiated by Robbins and Monro [RM51], the stochastic

approximation methodology is one of the most widely used recursive point estimation

procedures. It essentially amounts to an iterative approximation of the root of an

unknown function, using an iterative sequence of approximations of that function

that can be computed from the observed data.

There is a vast literature that studies consistency and asymptotic normality

of point estimators obtained via stochastic approximation (cf. Khas’minskii and

Nevelson [KN76]; Fabian [Fab78]; Ljung and Söderström [LS87]; Englund, Holst,

and Ruppert [EHR89]; Sharia [Sha98]). These approaches for proving asymptotic

normality only apply to the case when the error of approximation of the unknown

function is a martingale difference process. We cannot use these approaches in our

set-up as such requirement is not satisfied.

We thus proceed differently, building upon the concept of the (local) asymp-

totic linearity of the point estimator. This property is frequently used in the proof

of asymptotic normality of estimators. Detailed discussion of the literature on this

subject can be found in Barndorff-Nielsen and Sørensen [BNS94], Heyde [Hey97],

and Prakasa Rao [PR99]. Unfortunately, in general, asymptotic linearity can not

be reconciled with the full recursiveness of a point estimator, the property, which is

the key property involved in recursive construction of confidence regions. Therefore,

one of the major contributions made in Chapter 3 is that we propose the concept

of quasi-asymptotic linearity, which not only applies to the fully recursive (modified)
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point estimator introduced in Section 3.3, but, importantly, allows us to prove the

asymptotic normality of this estimator.

The recursive construction of confidence regions is needed not only for the

purpose of speeding up the computation of the successive confidence regions, but,

primarily, for the ability to apply the dynamic programming principle in the context

of robust stochastic control methodology introduced in [BCC+16b]. Other potential

applications of the results of Chapter 3 are far reaching.

The thesis is organized as follows. Chapter 2 studies dynamic conic finance

via BS∆Es. In Section 2.1 we establish existence and uniqueness of the solutions for

a (large) class of BS∆Es, and define the g-expectation, in terms of the solution of a

BS∆E. In Section 2.2 we introduce and study the notion of Dynamic Acceptability

Index (DAI) and show that a DAI can be generated by a family of dynamic convex risk

measures, and consequently by solutions of BS∆E with convex drivers. Section 2.3 is

the main section of this chapter, and it is devoted to dynamic conic finance. We start

with Section 2.3.1 by defining a market model consisting of a banking account and K

securities. The prices of the securities are given by bid and ask pricing operators, and

the banking account is the only asset that trades with no transaction costs. Next, in

Section 2.3.2, we introduce the relevant financial definitions in this market model, such

as value process, self-financing trading strategy, and arbitrage. Then, in Section 2.3.3,

we define the main objects of this chapter – the acceptability bid and ask prices – by

using the DAIs. We provide a representation of acceptability bid and ask prices in

terms of g-expectations associated with the corresponding family of convex drivers.

Subsequently, in Section 2.3.4 we build an arbitrage-free market model by using the

acceptability bid and ask prices, and prove a series of fundamental properties of these

prices. We conclude Chapter 2 with Section 2.4, where we introduce the notions of

no good deal and arbitrage in an extended market model. We prove that there are no
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good deals if and only if the acceptability prices in the extended market are arbitrage

free prices.

We consider the problem of recursive construction of confidence regions in

Chapter 3. Section 3.1 introduces the Markov chain framework relevant for the present

study, and it provides an important technical result, Proposition 3.1.1, that is crucial

for recursive identification of the true Markov chain model. Section 3.2 is devoted to

the recursive construction of the base (recursive) point estimator of the true parameter

θ∗. Here we prove the strong consistency of the base point estimator. The key

step to the desired recursive construction of confidence regions for θ∗ is to establish

the asymptotic normality of the underlying recursive point estimator. Therefore, in

Section 3.3, we appropriately modify our base point estimator, so to construct a quasi-

asymptotically linear (recursive) point estimator, for which we prove weak consistency

and asymptotic normality. The main section of this chapter is Section 3.4, which

is devoted to recursive construction of confidence regions for θ∗, and to studying

their asymptotic properties. We show that confidence regions derived from quasi-

asymptotically linear point estimators preserve a desired geometric structure. Such

structure guarantees that we can represent the confidence regions in a recursive way in

the sense that the region produced at step n is fully determined by the region produced

at step n− 1 and by the the newly arriving observation of the underlying reality. We

finish Chapter 3 with Section 3.5, where illustrating examples are provided.

1.1 Contributions of the Thesis

The major contributions of Chapter 2 are:

• We develop the theory of dynamic sub-scale invariant performance measures

on a general probability spaces, and in the discrete time set-up. We prove

a representation theorem for such measures in terms of a family of dynamic
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convex risk measures. Moreover, we provide a representation of dynamic risk

measures in terms of g-expectations, given as part of solutions of BS∆Es with

convex drivers. We demonstrate existence and uniqueness of the solutions of

the relevant BS∆Es, and we provide a comparison theorem for corresponding

BS∆Es.

• We construct a market model for dividend paying securities. For this model

we introduce the pricing operators that are defined in terms of dynamic ac-

ceptability indices, and we prove various properties of these operators. Using

these pricing operators, we first define the bid and ask prices for the underlying

securities and then we define the bid and ask prices for the derivative securities

in this market market. We prove a series of important and desired properties of

these prices. In particular, we show that the obtained market model is arbitrage

free.

The major contributions of Chapter 3 are:

• We introduce the concept of quasi-asymptotic linearity of a point estimator of

the true parameter. This concept is related to the classic definition of asymp-

totic linearity of a point estimator, but it requires less stringent properties,

which are satisfied by the recursive point estimation scheme that we develop in

Section 3.3.

• Starting from what we call the base recursive point estimation scheme, we design

a quasi-asymptotically linear recursive point estimation scheme, and we prove

the weak consistency and asymptotic normality of the point estimator generated

by this scheme.

• We provide the relevant recursive construction of confidence regions for the true

parameter. We prove that these confidence regions are weakly consistent, that
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is, they converge in probability (in Hausdorff metric) to the true parameter.
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CHAPTER 2

DYNAMIC CONIC FINANCE VIA BACKWARD STOCHASTIC DIFFERENCE
EQUATIONS

2.1 Backward Stochastic Difference Equations

Let T be a fixed and finite time horizon, and let T := {0, 1, . . . , T}. We

consider a filtered probability space (Ω,F , {Ft}Tt=0,P), with F0 = {∅,Ω} and F =

FT . Throughout, we will use the notations Lp(Ft) := Lp(Ω,Ft,P), p ≥ 1, t ∈ T .

Also, we will denote by X the set of all adapted and square integrable stochastic

processes on (Ω,F , {Ft}Tt=0,P). We reserve the notation ∆ for the backward difference

operator ∆Xt := Xt − Xt−1, t ∈ T , where X is a stochastic process, and we also

take the convention ∆X0 := X0. In what follows, all equalities and inequalities will

be understood in P-almost surely sense. We recall that the predictable quadratic

variation 〈X〉t of a stochastic process X is defined as a predictable process, starting

at zero, and such that X2
t − 〈X〉t is a martingale with respect to filtration {Ft}. It

can be shown that ∆〈X〉t = E[(∆Xt)
2|Ft−1].

In the sequel, the function g : T ×Ω×R→ R will play the role of a driver for

considered Backward Stochastic Difference Equations (BS∆Es), and we will assume

that it satisfies

Assumption A:

A1. the mapping (t, ω) 7→ g(t, ω, z) is predictable for any z ∈ R;

A2. the function z 7→ g(t, ω, z) is uniformly Lipschitz continuous, i.e. there exists a

finite constant K > 0 such that

|g(t, ω, z1)− g(t, ω, z2)| ≤ K|z1 − z2|;

A3. g(t, ω, 0) = 0 for any t ∈ T .
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Throughout the chapter we will denote by ct(ω) the Lipschitz coefficient of mapping

z 7→ g(t, ω, z), that is

ct(ω) = ess inf
{
lt(ω) ∈ L∞(Ft−1) :

|g(t, ω, z1)− g(t, ω, z2)| ≤ lt(ω)|z1 − z2|, ω ∈ Ω, z1, z2 ∈ R
}
,

for any t ∈ T . Note that in view of condition A2. ct(ω) is well defined (in particular,

ct(ω) ≤ K).

Also, we will suppress the explicit dependence on ω, if no confusion arises; for

example, we may write g(t, z) instead of g(t, ω, z).

We consider the following Backward Stochastic Difference Equation (BS∆E),

Yt = YT +
∑
t<s≤T

g(s, Zs)∆〈W 〉s −
∑
t<s≤T

Zs∆Ws +MT −Mt, t ∈ T , (2.1)

with terminal condition YT ∈ L2(FT ), and where Wt is a fixed square integrable

martingale process with increment ∆Wt independent of Ft−1, and such that ∆〈W 〉t 6=

0 for any t ∈ T . As already mentioned, the function g is usually referred to as the

driver of the BS∆E (2.1).

As one may expect, due to its ‘backward’ nature, and similar to continuous

time BSDEs, a solution is a triple of processes, rather than just an adapted process.

Next, we give the precise definition of a solution of BS∆E (2.1).

Definition 2.1.1. A solution to BS∆E (2.1) is a triple of processes (Y, Z,M) such

that: (Yt, Zt,Mt) ∈ L2(Ft)×L2(Ft−1)×L2(Ft), it satisfies equality (2.1) for all t ∈ T ,

and M is a martingale process strongly orthogonal1 to W .

In general, for fixed Z and M , Y that satisfies (2.1) is not necessarily an

adapted process. For example, by taking the terminal condition X ∈ FT , and putting

1We say that the process M is strongly orthogonal to W if the process WtMt

is a martingale.
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Zt = Mt = 0 for all t ∈ T , then Yt = X for any t ∈ T . In this case, Y is not

an adapted process unless Ft = FT , t ∈ T . However, due to Galtchouk-Kunita-

Watanabe decomposition (cf. [FS04, Theorem 10.18]), there exists Z and M along

with Y such that they (Y, Z,M) is a solution of (2.1). We recall that W is said

to have the predictable representation property, if F = FW implies that for any

square integrable martingale process X, there exists a predictable process Z, such

that ∆Xt = Zt∆Wt. It can be shown that if F = FW and W has predictable

representation property, then Mt = 0 for all t ∈ T . If W does not satisfy the

predictable representation property, then a martingale process M which is orthogonal

to W is indeed needed to ensure that the solution of (2.1) is well defined.

With a slight abuse of notation, we will sometimes refer to process Y as solution

of BS∆E (2.1), rather than saying process Y from the solution (Y, Z,M).

It is fair to say, we believe, that the theory of backward stochastic difference

equations is in many respects analogous to the theory of the backward stochastic

differential equations (BSDEs). However, BS∆Es that we use in this work can not

be just considered as time discretized BSDEs. So, even though existence, uniqueness,

as well as other properties of the solution of BSDEs are well studied and understood

(cf. [PP90, Pen97, EKQ97, BCH+00]), corresponding issues for BS∆Es need to be

studied in their own right. Accordingly, one goal of this chapter is to present some

relevant properties of solutions of these type of equations, that tailored to our needs.

Similar work on BS∆Es has already been done in [CE11], [CE10], [CS13], and [Sta09],

where quite general BS∆Es were studied, in particular with drivers depending on Yt.

The driver g considered in our work does not depend on Yt. The main reason to

consider this type of drivers comes from the fact that, as proved in the remark on page

114 in [BCH+00], any driver g(t, ω, y, z) such that the mapping (y, z) 7→ g(t, ω, y, z)

is Lipschitz continuous, g(t, ω, y, 0) = 0, and g(t, ω, y, z) is convex with respect to y
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and z, does not depend on y. Since we will apply the theory of BS∆E to dynamic

risk measures which require convexity on the drivers, then we focus only on drivers

of the form g(t, z). It needs to be stressed though that our set-up is not just a special

case of the set-up considered in the references mentioned above, primarily because

we work under a set of assumptions which is not nested in the assumptions used in

these papers.

2.1.1 Existence, Uniqueness and Comparison Results. In this section we will

prove some general results regarding existence, uniqueness and comparison of the

solutions of BS∆E (2.1).

Theorem 2.1.1. Assume that the driver g satisfies Assumption A, and that the

terminal condition YT ∈ L2(FT ). Then, there exists a unique solution of equation

(2.1).

Proof. First, we will prove the existence using backward induction argument. Given

YT ∈ L2(FT ), we consider the equation

YT−1 = YT + g(T, ZT )∆〈W 〉T − ZT∆WT + ∆MT , (2.2)

where ZT ,∆MT and YT−1 are the unknowns. Since YT ∈ L2(FT ), then

E[E[YT |FT−1]2] ≤ E[E[(YT )2|FT−1]] = E[(YT )2] <∞.

Hence, YT − E[YT |FT−1] is a square integrable martingale difference, so it admits

the Galtchouk-Kunita-Watanabe decomposition, which implies that there exist ZT ∈

FT−1, ZT∆WT ∈ L2(FT ), ∆MT ∈ L2(FT ) such that E[∆MT |FT−1] = 0, E[∆MT∆WT |FT−1] =

0 and

YT − E[YT |FT−1] = ZT∆WT −∆MT . (2.3)

We multiply both sides of last identity by ∆WT , and then apply E[ · |FT−1] to both
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sides. This implies that E[YT∆WT |FT−1] = ZT∆〈W 〉T . Therefore,

ZT =
E[YT∆WT |FT−1]

∆〈W 〉T
. (2.4)

Since W has independent increments, then ∆〈W 〉T = E[∆W 2
T |FT−1] = E[∆W 2

T ] =: C,

and by our initial assumption C 6= 0. Hence, we deduce

E[Z2
T ] =

E[E[YT∆WT |FT−1]2]

C2
≤ E[CE[Y 2

T |FT−1]]

C2
=

E[Y 2
T ]

C
<∞.

With ZT and ∆MT known, taking into account (2.3) and (2.2), we conclude that

YT−1 must be given by

YT−1 = E[YT |FT−1] + g(T, ZT )∆〈W 〉T . (2.5)

From here, due to A1, we get that YT−1 ∈ FT−1. Also, using A2, A3 and the fact

that ZT ∈ L2(FT−1), we have

E[(g(T, ZT )∆〈W 〉T )2] = E[g(T, ZT )2E[∆〈W 〉2T |FT−1]]

≤ E[c2
TZ

2
TE[∆〈W 〉2T |FT−1]]

≤ C2‖cT‖2
∞E[Z2

T ] <∞

and thus YT−1 ∈ L2(FT−1). Therefore, we determined YT−1, ZT and ∆MT .

We continue this backward procedure for any finite number of steps smaller

than T : having Yt+1 ∈ L2(Ft+1) for some fixed t ∈ {0, 1, . . . , T − 1}, by similar

arguments as above, we find (Yt, Zt+1,∆Mt+1) ∈ L2(Ft) × L2(Ft) × L2(Ft+1), such

that

Yt = Yt+1 + g(t+ 1, Zt+1)∆〈W 〉t+1 − Zt+1∆Wt+1 + ∆Mt+1, t = 0, . . . , T − 1, (2.6)

with

Yt+1 − E[Yt+1|Ft] = Zt+1∆Wt+1 −∆Mt+1, (2.7)

Zt+1 =
E[Yt+1∆Wt+1|Ft]

∆〈W 〉t+1

,

Yt = E[Yt+1|Ft] + g(t+ 1, Zt+1)∆〈W 〉t+1.
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By taking the convention Z0 = 0,M0 = 0, and letting Mt := M0+
∑t

s=1 ∆Ms, we have

that (2.1) holds true for all t ∈ T . Moreover, M is a square integrable martingale

process. Finally, since

E[MtWt|Ft−1] = E[(
t∑

s=1

∆Ms)Wt|Ft−1]

=
t−1∑
s=1

∆MsE[Wt|Ft−1] + E[∆Mt(Wt−1 + ∆Wt)|Ft−1]

= Mt−1Wt−1, t = 1, . . . , T,

we conclude that M is strongly orthogonal to W , which concludes the proof of exis-

tence of the solution.

Next, we prove the uniqueness. Assume there are two solutions (Y 1
t , Z

1
t ,M

1
t )

and (Y 2
t , Z

2
t ,M

2
t ), t ∈ T , of BS∆E (2.1) with terminal condition YT . Then

Y 1
T−1 − Y 2

T−1 = (g(T, Z1
T )− g(T, Z2

T ))∆〈W 〉T − (Z1
T − Z2

T ) + ∆M1
T −∆M2

T . (2.8)

From (2.9), we have that Z1
T = E[YT∆WT |FT−1]

∆〈W 〉T
= Z2

T . Hence, by (2.7), we get

∆M1
T = −YT + E[YT |FT−1] + Z1

T∆WT = −YT + E[YT |FT−1] + Z2
T∆WT = ∆M2

T .

From here, in view of (2.8), we immediately conclude that Y 1
T−1 = Y 2

T−1. Induc-

tively, and by using the convention that Z1
0 = Z2

0 = 0, M1
0 = M2

0 = 0, we get that

(Y 1
t , Z

1
t ,M

1
t ) = (Y 2

t , Z
2
t ,M

2
t ), for any t ∈ T . Therefore, the solution is unique, and

this concludes the proof.

Remark 2.1.1. Here, we make a note of one step in the proof that amounts to

derivation of the following backward recurrence relations (starting from YT ),

Zt+1 =
E[Yt+1∆Wt+1|Ft]

∆〈W 〉t+1

, (2.9)

Yt = E[Yt+1|Ft] + g(t+ 1, Zt+1)∆〈W 〉t+1, (2.10)

for t = 0, . . . , T − 1. We will make use of these formulae later on.
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Remark 2.1.2. Note that, if F = FW and if W has the predictable representation

property, then we have that ∆Mt = 0, and since M0 = 0, we conclude that Mt = 0, t ∈

T , in (2.1). Saying differently, if F = FW and W has the predictable representation

property then there exists a pair of processes (Yt, Zt), t ∈ T , that is the unique solution

of equation

Yt = YT +
∑
t<s≤T

g(s, Zs)∆〈W 〉s −
∑
t<s≤T

Zs∆Ws, t ∈ T .

One important example of martingale W that has the predictable representation

property is the symmetric random walk.

We now proceed with presenting comparison results between the solutions of

BS∆Es. These results, besides being of fundamental importance for the theory of

BS∆Es itself, will also serve as key ingredients for describing the risk measures devel-

oped later on in this chapter. More precisely, the version of the comparison theorem

provided here is tailored to our needs and it will be used to prove the monotonicity

property of proposed risk measures.

We start with an auxiliary result.

Lemma 2.1.1. Consider BS∆E (2.1), and assume that the driver g satisfies As-

sumption A, and that the terminal condition YT ≥ 0. Also, suppose that for a fixed

t ∈ T , g(s, z) = xsz, s ∈ {t, . . . , T}, where x is such that 1 + xs∆Ws > 0, for any

s ∈ {t, . . . , T}. Then, Ys ≥ 0 for all s ∈ {t, . . . , T}. Moreover, if Yt = 0 on A ∈ Ft,

then Ys = 0 on A, for all s ∈ {t, . . . , T}.

Proof. First note that Assumption A and Theorem 2.1.1 guarantee that the solution

(Y, Z,M) of (2.1) exists. Fix t ∈ T , assume that g(s, z) = xsz, s ∈ {t, . . . , T} and
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1 + xs∆Ws > 0, s ∈ {t, . . . , T}. Then, by (2.10) and (2.9),

Ys−1 = E[Ys|Fs−1] + xsZs∆〈W 〉s

= E[Ys|Fs−1] + xs
E[Ys∆Ws|Fs−1]

∆〈W 〉s
∆〈W 〉s

= E[Ys|Fs−1] + xsE[Ys∆Ws|Fs−1].

Recall that g is predictable, and since g(s, z) = xsz, we have that xs is Fs−1-

measurable. Thus,

Ys−1 = E[Ys(1 + xs∆Ws)|Fs−1]. (2.11)

From here, if Ys ≥ 0 for some s ∈ {t + 1, . . . , T}, using the assumption that 1 +

xs∆Ws > 0, we get that Ys−1 ≥ 0. Hence, since YT ≥ 0, we conclude that Ys ≥ 0 for

all s ∈ {t, . . . , T}.

If 1AYt = 0 for some A ∈ Ft, then, by the above, 1AYs ≥ 0 for all s ∈

{t, . . . , T}. Moreover, by (2.11) we also have 1AYt = E[1AYt+1(1 + xt+1∆Wt+1|Ft] =

0, and since 1 + xt+1∆Wt+10, we get 1AYt+1(ω) = 0. Similarly, we deduce that

1AYs = 0, s ∈ {t+ 2, . . . , T}.

This concludes the proof.

Lemma 2.1.1 depicts the comparison result for drivers g of the form g(t, z) =

xtz. Using this result, we will prove next the comparison theorem for a general BS∆E.

Theorem 2.1.2. Assume that g1, g2 satisfy Assumption A, and Y 1
T , Y

2
T ∈ L2(FT ),

and suppose that for every t ∈ T , the following conditions hold true:

1) Y 1
T ≥ Y 2

T ;

2) g1(s, z) ≥ g2(s, z), s ∈ {t, . . . , T}, z ∈ R;

3) |c1
s∆Ws| < 1, s ∈ {t, . . . , T}, where c1 is the Lipschitz coefficient of g1 as defined

in A2.
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Denote by Y i, i = 1, 2, the solution of (2.1), that corresponds to driver gi, and ter-

minal condition Y i
T , for i = 1, 2. Then, Y 1

s ≥ Y 2
s , for all s ∈ {t, . . . , T}. Moreover,

the comparison is strict, in the sense that if Y 1
t = Y 2

t on A ∈ Ft, then 1AY
1
s = 1AY

2
s

and 1Ag
1(s, Z2

s ) = 1Ag
2(s, Z2

s ), for all s ∈ {t, . . . , T}.

Proof. We prove by backward induction that Y 1
t ≥ Y 2

t , for every t ∈ T . By condi-

tion 1), the statement holds true for t = T . Assume that Y 1
t ≥ Y 2

t for some fixed

t ∈ T . Then, by (2.6)

Y 1
s−1 − Y 2

s−1 =Y 1
s − Y 2

s + (g1(s, Z1
s )− g2(s, Z2

s ))∆〈W 〉s

− (Z1
s − Z2

s )∆Ws + ∆(M1
s −M2

s )

=
[
Y 1
s − Y 2

s + (g1(s, Z1
s )− g1(s, Z2

s ))∆〈W 〉s

− (Z1
s − Z2

s )∆Ws + ∆(M1
s −M2

s )
]

+
[
(g1(s, Z2

s )− g2(s, Z2
s ))∆〈W 〉s

]
=:Ỹs−1 + Y s−1.

Clearly, condition 2) implies that Y s−1 ≥ 0. As for Ỹs−1, we write it as

Ỹs−1 = Y 1
s − Y 2

s +
g1(s, Z1

s )− g1(s, Z2
s )

Z1
s − Z2

s

(Z1
s − Z2

s )∆〈W 〉s

−(Z1
s − Z2

s )∆Ws + ∆(M1
s −M2

s ),

(2.12)

where, as usually, 0/0 = 0. Let us now define g̃(t, z) =
g1(t,Z1

t )−g1(t,Z2
t )

Z1
t−Z2

t
z, for t ∈ T

and z ∈ R. Since g1(t, z) satisfies Assumption A, then g̃(t, z) is predictable, and by

Assumption A2

|g̃(t, z1)− g̃(t, z2)| = |g
1(t, Z1

t )− g1(t, Z2
t )

Z1
t − Z2

t

||z1 − z2| ≤ c1
t |z1 − z2|.

Moreover, g̃(t, 0) = 0, and hence g̃(t, z) satisfies Assumption A, and Ỹs−1 is the

solution to BS∆E (2.12) with driver g̃(t, z) and terminal condition Y 1
s − Y 2

s . Since

|g
1(t,Z1

t )−g1(t,Z2
t )

Z1
t−Z2

t
| ≤ c1

t , in view of Assumption 3), |g
1(t,Z1

t )−g1(t,Z2
t )

Z1
t−Z2

t
∆Wt| < 1, and thus

1 +
g1(t,Z1

t )−g1(t,Z2
t )

Z1
t−Z2

t
∆Wt > 0. From here, using Lemma 2.1.1, we get that Ỹs−1 ≥ 0.
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From the above arguments, we have that Y 1
s−1 − Y 2

s−1 = Ỹs−1 + Y s−1 ≥ 0, and

consequently, by induction argument Y 1
s ≥ Y 2

s , s ∈ {t, . . . , T}.

Finally, if 1AY
1
t = 1AY

2
t , for some A ∈ Ft, then 1AỸt = 1AY t = 0. By

Lemma 2.1.1, 1AY
1
t+1 = 1AY

2
t+1. Since 1AY t = 0 and 1Ag

1(t + 1, Z2
t+1) ≥ 1Ag

2(t +

1, Z2
t+1), then 1Ag

1(t+ 1, Z2
t+1) = 1Ag

2(t+ 1, Z2
t+1). Similarly, for t+ 1 < s ≤ T , one

gets that 1AY
1
s = 1AY

2
s and 1Ag

1(s, Z2
s ) = 1Ag

2(s, Z2
s ).

The proof is complete.

Corollary 2.1.1. Let g be a driver that satisfies Assumption A, and let Y 1
T , Y

2
T ∈

L2(FT ) be two terminal conditions such that Y 1
T ≥ Y 2

T Assume that |ct∆Wt| < 1,

t ∈ T , where ct is the Lipschitz coefficient of g. Then, Y 1
t ≥ Y 2

t , t ∈ T . Moreover,

the comparison is strict in the sense that if 1AY
1
t = 1AY

2
t , for some t ∈ T , A ∈ Ft,

then 1AY
1
s = 1AY

2
s , s = t, . . . , T .

Remark 2.1.3. Using the same ideas, one can show that Theorem 2.1.2 holds true

if condition 3) is replaced by the following assumption:

g1

(
s,
E[Y 1∆Ws|Fs−1]

∆〈W 〉s

)
− g1

(
s,
E[Y 2∆Ws|Fs−1]

∆〈W 〉s

)
≥ E[Y 2 − Y 1|Fs−1]

∆〈W 〉s
, (2.13)

for Y 1, Y 2 ∈ L2(Fs), Y 1 ≥ Y 2, t < s ≤ T , and the equality reached if and only if

Y 1 = Y 2.

Assumption (2.13) is weaker than condition 3) in Theorem 2.1.2. Indeed,

assuming that |c1
s∆Ws| < 1, and Y 1 ≥ Y 2, we then have that

E[Y 1 − Y 2|Fs−1]

∆〈W 〉s
≥ E[|c1

s∆Ws|(Y 1 − Y 2)|Fs−1]

∆〈W 〉s

≥ c1
s

∣∣∣E[∆Ws(Y
1 − Y 2)|Fs−1]

∆〈W 〉s

∣∣∣
= c1

s

∣∣∣E[Y 1∆Ws|Fs−1]

∆〈W 〉s
− E[Y 2∆Ws|Fs−1]

∆〈W 〉s

∣∣∣
≥
∣∣∣g1
(
s,
E[Y 1∆Ws|Fs−1]

∆〈W 〉s

)
− g1

(
s,
E[Y 2∆Ws|Fs−1]

∆〈W 〉s

)∣∣∣.
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Hence, inequality (2.13) holds true.

We feel that assumption (2.13) is less intuitive, and cumbersome, and for sake

of ease of exposition, in what follows we will use assumption 3) from Theorem 2.1.2.

Remark 2.1.4. In [Sta09], the author proves a comparison result for BS∆Es in the

limit sense, as time step goes to zero. It was assumed that the driver g and the

martingale process W are such that

|g(t, z1)− g(t, z2)| ≤ K(1 + (|z1|∞ ∨ |z2|∞)α/2)|z1 − z2|∞;

lim
∆t→0

‖∆Wt‖∞∆〈W 〉−(α/4)
t = 0, α ∈ [0, 2),

along with some additional technical conditions. In this case, by taking α = 0, and

small enough ∆t, we note that g and W will satisfy condition 3) from our set-up,

and hence our comparison result holds true. In either [Sta09] or our set-up, it is

required to have control on both the driver g and the noise W for the comparison

theorem to hold. Finally we want to mention that while the conditions from [Sta09]

and conditions proposed in this work overlap (in some sense), neither one implies the

other. With α = 0, the condition on the driver from [Sta09] is stronger; while for

α > 0, the assumption on the driver is weaker but the condition satisfied by W is

more restricted.

In this chapter, we will mostly work with drivers that satisfy the comparison

principle, and for brevity we will call such drivers regular, with precise definition as

follows:

Definition 2.1.2. Let g be a driver that satisfies Assumption A, and let Y 1
T , Y

2
T ∈

L2(FT ) be two terminal conditions.

1. We say that the comparison result holds true for BS∆E with driver g, if Y 1
T ≥ Y 2

T

implies that Y 1
t ≥ Y 2

t , t ∈ T , and the comparison is strict if 1AY
1
t = 1AY

2
t for

some t ∈ T , and A ∈ Ft, then 1AY
1
s = 1AY

2
s , s = t, . . . , T .
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2. The driver g is called regular driver if the comparison result holds true for BS∆E

with driver g.

It can be easily shown that a linear driver g(t, z) = xtz is regular if 1+xt∆Wt >

0, for every t ∈ T . Also, Corollary 2.1.1 implies that a general driver g is regular if

|ct∆Wt| < 1 for every t ∈ T . Next, we present several examples of regular drivers,

where we consider W as a martingale process such that ∆Wt is uniformly bounded.

In particular, this means that ‖∆Wt‖∞ is F0 measurable.

Example 2.1.1. Let the driver g(t, z) = ct|z|, with c such that ‖ct‖∞ < 1
‖∆Wt‖∞ , is a

regular driver. We will show in the next section that such driver generates a family

of coherent dynamic risk measures.

Example 2.1.2. Let us put

g(t, z) =
K

(K + 1)‖∆Wt‖∞
ln(

1

3
+

1

3
e−z +

1

3
ez),

where K ∈ R+ is fixed. As such, g(t, z) is predictable, g(t, 0) = 0 and g(t, z) is

Lipschitz due to the fact that its derivative with respect to z takes value in

(− K
(K+1)‖∆Wt‖∞ ,

K
(K+1)‖∆Wt‖∞ ). Moreover, the Lipschitz coefficient ct is such that

|ct∆Wt| < 1, according to the fact that |∂g(t,z)
∂z
| ≤ K−1

K‖∆Wt‖∞ . Thus, the driver g is

regular, and the corresponding BSDE has the following form

Yt = YT+
∑
t<s≤T

K

(K + 1)‖∆Wt‖∞
ln(

1

3
+

1

3
e−Zs+

1

3
eZs)∆〈W 〉t−

∑
t<s≤T

Zs∆Ws+MT−Mt.

We will see in the next section, this BS∆E plays an important role in our study, and

it is related to so called convex dynamic risk measures.

2.1.2 g-Expectations. In the seminal paper [Pen97], the author introduced a re-

lationship between solutions of BSDEs (in continuous time) and so called nonlinear

expectations or g-expectations (see also [CHMP02]). Later, the theory of nonlinear
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expectations was successfully applied to some problems from mathematical finance

in the context of theory of risk measures. For more details we refer the reader to

[RG06, BEK07, RGS13] and references therein. Similar approach can be adopted for

the case of BS∆Es, which will be the main goal of this section.

Towards this end, we will assume that the driver g is a regular driver, and that

the terminal condition X ∈ L2(FT ). As before, we denote by (Yt, Zt,Mt), t ∈ T , the

solution of the corresponding BS∆E. Analogous to the existing literature on BSDEs

(cf. [Pen97]), we define the conditional g-expectation Eg
[
X
∣∣Ft] of a random variable

X given Ft as Eg
[
X
∣∣Ft] := Yt.

In what follows, it will be convenient to view the space L2(FT ) as an L∞(Ft)-

module, for every fixed t ∈ T ; saying differently, the random variables from L∞(Ft)

will play the role of scalars for the linear space L2(FT ). This is a special case of con-

sidering L0(G)-module, or simply L0-module, where the scalars are random variables

that are measurable with respect to some σ-algebra G. For more details on gen-

eral theory of L0-modules, and their relationship to theory of risk and performance

measures, we refer the reader to [FKV09, KV09, BCDK15].

Remark 2.1.5. Throughout the chapter we will use the following result, which follows

immediately from the uniqueness of the solutions and backward nature of BS∆Es. Let

g be a driver that satisfies Assumption A, and assume that there exists a triplet of

processes (Y ′, Z ′,M ′) such that

Y ′u = X +
∑
u<s≤T

g(s, Z ′s)∆〈W 〉s −
∑
u<s≤T

Z ′s∆Ws +M ′
T −M ′

u, u = t, . . . , T,

where Y ′u ∈ L2(Fu), Z ′u ∈ L2(Fu−1), M ′
u ∈ L2(Fu), and E[M ′

uWu|Fu−1] = M ′
u−1Wu−1.

Then, Y ′t = Eg[X|Ft].

Next proposition provides some fundamental properties of g-expectations, such
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as monotonicity, tower property, convexity when driver is convex, and homogeneity

when driver is homogenous.

Proposition 2.1.1. For any regular driver g, the conditional g-expectation satisfies

the following properties:

(i) Eg[µ|Ft] = µ, for any µ ∈ R, t ∈ T ;

(ii) if X1 ≥ X2, X1, X2 ∈ L2(FT ), then Eg
[
X1
∣∣Ft] ≥ Eg[X2

∣∣Ft], for any t ∈ T .

Moreover, if 1AEg
[
X1
∣∣Ft] = 1AEg

[
X2
∣∣Ft], for some t ∈ T , and A ∈ Ft, then

1AX
1 = 1AX

2;

(iii) Eg
[
Eg
[
X
∣∣Fs]∣∣Ft] = Eg

[
X
∣∣Fs∧t], for any X ∈ L2(FT ), s, t ∈ T ;

(iv) Eg
[
1AX

∣∣Ft] = 1AEg
[
X
∣∣Ft], for any X ∈ L2(FT ), A ∈ Ft, t ∈ T ;

(v) Eg
[
X +m

∣∣Ft] = Eg
[
X
∣∣Ft]+m, for any X ∈ L2(FT ), m ∈ L2(Ft), t ∈ T ;

(vi) if g(u, ω, ·) is convex, for any u ∈ {t, . . . , T}, ω ∈ Ω, z1, z2 ∈ R, that is

g(u, ω, µz1 + (1− µ)z2) ≤ µg(u, ω, z1) + (1− µ)g(u, ω, z2), µ ∈ R, 0 ≤ µ ≤ 1,

then

Eg[λX1 + (1− λ)X2|Ft] ≤ λEg[X1|Ft] + (1− λ)Eg[X2|Ft],

for any X1, X2 ∈ L2(FT ), λ ∈ L∞(Ft), 0 ≤ λ ≤ 1.

(vii) if g(u, ω, ·) is homogeneous, for any u ∈ {t, . . . , T}, ω ∈ Ω, that is

g(u, ω, µz) = µg(u, ω, z), z, µ ∈ R,

then

Eg[λX|Ft] = λEg[X|Ft], X ∈ L2(FT ), λ ∈ L∞(Ft).
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Proof. (i) If YT = µ ∈ R, then according to (2.4), we get that

ZT =
E[YT∆WT |FT−1]

∆〈W 〉T
= µ

E[∆WT |FT−1]

∆〈W 〉T
= 0.

Hence, by (2.5) and Assumption A3, we have that

YT−1 = E[YT |FT−1] + g(T, ZT )∆〈W 〉T = E[YT |FT−1] = µ.

Inductively, in view of (2.9) and (2.10), we have that Yt = µ for all t ∈ T . Hence,

Eg[µ|Ft] = µ, t ∈ T .

(ii) It follows imediatly from Theorem 2.1.2.

(iii) Assume that t ≤ s, and let (Y, Z,M) be the solution of BS∆E with

terminal condition X. Then,

Yu = X +
∑
u<r≤T

g(r, Zr)∆〈W 〉r −
∑
u<r≤T

Zr∆Wr +MT −Mu, u ∈ T .

By considering u = t and u = s, we immediately get

Yt = Ys +
∑
t<r≤s

g(r, Zr)∆〈W 〉r −
∑
t<r≤s

Zr∆Wr +Ms −Mt. (2.14)

Next, we consider the BS∆E with driver g, terminal time s and terminal condition

Ys. By (2.14) and definition of g-expectation, we have that Yt = Eg[Ys|Ft], which

implies that Eg[X|Ft] = Eg[Eg[X|Fs]|Ft].

Now, let us assume that t > s. For t = T , then property follows from the

definition of g-expectation For t < T , we us consider the BS∆E with driver g and

terminal condition (at time T ) Eg[X|Fs]. In view of (2.4), we have that

ZT =
E[YT∆WT |FT−1]

∆〈W 〉T
= Eg[X|Fs]

E[∆WT |FT−1]

∆〈W 〉T
= 0.

Hence, by (2.5) and Assumption A3, it is true that

YT−1 = E[YT |FT−1] + g(T, ZT )∆〈W 〉T = E[Eg[X|Fs]|FT−1] = Eg[X|Fs].
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Inductively, using (2.9) and (2.10), we conclude that Yt = Eg[X|Fs]. Consequently,

by the definition of g-expectation, we finally get that Eg[Eg[X|Fs]|Ft] = Eg[X|Fs].

(iv) Fix t ∈ T , X ∈ L2(FT ), A ∈ Ft, and let (Y, Z,M) be the solution of BS∆E

with terminal condition X. Note that 1Ag(u, Zu) = g(u,1AZu), u = t+ 1, . . . , T , and

thus

1AYu = 1AX +
∑
u<s≤T

g(s,1AZs)∆〈W 〉s −
∑
u<s≤T

1AZs∆Ws + 1AMT − 1AMu, (2.15)

for every u = t, . . . , T . Also note that since A ∈ Ft, and u ≥ t + 1, we have that

1AYu ∈ L2(Fu), 1AZu ∈ L2(Fu−1), and 1AMu ∈ L2(Fu), for any u = t + 1, . . . , T .

Due to that fact that M and W are orthogonal, we note that

E[1AMuWu|Fu−1] = 1AE[MuWu|Fu] = 1AMu−1Wu−1.

Therefore, in view of (2.15), and Lemma 2.1.5, we have that 1AYt = Eg[1AX|Ft],

which implies that 1AEg[X|Ft] = Eg[1AX|Ft]. (v) If (Yu, Zu,Mu), u ∈ T , be the

solution of BS∆E with terminal condition X, then

Yu +m = X +m+
∑
u<s≤T

g(s, Zs)∆〈W 〉s

−
∑
u<s≤T

Zs∆Ws +MT −Mu, u = t, . . . , T,

(2.16)

for any m ∈ L2(Ft). Clearly Yu+m ∈ L2(Fu), and hence, by Lemma 2.1.5 and (2.16),

we conclude that Yt +m = Eg[YT +m|Ft], which implies that

Eg[X|Ft] +m = X + β = Eg[X +m|Ft].

(vi) Let (Y 1
u , Z

1
u,M

1
u), and respectively Y 2

u , Z
2
u,M

2
u , u ∈ T , be the solution of BS∆E

with terminal condition X1, and respectively X2. Assuming that g(u, ω, ·) is convex,
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and using identity (2.1), we have that

λY 1
t + (1− λ)Y 2

t =λX1 + (1− λ)X2 + λ
∑
t<u≤T

g(u, ω, Z1
u)∆〈W 〉u

+ (1− λ)
∑
t<u≤T

g(u, ω, Z2
u)∆〈W 〉u − λ

∑
t<u≤T

Z1
u∆Wu

− (1− λ)
∑
t<u≤T

Z2
u∆Wu + λ(M1

T −M1
t ) + (1− λ)(M2

T −M2
t )

≥λX1 + (1− λ)X2 +
∑
t<u≤T

g(u, ω, λZ1
u + (1− λ)Z2

u)∆〈W 〉u

−
∑
t<u≤T

(λZ1
u + (1− λ)Z2

u)∆〈W 〉u + λM1
T + (1− λ)M2

T

− λM1
t − (1− λ)M2

t , (2.17)

where λ ∈ L∞(Ft), 0 ≤ λ ≤ 1. Next we consider the process Y ′ defined as follows

Y ′u =λX1 + (1− λ)X2 +
∑
u<s≤T

g(s, λZ1
s + (1− λ)Z2

s )∆〈W 〉s

−
∑
u<s≤T

(λZ1
s + (1− λ)Z2

s )∆〈W 〉s + λM1
T + (1− λ)M2

T

− λM1
u − (1− λ)M2

u , u = t, . . . , T.

Clearly Y ′u ∈ L2(Fu), λZ1
u + (1− λ)Z2

u ∈ L2(Fu−1), λM1
u + (1− λ)M2

u ∈ L2(Fu), and

E[(λM1
u+(1−λ)M2

u)Wu|Fu−1] = (λM1
u−1+(1−λ)M2

u−1)Wu−1, for any u = t+1, . . . , T .

Therefore, by Lemma 2.1.5, we have that Y ′t = Eg[λY 1
T + (1 − λ)Y 2

T |Ft], combined

with (2.17) concludes the proof.

(vii) The proof is similar to the proof of (vi) and we omit it here.

In what follows, we will call a driver g convex, if g(t, ω, ·) is convex, and g

positive homogeneous, if g(t, ω, ·) is positive homogeneous, for any t ∈ T , ω ∈ Ω.

Also, we will simply say that Eg[ · |Ft] is convex (rather than convex in L∞-module
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sense) if

Eg[λX1 + (1− λ)X2|Ft] ≤ λEg[X1|Ft] + (1− λ)Eg[X2|Ft],

for any λ ∈ L∞(Ft), 0 ≤ λ ≤ 1.

Proposition 2.1.1 shows that g-expectation (or nonlinear expectation) shares

many properties with usual conditional expectation. However, as name suggests,

generally speaking it is not linear. The next two results show that the g-expectation

is linear if and only if the driver is regular and linear.

Proposition 2.1.2. Assume that g is a regular linear driver. Then Eg[ · |Ft] is linear.

Moreover, there exists a probability measure Q ∼ P such that EQ[X|Ft] = Eg[X|Ft]

for all X ∈ L2(FT ).

Proof. Since g(t, z) is regular, then Eg[ · |Ft] is well defined and Eg[0|Ft] = 0. As-

suming that (Y i, Zi,M i), i = 1, 2, are the solutions of BS∆E (2.1) with terminal

condition X i, i = 1, 2, for any a, b ∈ Ft, we get

aY 1
t + bY 2

t =aY 1
T + bY 2

T +
∑
t<s≤T

xs(aZ
1
s + bZ2

s )∆〈W 〉s −
∑
t<s≤T

(aZ1
s + bZ2

s )∆Ws

+ (aM1
T + bM2

T )− (aM1
t + bM2

t ).

Moreover, aM1
t + bM2

t is orthogonal to Wt, and therefore, aY 1
t + bY 2

t is the solution

of BS∆E with terminal condition aY 1
T + bY 2

T . Hence, linearity of Eg[·|Ft] follows.

For any A ∈ F we define Q(A) := Eg[1A]. First, we will verify that Q is

a probability measure. Since 1 + xt∆Wt > 0, then according to Lemma 2.1.1 we

have that Q(A) = Eg[1A] ≥ 0. If A = ∅, then 1A = 0 almost surely and therefore

Q(A) = Eg[0] = 0. If A = Ω, then 1A = 1 and hence Q(A) = Eg[1] = 1. Let (Ai)
∞
i=1

be such that Ai ∈ F , i ∈ N, and Ai
⋂
Aj = 0, for i 6= j. Let (Y, Z,M) be the solution
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of BS∆E with terminal condition
∑∞

i=1 1Ai . Then,

Q(
∞⋃
i=1

Ai) = Eg[
∞∑
i=1

1Ai ] =
∞∑
i=1

1Ai +
∑
t<s≤T

x(s)Zs∆〈W 〉s −
∑
t<s≤T

Zs∆Ws +MT −Mt.

By (2.4), we also have that

ZT =
E[
∑∞

i=1 1Ai∆WT |FT−1]

∆〈W 〉T
.

From here, by Dominated Convergence Theorem, and again by (2.4), we continue

ZT =
∞∑
i=1

E[1Ai∆WT |FT−1]

∆〈W 〉T
=
∞∑
i=1

Zi
T ,

where Zi
T is the part of the solution corresponding to terminal condition 1Ai , i ∈ N.

Similarly, we have that YT−1 =
∑∞

i=1 Y
i
T−1. Inductively, we have that Y0 =

∑∞
i=1 Y

i
0 ,

or Q[
⋃∞
i=1 Ai] =

∑∞
i=1 Q[Ai]. Therefore, Q is a probability measure.

Next, we will show that Q is equivalent to P. If A ∈ F , and P(A) = 0, then

1A = 0, P-a.s., and thus Q(A) = Eg[1A] = 0. Conversely, if Q(A) = 0, then, by

Lemma 2.1.1, 1A = 0 P-a.s., and hence P(A) = 0. Thus, Q is equivalent to P.

We are left to show that EQ[X|Ft] = Eg[X|Ft], for any X ∈ L2(F), t ∈

T . First, we prove the statement for t = 0. For a simple random variable X =∑n
i=1 1Aiai ∈ L2(F), with n ∈ N, Ai ∈ F , ai ∈ R, using linearity of g-expectations

proved above, we have that EQ[X] = Eg[X]. For a general random variable we use the

standard approximation procedure. If X ∈ L2
+(F), then there exists an increasing,

and positive sequence of simple random variable 0 ≤ X1 ≤ X2 ≤ . . . ≤ Xn ≤ . . . ≤ X

such that limn→∞Xn = X, and

EQ[X] = lim
n→∞

EQ[Xn] = lim
n→∞

Eg[Xn].

Using similar procedure as in the first part of the proof, one can show that Y Xn
0

a.s.−→

Y X
0 , and thus Eg[X] = EQ[X]. Finally for the general case, X ∈ L2(F), it is enough

to split X into its positive and negative part.
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From here, and Proposition 2.1.1, for any t ∈ {1, . . . , T}, A ∈ Ft, and X ∈

L2(F), we also have

EQ[1AEg[X|Ft]] = Eg[1AEg[X|Ft]] = Eg[Eg[1AX|Ft]] = Eg[1AX] = EQ[1AX],

which implies that Eg[ · |Ft] is equal to the usual conditional expectation.

This concludes the proof.

Proposition 2.1.3. Assume that g is a regular driver, and Eg[ · |Ft] is linear for any

t ∈ T . Then, there exists a process xt, such that xt is predictable, |xt| ≤ ct, where ct

is the Lipschitz coefficient of g(t, ·), and g(t, z) = xtz, t ∈ T .

Proof. Fix t ∈ T . Let us consider a BS∆E from time t−1 to terminal time t, and with

driver g. For any fixed z1, z2 ∈ R, it is straightforward to verify that Z1
t = az1, M1

t =

0, Y 1
t−1 = g(t, az1)∆〈W 〉t, and respectively Z2

t = bz2, M2
t = 0, Y 2

t−1 = g(t, bz2)∆〈W 〉t,

is the solution to this BS∆E with terminal values az1∆Wt, and respectively bz2∆Wt,

where a, b are arbitrary real numbers. Consequently, Z0
t = az1 + bz2, M0

t = 0,

Y 0
t−1 = g(t, az1 + bz2)∆〈W 〉t is the solution to the BS∆E with terminal condition

(az1 + bz2)∆Wt.

By the definition of g-expectation, and using its linearity, we have

g(t, az1 + bz2)∆〈W 〉t = Eg[(az1 + bz2)∆Wt|Ft−1]

= aEg[z1∆Wt|Ft−1] + bEg[z2∆Wt|Ft−1]

= ag(t, z1)∆〈W 〉t + bg(t, z2)∆〈W 〉t.

From here, since ∆〈W 〉t 6= 0, and since z1 and z2 were arbitrarily chosen, we have

that

g(t, ω, az1 + bz2) = ag(t, ω, z1) + bg(t, ω, z2), ω ∈ Ω, z1, z2, a, b ∈ R.
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Note that since g(t, ω, ·) is Lipschitz, hence continuous, there exists a random variable

xt(ω) such that g(t, ω, z) = xt(ω)z, ω ∈ Ω, z ∈ R.

Finally, recall that g is predictable, and thus xt is predictable too. Moreover,

by Assumption A2,

|xt(ω)z1 − xt(ω)z2| = |g(t, ω, z1)− g(t, ω, z2)| ≤ ct(ω)|z1 − z2|

for any ω ∈ Ω, z1, z2 ∈ R, t ∈ T . Therefore, |xt| ≤ ct, and this completes the proof.

2.2 Dynamic Convex Risk Measures and Dynamic Acceptability Indices

via g-Expectation

In this section we will explore the connections between g-Expectation and Dy-

namic Convex Risk Measures (DCRMs), and subsequently the relationship between

DCRMs and Dynamic Acceptability Indices (DAIs).

In the seminal paper [ADEH99], the authors proposed an axiomatic approach

to defining risk measures that are meant to give a numerical value of the riskiness

of a given financial contract or portfolio. Since then, an extensive body of work was

devoted to exploration of the axiomatic approach to risk measures, and it is beyond

the scope of this thesis to list all the relevant literature on this subject. We refer

the reader to [DK13] for an excellent overview of the static (one period of time)

risk measures, as well as to the survey paper [AP11] on dynamic risk measures.

The values of risk measures can be interpreted as the capital requirement for the

purpose of regulating the risk assumed by market participants (typically, by banks).

In particular, the risk measures are aimed at quantifying risk, similarly to what

was the primary objective of the well-known Value-At-Risk (V@R). Following a

similar axiomatic approach, Cherny and Madan [CM09] introduced the notion of
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coherent acceptability index – function defined on a set of random variables that takes

positive values and that is monotone, quasi-concave, and scale invariant. Coherent

acceptability indices can be viewed as generalizations of performance measures such

as Sharpe Ratio, Gain to Loss Ratio, Risk Adjusted Return on Capital. Coherent

acceptability indices appear to be a tool very well tailored to assessing both risk and

reward of a given cash flow. The dynamic version of coherent acceptability indices

was introduced and studied in [BCZ14].

For a robust representations of general dynamic quasi-concave, monotone and

local maps see, for instance, [BCDK15].

As it was shown in [RG06] there is a direct connection between convex risk

measures and nonlinear expectations, and consequently there exists a direct link be-

tween convex risk measures and BSDEs. These connections were further studied in

[CE10], [ESC15], and [Sta09] for the case of discrete time set-ups, thus establishing

a relationship between BS∆Es and DRM for terminal cash flows (random variables).

In [CM09, BCZ14] the authors proved that any (dynamic) coherent accept-

ability index can be associated with a family of (dynamic) coherent risk measures.

In [RGS13] the authors study the relationship between dynamic sub-scale invariant

performance measures and dynamic convex risk measures and their connections to

BS∆Es. The aim of this section is to develop a unified framework for assessing the

risk and performance of cash-flows in a dynamic, discrete time set-up. It is well known

that one of the key properties of dynamic risk and performance measures is their time

consistency, and in this chapter, we also pay special attention to this property. We

refer the reader to [BCP14, BCP15] for a thorough discussion of various forms of time

consistency of risk/performance measures.

Besides the usual applications of these measures to risk management, and as-
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sessment of portfolio’s performance, we will show in next sections that dynamic sub-

scale invariant acceptability indices, nonlinear expectations and theory of BS∆Es can

be successfully applied to build a general, arbitrage free, nonlinear pricing methodol-

ogy in complex derivative markets.

For the sake of consistency, we will follow the set-up from [BCIR13, BCZ14,

BCR15] adapted to a general probability space. A cash-flow, also called a dividend

process, denoted as D = {Dt}Tt=0, is any real valued, square integrable, stochastic

process adapted to filtration F. The set of all cash-flows is denoted by D, that is

D :=
{

(Dt)
T
t=0 : (Dt)

T
t=0 is an adapted process, Dt ∈ L2(Ft), t ∈ T

}
.

From financial point of view, an element D ∈ D should be interpreted as a cash-

flow associated with a portfolio, or with a general financial instrument, such that the

amount Dt is received/paid by the holder at time t ∈ T . For more details, and for

more general set-up, please see next chapter.

For any D ∈ D, λ ∈ L∞(Ft), we define the following multiplicative operator

λ ·t D := (0, . . . , 0, λDt, . . . , λDT ).

Note that for any t ∈ T , the set D is closed under the multiplication ·t. We also

define an order �t on D, and say that D1 �t D2, whenever
∑T

s=tD
1
s ≥

∑T
s=tD

2
s ,

t ∈ T . Hence, D1 �t D2 if the future cumulative cash-flow is larger.

Remark 2.2.1. In what follows, we will simply write λD instead of λ ·t D. That

means for process D ∈ D, λD = λ ·t D, and if X is a random variable, then λX is

understood as multiplication of random variables λ and X.

2.2.1 Dynamic Convex Risk Measures via g-Expectation. We start by re-

calling the definition of Dynamic Convex/Coherent Risk Measures.
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Definition 2.2.1 (Dynamic Convex Risk Measure). A dynamic convex risk measure

is a function ρ : T × D × Ω→ R that satisfies the following properties:

R1. Adapted. ρt(D) is Ft-measurable, for any t ∈ T , D ∈ D.

R2. Local. 1Aρt(D) = 1Aρt(1AD), for any t ∈ T , A ∈ Ft, D ∈ D.

R3. Convex. ρt(λD + (1 − λ)D′) ≤ λρt(D) + (1 − λ)ρt(D
′), for any t ∈ T ,

λ ∈ L∞(Ft), 0 ≤ λ ≤ 1, D,D′ ∈ D.

R4. Monotone. If D �t D′ for some t ∈ T , D,D′ ∈ D, then ρt(D) ≤ ρt(D
′).

R5. Cash-additive. ρt(D + m1{s}) = ρt(D) − m for any t ∈ T , D ∈ D, and

Ft-measurable random variable m and s ≥ t.

R6. Time consistent. ρt(D) = ρt(−ρt+1(D)1{t+1})−Dt for any t = 0, 1, . . . , T−1

and D ∈ D.

If ρ furthermore is

R7. Positive-homogeneous. ρt(λD) = λρt(D), λ ∈ L∞+ (Ft),

then ρ : T × D × Ω→ R is called a dynamic coherent risk measure.

Properties R1-R7 have a clear financial interpellation: adaptiveness means

that the measurements are consistent with the flow of information; the locality prop-

erty essentially means that the values of the risk measure restricted to a set A ∈ F

remain invariant with respect to the values of the arguments outside of the same

set A ∈ F , and in particular, the events that will not happen in the future do not

change the value of the measure today; convexity implies that diversification reduces

the risk; monotonicity implies that a cash flow with higher payoffs bears less risk.
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Cash-additivity means that adding $m to a portfolio at any time in the future re-

duces the overall risk by the same amount m. From the regulatory perspective, the

value of a risk measure is typically interpreted as the minimal capital requirement

for a bank. There exists various forms of time consistency of risk and performance

measures and we refer the reader to recent paper [BCP15] where the authors give a

systematic approach to time consistency of LM-measures (local and monotone func-

tions). The time consistency R6 for DCRM considered here is known in the existing

literature as strong time consistency. It can be shown that property R6, combined

with R4, is equivalent to the following property: if Dt = D′t and ρt+1(D) = ρt+1(D′),

then ρt(D) = ρt(D
′), i.e. if two cash flows bear the same risk tomorrow, and they

pay the same dividend today, then today these two cash flows are assessed at the

same risk level. Saying differently, the risk is measured consistently in time. Finally,

positive-homogeneity means the risk of a rescaled cash flow is rescaled by the same

factor.

Similar to, [CE10, ESC15, Sta09] that address discrete time case, and [RG06,

RGS13] that consider the continuous time set-up, we will show that the solution of

BS∆Es (2.1) with convex drivers, more precisely the corresponding g-Expectation,

generates a DCRM. In the sequel, for any regular and convex driver g, we will denote

by ρg the function defined as follows

ρgt (D) = Eg
[
−

T∑
s=t

Ds

∣∣∣Ft], t ∈ T , D ∈ D. (2.18)

Theorem 2.2.1. Assume that g is a convex and regular driver. Then, the function

ρg defined as in (2.18) is a DCRM.

Proof. Invoking Proposition 2.1.1, it is straightforward to show that ρgt satisfies Prop-

erties R1–R5.

We will show that ρg is time consistent. By Proposition 2.1.1 (iii) and (v), we
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immediately have that

ρgt (−ρ
g
t+1(D)1{t+1})−Dt =Eg[ρgt+1(D)|Ft]−Dt = Eg

[
Eg
[
−

T∑
s=t+1

Ds

∣∣∣Ft+1

]∣∣∣Ft]−Dt

=Eg
[
Eg
[
−

T∑
s=t

Ds

∣∣∣Ft+1

]∣∣∣Ft] = Eg
[
−

T∑
s=t

Ds

∣∣∣Ft]
=ρgt (D),

for any t ∈ T , D ∈ D. This concludes the proof.

As an immediate consequence of Theorem 2.2.1, if additionally the driver g is

positive homogeneous in z, then ρg is a time consistent coherent risk measure.

Corollary 2.2.1. Assume that g(t, z) is a convex and regular driver, such that g(t, ·)

is positive homogeneous. Then, ρgt is a dynamic coherent risk measure.

Proof. In view of Theorem 2.2.1, we have that ρgt (D) is a DCRM. Moreover, for any

fixed t ∈ T , due to Proposition 2.1.1 (vii), we have that

ρgt (λD) = Eg
[
− λ

T∑
s=t

Ds

∣∣∣Ft] = λEg
[
−

T∑
s=t

Ds

∣∣∣Ft] = λρgt (D),

for any λ ∈ L∞+ (Ft), and D ∈ D. Hence, ρgt is a dynamic coherent risk measure.

Next, we give some examples of DCRMs generated by various drivers via g-

expectation. Similar to Example 2.1.1 and 2.1.2, in the following two examples, we

will assume that W is a martingale process such that ∆Wt is uniformly bounded.

Example 2.2.1 (Coherent Case). We consider the driver g(t, z) = c|z|, for some

fixed c ∈ [0, 1). It is easy to see that g(t, z) is convex and positive homogeneous

with respect to z. Then, by Corollary 2.2.1, ρgt (D) = Eg[−
∑T

s=tDs|Ft] is a dynamic

coherent risk measure.
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Example 2.2.2 (Convex Case). Let us put

g(t, z) =
K

(K + 1)‖∆Wt‖∞
ln
(1

3
+

1

3
e−z +

1

3
ez
)
,

where K ∈ R+ is fixed. Note that ∂g
∂z

is an increasing function with respect to

z, and hence g(t, ·) is a convex driver. By Theorem 2.2.1, we have that ρgt (D) =

Eg[−
∑T

s=tDs|Ft] is a time consistent DCRM.

By Theorem 2.2.1 any given convex regular driver g generates DCRM. Next

result shows that the converse implication also holds true if W is the symmetric

random walk and the filtration is generated by W .

Proposition 2.2.1. Assume that W is a symmetric random walk, F = FW , and ρt :

L∞(FT )→ L∞(Ft) is a DCRM. Also, let g(t, z) = ρt−1(z∆Wt)
∆〈W 〉t . Then, ρt(X) = ρgt (X),

for any X ∈ L∞(FT ).

Proof. Fix an X ∈ L∞(FT ). Since ρt(X) ∈ L∞(Ft) ⊂ L2(Ft), for any t ∈ T , then,

since W has the martingale representation property, there exists Zt ∈ Ft−1 such that

ρt(X) = E[ρt(X)|Ft−1] + Zt∆Wt. According to time-consistency property of ρ, we

have that

ρt(X)− ρt−1(X) =ρt(X)− ρt−1(−ρt(X))

=E[ρt(X)|Ft−1] + Zt∆Wt − E[ρt(X)|Ft−1]− ρt−1(Zt∆Wt)

=− ρt−1(Zt∆Wt) + Zt∆Wt.

Therefore,

ρt−1(X) = ρt(X) +
ρt−1(Zt∆Wt)

∆〈W 〉t
∆〈W 〉t − Zt∆Wt

and hence, ρt(X) = ρgt (X).

The next example is an application of Proposition 2.2.1.
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Example 2.2.3 (Dynamic Entropic Risk Measure). The dynamic entropic risk mea-

sure takes the following form

ργt (X) = γ ln
(
E
[

exp(−X
γ

)
∣∣∣Ft]) (2.19)

where γ > 0. So the driver corresponding to entropic risk measure will be

g(t, z) =
γ

∆〈W 〉t
ln
(
E
[

exp(−z∆Wt

γ
)
∣∣∣Ft−1

])
=

γ

∆〈W 〉t
ln
(1

2
e−

z
γ +

1

2
e
z
γ

)
.

Similarly as in Example 2.2.2, we have that g(t, z) is a convex regular driver.

Remark 2.2.2. It is worth observing that, if we take the time step to be equal to ∆t,

and the martingale W to be a scaled symmetric random walk P(Wt+∆t = ±
√

∆t | Ft),

with W0 = 0, and F = FW , the driver corresponding to the entropic risk measure

(2.19) takes the form

g(t, z) =
γ

∆t
ln
(1

2
e−

z
γ

√
∆t +

1

2
e
z
γ

√
∆t
)
.

By direct computations, we have that lim∆t→0 g(t, z) = z2/(2γ). Formally, this means

that in continuous time framework the BSDE that corresponds to the dynamic entropic

risk measure has a quadratic driver, which is consistent with the results in the existing

literature [BEK07, Proposition 6.4].

2.2.2 Dynamic Acceptability Indices via g-Expectation. In [CM09] the au-

thors introduced the notion of coherent acceptability index, meant to measure the

performance of a given terminal cash flow, as a monotone, scale-invariant, and quasi-

concave function defined on the set of all bounded random variables. The extension

of these measures to a dynamic set-up was studied in [BCZ14], where the appropriate

notion of time consistency for dynamic coherent acceptability indices was introduced.

In [BCZ14], the author follow a discrete time market set-up on a finite probability

space. Recently, Biagini and Bion-Nadal [BBN14] studied this type of dynamic per-

formance measure of terminal cash-flows on a general probability space, and discrete
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time market set-up. For robust representations of general dynamic quasi-concave

performance measures we refer the reader to [BCDK15]. The aim of this section

is to study dynamic performance measures that are sub-scale invariance. Following

[RGS13], who argued that the scale invariance fails to capture all risks in an illiquid

market, and, accordingly, postulated the sub-scale invariance instead, we replace the

scale invariance condition used in [BCZ14], with a weaker assumption of sub-scale

invariance.

Definition 2.2.2 (Dynamic Acceptability Index). A dynamic acceptability index is

a function α : T × D × Ω→ [0,∞] that satisfies the following properties:

I1. Adapted. αt(D) is Ft-measurable, for any t ∈ T , D ∈ D.

I2. Local. 1Aαt(D) = 1Aαt(1AD), for any t ∈ T , A ∈ Ft, D ∈ D.

I3. Quasi-concave. If αt(D) ≥ m and αt(D
′) ≥ m for some positive

Ft-measurable random variable m, and D,D′ ∈ D, then αt(λD+(1−λ)D′) ≥ m,

for any λ ∈ L∞(Ft), 0 ≤ λ ≤ 1.

I4. Monotone. If D �t D′ for some t ∈ T , and D,D′ ∈ D, then αt(D) ≥ αt(D
′).

I5. Sub-scale Invariant. αt(λD) ≥ αt(D) for any λ ∈ L∞(Ft), 0 ≤ λ ≤ 1,

D ∈ D, or, equivalently, αt(λD) ≤ αt(D) for any λ ∈ L∞(Ft), λ ≥ 1, D ∈ D.

I6. Time Consistent. For any t ∈ T , D,D′ ∈ D, the following implication holds

true

αt+1(D) ≥ m ≥ αt+1(D′) ⇒ αt(D) ≥ m ≥ αt(D
′),

whenever Dt ≥ 0 ≥ D′t, and m being an non-negative Ft-measurable random

variable.

Remark 2.2.3. (i) We note that property I5 is weaker than the scale invariance

property
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I5’. Scale Invariant. αt(λD) = αt(D) for any λ ∈ L∞(Ft), λ > 0, D ∈ D,

(ii) If property I5 from the definition of DAI is replaced with I5’, then α is called

dynamic coherent acceptability index.

Analogously to [BCZ14, CM09], we will show that a DAI can be generated

by a family of DCRMs, and hence by a family of BS∆Es. For this, we will consider

families of drivers indexed by positive real numbers that satisfy the following assump-

tions:

Assumption G:

G1. gx2 ≥ gx1 for x2 ≥ x1 > 0;

G2. gx is a convex regular driver for any x > 0;

G3. gx = gx− for any (t, ω, z) ∈ R+ × Ω× R.

With slight abuse of notations, we will denote by g the family of drivers (gx)x>0.

In what follows, for any family of drivers g that satisfy assumption G, we

denote by αg the following function

αgt (D)(ω) := sup
{
x ∈ R, x > 0 : Egx

[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0
}
, ω ∈ Ω, t ∈ T , D ∈ D.

(2.20)

Then we have the following theorem.

Theorem 2.2.2. Assume that the family of drivers g = (gx)x>0 satisfies Assumption

G. Then, αg is a dynamic acceptability index.

The proof will follow from a series of lemmas proved below.

Lemma 2.2.1. Assume that the family of drivers g = (gx)x>0 satisfies Assumption

G. Then, αg satisfies properties I1-I5.
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Proof. We will show that αg satisfies properties I1-I5.

I1. Let us consider the set Aγ = {ω ∈ Ω : αgt (D)(ω) ≥ γ}, where γ ∈ R, t ∈ T and

D ∈ D are fixed. We want to show that Aγ ∈ Ft. If γ ≤ 0, then it is clear that

Aγ = Ω ∈ Ft. For γ > 0, we will prove that

αgt (D)(ω) ≥ γ, ω ∈ Ω,

is equivalent to

Egγ
[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0, ω ∈ Ω. (2.21)

According to definition (2.20), any ω ∈ Ω such that αgt (D)(ω) ≥ γ satisfies that

sup
{
x ∈ R, x > 0 : Egx

[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0
}
≥ γ,

which, by assumption G1, implies that

lim
x↑γ
Egx
[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0.

Therefore, in order to show (2.21) holds for such ω, we only need to verify that

lim
x↑γ
Egx
[
−

T∑
s=t

Ds

∣∣∣Ft](ω) = Egγ
[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ω ∈ Aγ. (2.22)

Let (Y x, Zx,Mx), 0 < x ≤ γ, be the solutions of BS∆Es with drivers gx and the

terminal condition Y x
T = −

∑T
s=tDs. Then, (2.22) is implied by

lim
x↑γ

Y x
t = Y γ

t , (2.23)

which holds clearly for t = T .

Suppose that (2.23) is true for some t < u ≤ T . According to (2.9), we have

the representation:

Zx
u =

E[Y x
u ∆Wu|Fu−1]

∆〈W 〉u
.
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Notice that {Y x
u }0<x<γ is increasing with respect to x because of Theorem 2.1.2.

Hence, by dominated convergence theorem, we get that

lim
x↑γ

Zx
u = lim

x↑γ

E[Y x
u ∆Wu|Fu−1]

∆〈W 〉u
=

E[Y γ
u ∆Wu|Fu−1]

∆〈W 〉u
= Zγ

u .

Next, by (2.10), Y x
u−1 can be represented by

Y x
u−1 = E[Y x

u |Fu−1] + gx(u, Z
x
u)∆〈W 〉u,

where the following equality

lim
x↑γ

E[Y x
u |Fu−1] = E[Y γ

u |Fu−1]

holds true due to dominated convergence theorem. Moreover, we have that

|gx(u, ω, Zx
u(ω))− gγ(u, ω, Zγ

u(ω))|

≤|gx(u, ω, Zx
u(ω))− gx(u, ω, Zγ

u(ω))|+ |gx(u, ω, Zγ
u(ω))− gγ(u, ω, Zγ

u(ω))|

≤cxt (ω)|Zx
u(ω)− Zγ

u(ω)|+ |gx(u, ω, Zγ
u(ω))− gγ(u, ω, Zγ

u(ω))|,

for almost all ω ∈ Ω. Recall that cxt (ω) is defined as the smallest Lipschitz constant

of gx. Since that the family of drivers satisfy assumption G1 and G2, then we have

that cxt ≤ cγt . The following equality follows immediately:

lim
x↑γ

gx(u, Z
x
u) = gγ(u, Z

γ
u)

Thus, we have proved

lim
x↑γ

Y x
u−1 = Y γ

u−1,

and (2.23) is true by induction.

On the other hand, for any ω ∈ Ω such that Egγ
[
−
∑T

s=tDs

∣∣Ft](ω) ≤ 0. We

get that

αgt (D)(ω) = sup
{
x ∈ R, x > 0 : Egx

[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0
}
≥ γ,
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which implies that ω ∈ Aγ. In view of the above, we conclude that

Aγ =
{
ω ∈ Ω : αgt (D)(ω) ≥ γ

}
=
{
ω ∈ Ω : Egγ

[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0
}
.

Since that Egγ
[
−
∑T

s=tDs

∣∣Ft] is Ft-measurable, then Aγ ∈ Ft. This completes the

proof of showing that αg is adapted.

I2. Let us fix t ∈ T , D ∈ D, and A ∈ Ft. Then, for almost all ω ∈ Ω, we have that

1A(ω)αgt (D)(ω) =1A(ω) sup
{
x ∈ R, x > 0 : Egx

[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0
}

=1A(ω) sup
{
x ∈ R, x > 0 : 1A(ω)Egx

[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0
}
.

By (v) in Proposition 2.1.1, we deduce that

1AEgx [−
T∑
s=t

Ds|Ft] = Egx [−1A
T∑
s=t

Ds|Ft],

and locality of αg follows immediately.

I3. Let us fix t ∈ T , D, D′ ∈ D. Also, let γ > 0 be some Ft-measurable random

variable such that αgt (D)(ω) ≥ γ(ω) and αgt (D
′)(ω) ≥ γ(ω) hold for almost all ω. Fix

one such ω and denote γ∗ = γ(ω). Similar to the proof of adaptiveness, we have that

αgt (D)(ω) ≥ γ∗ and αgt (D
′)(ω) ≥ γ∗ will imply that

Egγ(ω)
[
−

T∑
s=t

Ds

∣∣∣Ft](ω) = Egγ∗
[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0,

Egγ(ω)
[
−

T∑
s=t

D′s

∣∣∣Ft](ω) = Egγ∗
[
−

T∑
s=t

D′s

∣∣∣Ft](ω) ≤ 0,

respectively. Then according to (vi) in Proposition 2.1.1, we get that

Egγ(ω)
[
−

T∑
s=t

(
λDs + (1− λ)D′s

)∣∣∣Ft](ω) ≤ 0,

holds for almost all ω ∈ Ω, and it implies that

αgt (λD + (1− λ)D′)(ω) = sup
{
x ∈ R, x > 0 :

Egx
[
−

T∑
s=t

(
λDs + (1− λ)D′s

)∣∣∣Ft](ω) ≤ 0
}
≥ γ(ω).
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Therefore, the Quasi-concavity of αg holds.

I4. Fix t ∈ T . Let D, D′ ∈ D, and suppose that D �t D′. For any fixed Ft-

measurable random variable γ > 0 such that αgt (D
′) ≥ γ, we have that

Egγ(ω)
[
−

T∑
s=t

D′s

∣∣∣Ft](ω) ≤ 0

holds for almost every ω ∈ Ω. Due to the assumption D �t D′, which implies that∑T
s=tDs ≥

∑T
s=tD

′
s, we get by (ii) in Proposition 2.1.1 that

Egγ(ω)
[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ Egγ(ω)
[
−

T∑
s=t

D′s

∣∣∣Ft](ω) ≤ 0,

and the statement αgt (D) ≥ γ follows. Hence, αg is monotone.

I5. Fix t ∈ T , D ∈ D. For any fixed Ft-measurable random variable γ > 0 such that

αgt (D) ≥ γ, we have that

Egγ(ω)
[
−

T∑
s=t

D′s

∣∣∣Ft](ω) ≤ 0

holds for almost every ω ∈ Ω. By convexity of g-expectation, it is true that

Egγ(ω)
[
− λ

T∑
s=t

Ds

∣∣∣Ft] ≤ λEgγ(ω)
[
−

T∑
s=t

Ds

∣∣∣Ft]+ (1− λ)Egγ(ω)
[
0
∣∣∣Ft]

= λEgγ(ω)
[
−

T∑
s=t

Ds

∣∣∣Ft] ≤ 0,

for any λ ∈ L∞(Ft), 0 ≤ λ ≤ 1, and almost all ω ∈ Ω. Therefore, we conclude that

αgt (λD) ≥ γ, which implies that αgt (λD) ≥ αgt (D).

Remark 2.2.4. In Assumption G, G1 and G2 are natural conditions for constructing

DAI via g-expectation. The reason to assume G3 comes from duality between DCRM

and DAI. If a DAI is given, then DCRM can be defined as

ργt (D) = ess inf{c ∈ Ft : αgt (D + c1{t}) ≥ γ},
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which is equivalent to

ργt (D) = ess inf
{
c ∈ Ft : sup

{
x ∈ R, x > 0 : Egx

[
−

T∑
s=t

Ds − c1{t}
∣∣∣Ft] ≤ 0

}
≥ γ

}
.

So we have that,

ργt (D) = ess inf
{
c ∈ Ft : sup

{
x ∈ R, x > 0 : Egx

[
−

T∑
s=t

Ds

∣∣∣Ft] ≤ c
}
≥ γ

}
.

Random variable ργt (D) can be represented as

ργt (D) = ess inf
{
c ∈ Ft : ∀ε > 0, Egγ−ε

[
−

T∑
s=t

Ds

∣∣∣Ft] ≤ c
}
,

Hence, due to assumption G1, we get that ργt (D) = supε>0{Egγ−ε [−
∑T

s=tDs|Ft]} =

Egγ− [−
∑T

s=tDs|Ft]. In order for duality to hold, it is required to have that ρ
gγ
t (D) =

ργt (D) which is equivalent to

Egγ−
[
−

T∑
s=t

Ds

∣∣∣Ft] = Egγ
[
−

T∑
s=t

Ds

∣∣∣Ft].
Finally, according to comparison theorem, we have that gγ = gγ−.

Lemma 2.2.2. Assume that the family of drivers g = (gx)x>0 satisfies Assumption

G. Also suppose that gx is positive homogeneous for any x ∈ R+. Then, αg is scale

invariant.

Proof. We need to show that αg is scale invariant.

Let t ∈ T , D ∈ D, and λ ∈ L∞(Ft), λ > 0. By definition, we have that

αgt (λD)(ω) = sup
{
x ∈ R, x > 0 : Egx

[
− λ

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0
}
,

holds for almost all ω ∈ Ω. In view of the fact that gx(t, ·) is positive homogeneous

for any x > 0, Proposition 2.1.1 (vii) implies that

αgt (λD)(ω) = sup
{
x ∈ R, x > 0 : λEgx

[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0
}
,
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for almost all ω ∈ Ω. Since λ > 0, then we get that λEgx [−
∑T

s=tDs|Ft] ≤ 0 is

equivalent to Egx [−
∑T

s=tDs|Ft] ≤ 0. Hence, αgt (λD)(ω) = sup{x ∈ R, x > 0 :

Egx [−
∑T

s=tDs|Ft](ω) ≤ 0} = αgt (D)(ω), for almost all ω ∈ Ω. This concludes that

αg is a dynamic coherent acceptability index.

Remark 2.2.5. In view of I4 and I5 in Definition 2.2.2, for any D �t 0 and λ ∈

L∞(Ft) a DAI satisfies that αt(λD) = αt(D). As matter of fact, for a DAI generated

by a family of DCRMs: αt(D)(ω) = sup{x ∈ R, x > 0 : ρx(D)(ω) ≤ 0}, ω ∈ Ω,

t ∈ T , D ∈ D, since ρxt (D) ≤ 0 whenever D �t 0, so that αt(λD) = αt(D) = ∞ if

D �t 0. The financial interpretation is clear: a positive cash flow does not bear any

risk, including liquidity risk, therefore such cash flow is accepted at any level and is

scale invariant.

By using the following lemma, we will prove that αg is time consistent.

Lemma 2.2.3. Assume that the family of drivers g = (gx)x>0 satisfies Assumption

G. Also suppose that Dt ≥ 0 ≥ D′t for some t ∈ T , D,D′ ∈ D, and there exists

c ∈ R+, A ∈ Ft such that 1Aα
g
t+1(D) ≥ 1Ac ≥ 1Aα

g
t+1(D′). Then 1Aα

g
t (D) ≥ 1Ac ≥

1Aα
g
t (D

′).

Proof. Suppose that 1Aα
g
t (D) ≥ 1Ac ≥ 1Aα

g
t (D

′) for some t ∈ T , c ∈ R+, A ∈

Ft, and D,D′ ∈ D such that Dt ≥ 0 ≥ D′t. Then, for any c′ < c, we have that

Egc′ [−1A
∑T

s=t+1Ds|Ft+1] ≤ 0. Since Dt ≥ 0, then according to Proposition 2.1.1 (ii)

and (iii), we get that

Egc′
[
− 1A

T∑
s=t

Ds

∣∣∣Ft] = −1ADt + Egc′
[
Egc′
[
− 1A

T∑
s=t+1

Ds

∣∣∣Ft+1

]
Ft
]
≤ 0.
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Due to the fact that c′ is arbitrary, the following is true for almost all ω ∈ Ω:

1A(ω)αgt (D)(ω) = 1A(ω) sup
{
x ∈ R, x > 0 : Egx

[
−

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0
}

= 1A(ω) sup
{
x ∈ R, x > 0 : Egx

[
− 1A

T∑
s=t

Ds

∣∣∣Ft](ω) ≤ 0
}

≥ 1A(ω)c.

On the other hand, by knowing that 1Aα
g
t+1(D′) ≤ 1Ac, we will prove 1Aα

g
t (D

′) ≤ 1Ac

by contradiction. Assume that there exists some A′ ⊂ A, P(A′) > 0 such that

αgt (D
′) > c on A′. Then there exists a c′ > c and A′′ ⊂ A, P(A′′) > 0 such that

αgt (D) > c′ on A”. Hence, we have that

Egc′
[
− 1A′′

T∑
s=t

D′s

∣∣∣Ft] ≤ 0.

However, since αgt+1(D′) ≤ c on A, then αgt+1(D′) < c′ on A′′. In view of the fact that

D′t ≤ 0, we get for ω ∈ A′′ that

Egc′
[
−1A′′

T∑
s=t

D′s

∣∣∣Ft](ω) = −1A′′(ω)D′t(ω)+Egc′
[
Egc′
[
−1A′′

T∑
s=t+1

D′s

∣∣∣Ft+1

∣∣∣Ft](ω) > 0.

Hence, there is a contradiction and such result implies that 1Aα
g
t (D

′) ≤ 1Ac.

Now we are ready to finish proving Theorem 2.2.2, which is to verify that αg

is time consistent.

Lemma 2.2.4. Assume that the family of drivers g = (gx)x>0 satisfies Assumption

G. Then, αg satisfies I6.

Proof. For any t ∈ T , D ∈ D, if there exists a positive Ft-measurable random variable

m such that αgt+1(D) ≥ m, then there exists a sequence of simple random variables

φn =
∑k

i=1 1A
n
i
ani where Ani ∈ Ft, ani ∈ R+, n ∈ {1, 2, . . .}, such that φn ≤ φn+1 and
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limn→∞ φn = m. Hence, we have that αgt+1(D) ≥ φn for any n. Since that Dt ≥ 0,

then according to locality of αg and Lemma 2.2.3, The following is true

αgt (D) ≥ φn, n ∈ {1, 2, . . .}.

Therefore, we conclude that αgt (D) ≥ m.

Assume that there exists a positive Ft-measurable random variable m such

that αgt+1(D′) ≤ m. Fix N ∈ R+, and for any ω ∈ Ω, define

mN(ω) =


m(ω) if m(ω) < N,

N if m(ω) ≥ N.

It is clear that (αgt+1)N(D′) ≤ mN and mN is bounded. Hence, there exists a sequence

of simple random variables φn such that φn ≥ mN , and limn→∞ φn = mN . Therefore

(αgt+1)N(D′) ≤ φn for all n. Since D′t ≤ 0, then by locality of αg and Lemma 2.2.3,

we have that (αgt )N(D′) ≤ φn for any n ∈ {1, 2, . . . , }. Moreover, it implies that

(αgt )N(D′) ≤ mN . Let N go to infinity, we conclude that αgt (D
′) ≤ m.

Before proceed to the next section, we give several examples of DAIs generated

by g-expectations. While discussing these examples, we take W as a symmetric

random walk.

Example 2.2.4. Let g = (gx)x>0 be in the form of gx(t, z) = x
(x+1)

ln(1
3

+ 1
3
e−z + 1

3
ez).

Similar to Example 2.2.2, we have that each gx(t, z) a convex regular driver. For

fixed t, z, gx(t, z) is increasing with respect to x. Therefore, g satisfies Assumption

G. Thus, αgt (D) is a DAI.

Example 2.2.5 (Coherent DAI). Let g = (gx)x>0 be in the form of gx(t, z) = x
x+1
|z|.

Then g satisfies Assumption G. Hence, gx(t, ·) is positive homogeneous. According to

Lemma 2.2.2, αgt (D) is a dynamic coherent acceptability index.
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Example 2.2.6 (Entropic DAI). Let g = (gx)x>0 be such that

gx(t, z) =
1

x∆〈W 〉t
ln
(1

2
e−xz +

1

2
exz
)
.

Then, due to Example 2.2.3, such family of drivers satisfies Assumption G, and αg

is a DAI, to which we refer as entropic DAI.

2.3 Dynamic Conic Finance as Market Model

Cherny and Madan [CM10] proposed the conic finance framework for pricing

non-dividend paying securities using static acceptability indices. In [BCIR13], the

authors generalized such technique to a dynamic framework that allows cash flows

to pay dividends and be subjected to transaction costs by using dynamic coherent

acceptability indices that were obtained in [BCZ14]. Nevertheless, in [AS08] and

[RGS13], the authors presented a systematic criticism to the positive homogeneity

and sublinearity assumptions frequently adopted in the framework of coherent risk

measures, and Bion-Nadal [BN09] introduced a dynamic approach to bid and ask

prices taking into account both transaction costs and liquidity risk, based on Time

Consistent Pricing Procedures. In this section, we will build a market model in

which the securities are priced by an acceptability method. This set-up accounts for

transaction costs and liquidity risk, by using the dynamic quasi-concave acceptability

indices via g-expectations we developed earlier.

2.3.1 Market Set-up. In this section we retain the same probabilistic framework

and the same notations as in the previous sections. In particular, we consider an

underlying probability space (Ω,F ,F = {Ft}t∈T ,P), and we assume that all processes

considered below are F-adapted and appropriately integrable. On this probability

space we consider a market consisting of a banking account (or money market account)

and K securities. Throughout, we pick the T as the largest time horizon. We also

adopt the convention that all security prices are already discounted with the banking
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account. Our market is further characterized as follows:

(M1) The process Dask,i := (Dask,i
t )t∈T ∈ D, with Dask,i

0 = 0, represents the dividend

process associated with holding a long position of 1 share of the ith security,

i = 1, . . . , K. Correspondingly, Dbid,i := (Dbid,i
t )t∈T ∈ D, with Dbid,i

0 = 0, is the

dividend process associated with holding a short position of 1 share of security

i = 1, . . . , K. We stress that processes Dask/bid,i represent bullet dividend cash

flows, rather than cumulative dividend.

(M2) P ask
t (ϕ,Dask/bid,i), respectively P bid

t (ϕ,Dask/bid,i), denote the ex-dividend prices

of purchasing, respectively selling, ϕ ∈ L∞+ (Ft) shares of cash flows Dask,i or

Dbid,i that are associated with security i ∈ {1, . . . , K} at time t ∈ T . We also

assume that the pricing operators P ask
t , P bid

t : L∞+ (Ft) × D → L2(Ft) are such

that P ask
t (0, ·) = P bid

t (0, ·) = 0, t ∈ T . We refer to Definition 2.3.2 for better

understanding of the roles of P ask
t (ϕ,Dask/bid,i) and P bid

t (ϕ,Dask/bid,i) play in

our theory.

(M3) The dividend process associated with holding 1 unit of the banking account

is given by processes D0 = (0, . . . , 0, 1) ∈ D. Moreover, ϕ ∈ L∞+ (Ft) units

of the banking account are purchased/sold at time t for price P ask
t (ϕ,D0) =

P bid
t (ϕ,D0) = ϕ · 1 = ϕ. In particular, P ask

t (1, D0) = P bid
t (1, D0) = 1.2

Let M be the set of all dividend processes in this market, i.e.

M = {D0, Dask/bid,i, i = 1, . . . , K}.

We will use the notation (M, P ask, P bid) to denote our market model.

2This is consistent with our convention that all prices are discounted by the
banking account, so that the price of one unit of the banking account is 1 at any time
t ∈ T .
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The market model (M, P ask, P bid) such that Dask,i = Dbid,i, i = 1, . . . , K, and

P ask
t (ϕ,D) = P bid

t (ϕ,D), for any D ∈M, is called frictionless market model.

Remark 2.3.1. In accordance with our framework, it is generally assumed that

Dask,i 6= Dbid,i, i = 1, . . . , K, and P ask
t (ϕ,D) 6= P bid

t (ϕ,D), D ∈ M. We also re-

mark that in this thesis we do not postulate that the prices P ask
t (ϕ,D) and P bid

t (ϕ,D)

are homogeneous (of degree one) in ϕ. In other words, we acknowledge the fact that

in practice the unit price of a security typically depends on the size of the position

in the security (cf. Example 2.3.3 below). This is due, for the most part, to market

liquidity considerations. As we shall see later, the bid/ask prices generated by our

acceptability method are not necessarily homogeneous.

We now illustrate the processes introduced above in the context of dividend

paying stock and Credit Default Swap (CDS) contract.

Example 2.3.1. Denote by ST the fundamental value associated to 1 share of a

dividend paying stock after dividend payment at time T . The dividend paid by 1 share

of the stock at each time t = 1, . . . , T , is denoted by Dt, regardless of what position

the investor is in. Therefore, the dividend process associated with 1 share of the stock

is

Dask = Dbid = {0, D1, . . . , DT−1, DT + ST}.

In this case, the ex-dividend ask and bid price process P ask and P bid are the market

quoted prices for selling, respectively buying stock S; see also Example 2.3.3.

Example 2.3.2. A CDS contract is an agreement between the protection buyer and

the protection seller, in which the protection buyer pays a regular fixed premium up

to occurrence of a pre-specified credit event, in return, the seller promises a compen-

sation to the buyer. Typically, CDS contracts are traded on over-the-counter markets

in which dealers quote CDS spreads to investors. Consider a CDS contract that is
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initiated at t = 0, expires at t = T with nominal value N , the protection buyer pays

a spread κask to the dealer at each time node in exchange for a compensation δ at

default time τ ; the protection seller receives a spread κbid from the dealer at each time

node and he needs to pay δ to the dealer at τ . Please note that κask, κbid and δ all

depends on N , and such dependence is not necessarily linear.

The dividend processes Dask and Dbid associated to buying and selling the CDS

with specifications above, respectively, satisfy

t∑
s=0

Dask
s := 1{τ≤t}δ − κask

t∑
s=1

1{s<τ},

t∑
s=0

Dbid
t := 1{τ≤t}δ − κbid

t∑
s=1

1{s<τ},

for t = 1, . . . , T . In this case, the ex-dividend ask and bid price process P ask and

P bid specify the mark-to-market values of the CDS. In general, P ask and P bid are also

not positively homogeneous with respect to N ; a property confirmed in a personal

communication with practitioners trading CDS contracts.

We close this subsection by illustrating the inhomogeneity of prices in a order-

driven market.

Example 2.3.3. In an order-driven market, orders to buy and sell are centralized in

a limit order book available to market participants and orders are executed against the

best available offers in the limit order book.

Table 2.1. Order Book of AAPL (Yahoo Finance 10:46AM EST 12/04/2014)

Bid Price Bid Size Ask Price Ask Size

116.59 400 116.61 200

116.58 400 116.62 700

116.57 800 116.63 543

116.56 500 116.64 643

116.55 543 116.65 343
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Table 2.1 is the limit order book of Apple Inc (AAPL) publicly traded stock. As

we can see, there are up to 200 shares available for purchase at a price of $116.61 per

share. Hence, P ask(1) = 116.61, and for 0 ≤ ϕ ≤ 200, P ask(ϕ) = ϕP ask(1). Similarly,

for 200 < ϕ ≤ 900, we have that P ask(ϕ) = 200·116.61+(ϕ−200)·116.62 > ϕP ask(1).

Thus, the ask price P ask(·) is not homogenous in number of shares traded. Moreover,

it is easy to note that P ask(·) is a convex function. Similarly, the function P bid(·) is

not homogenous and it is concave.

We need to stress that it is not our goal to build a stylized model for the time

evolution of a limit order book. The above example serves to show that, generally

speaking, the market prices are non-homogeneous functions of the order size. This

feature is one of the stylized market features that our model captures. We believe

that this feature is invariant of any specific time resolution at which trading is done,

so our discrete time model, which does not refer to any specific time scale is well

placed to model this feature. In particular, the model is meant to deal with valuation

of complex financial products that are not traded via high frequency trading.

2.3.2 Self-financing Trading Strategies and Arbitrage. Due to nonlinearity of

the prices and presence of transaction costs, the classical definition of self-financing

trading strategy and arbitrage are not suitable for the market model proposed above.

In this section we define the notion of self-financing trading strategy by using the

general concept that a self-financing trading strategy is a trading strategy that does

not allow injection or substraction of money during trading periods. Similarly, the

notion of arbitrage is build on the idea that a self-financing trading strategy can not

yield a riskless profit. Moreover, following market practice, we will allow that an

investor can simultaneously have both long and short positions of the same security

at the same time, i.e. the long and short positions in the same security at the same

time are not necessarily netted out.
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Definition 2.3.1. A trading strategy is a predictable process φ :=
{

(φ0
t , φ

l,1
t , φ

s,1
t , . . . ,

φl,Kt , φs,Kt )
}T
t=1

, where φ0
t ∈ L∞(Ft−1) is the number of units of banking account held

from time t − 1 to t; φl,it ∈ L∞+ (Ft−1) is the number of shares in long position of

security i held from time t − 1 to t; and φs,it ∈ L∞+ (Ft−1) is the number of shares

in short position of security i held from time t − 1 to t. Sometimes, we will use the

notation φit = (φl,it , φ
s,i
t ), for i = 1, . . . , K.

Definition 2.3.2. Let φ be a trading strategy.

(V1) The set-up cost process Ṽ (φ) associated with φ is defined as

Ṽt(φ) = φ0
t+1 +

K∑
i=1

(
P ask
t (φl,it+1, D

ask,i)− P bid
t (φs,it+1, D

bid,i)
)
, t = 0, . . . , T − 1.

(V2) The liquidation value process V (φ) associated with φ is defined as

Vt(φ) = φ0
t +

K∑
i=1

(
P bid
t (φl,it , D

ask,i)− P ask
t (φs,it , D

bid,i)
)

+
K∑
i=1

(
φl,it D

ask,i
t − φs,it D

bid,i
t

)
, t = 1, . . . , T.

For each t ∈ T , an investor could have both long and short positions of a

security at the same time. The process Ṽ (φ) represents the cost of setting up the

portfolio φ, and Vt(φ) is interpreted as the liquidation value of the portfolio at time

t (before any time t transactions), including any dividends acquired from time t− 1

to time t. Note that, generally speaking, Vt(φ) 6= Ṽt(φ) due to transaction costs and

non-homogeneity of P ask and P bid.

Definition 2.3.3. A trading strategy φ is self-financing if

∆φ0
t+1 +

K∑
i=1

(
1∆φl,it+1≥0P

ask
t (∆φl,it+1, D

ask,i)− 1∆φl,it+1<0P
bid
t (−∆φl,it+1, D

ask,i) (2.24)

− 1∆φs,it+1≥0P
bid
t (∆φs,it+1, D

bid) + 1∆φs,it+1<0P
ask
t (−∆φs,it+1, D

bid)
)

=
K∑
i=1

(φl,it D
ask,i
t − φs,it D

bid,i
t ). (2.25)
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for t = 0, . . . , T − 1.

Definition 2.3.3 provides a natural interpretation of self-financing condition in

market with friction. The cash flows that are being bought or sold should depend on

the both positions before and after re-balance at each time t. All the money that is

used for getting to the new position is equal to the dividends acquired from time t−1

to time t. Therefore, no money flows in or out of the portfolio.

Next, we will introduce the concept of arbitrage that is relevant for our theory.

Definition 2.3.4. An arbitrage opportunity at time t, t ∈ T , is a self-financing

trading strategy, such that VT (φ)− Ṽt(φ) ≥ 0 and P(VT (φ)− Ṽt(φ) > 0) > 0. We call

a market arbitrage free at time t if there exists no arbitrage opportunity in the model

at time t.

It needs to be observed that in the above definition we consider the difference

between the liquidation value of the portfolio at maturity and the set-up cost of the

portfolio at time t (recall that the interest rates are taken to be zero, so there is no

time value of money). Thus, the above definition regards the realized net change in

trader’s wealth.

In what follows, we will provide two other characterizations of arbitrage oppor-

tunities, which are useful in our work. Towards this end, we first define the following

sets,

S(t) :=


{φ : φ is self-financing, Ṽ0(φ) = 0}, t = 0,

{φ : φ is self-financing, φs = 0 for all s ≤ t}, t = 1, . . . , T.

Note that for φ ∈ S(t), we have φt = 0. Due to our assumption that

P bid
t (0, ·) = P ask

t (0, ·) = 0 and φ is self-financing, we have that Ṽt(φ) = Vt(φ) = 0.
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Next, we introduce the set of cash flows generated by strategies in S(t):

H0(t) =
{(

0, . . . , 0︸ ︷︷ ︸
t

,∆Vt+1(φ), . . . ,∆VT (φ)
)

: φ ∈ S(t)
}
, t ∈ T . (2.26)

Since P ask
t , P bid

t : L∞+ (Ft) × D → D, we have that Ṽt(φ), Vt(φ) ∈ L2(Ft) for any

self-financing trading strategy φ, and therefore H0(t) ⊂ D.

Next result gives two characterization of arbitrage.

Proposition 2.3.1. The following statements are equivalent:

(1) There exists an arbitrage opportunity at time t.

(2) There exists a strategy ξ ∈ S(t), such that VT (ξ) ≥ 0 and P(VT (ξ) > 0) > 0.

(3) There exists a cash flow (0, . . . , 0, Ht+1, . . . , HT ) ∈ H0(t), such that
∑T

s=t+1 Hs ≥

0 and P(
∑T

s=t+1 Hs > 0) > 0.

Proof. For a fixed t ∈ T , we will show that (1) is equivalent to (2), and (2) is

equivalent to (3).

(2)⇒ (1) Assume that there exists ξ ∈ S(t) such that VT (ξ) ≥ 0 and P(VT (ξ) > 0) >

0. Since ξ ∈ S(t), then Ṽt(ξ) = 0, and (1) follows immediately.

(1)⇒ (2) Assume that φ is an arbitrage opportunity at time t. We define a trading

strategy ξ as follows

ξ0
u = ψl,iu = ξs,iu = 0, u = 0, . . . , t, i = 0, . . . , K,

ξ0
u = φ0

u − Ṽt(φ), u = t+ 1, . . . , T,

ξl/s,iu = φl/s,iu , u = t+ 1, . . . , T, i = 1, . . . , K.
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It is straightforward to see that Ṽ0(ξ) = 0, and ξu = 0 for u ≤ t. To show that ξ is

self-financing, first notice that

∆ξ0
t+1 +

K∑
i=1

(
1∆ξl,it+1≥0P

ask
t (∆ξl,it+1, D

ask,i)− 1∆ξl,it+1<0P
bid
t (−∆ξl,it+1, D

ask,i)

− 1∆ξs,it+1≥0P
bid
t (∆ξs,it+1, D

bid,i) + 1∆ξs,it+1<0P
ask
t (−∆ξs,it+1, D

bid,i)
)

=φ0
t+1 − Ṽt(φ) +

K∑
i=1

(
P ask
t (φl,it+1, D

ask,i)− P bid
t (φs,it+1, D

bid,i)
)

=Ṽt(φ)− Ṽt(φ) = 0

=
K∑
i=1

(ξl,it D
ask,i
t − ξi,st D

bid,i
t ). (2.27)

Since ∆ξu = ∆φu for any u ≥ t + 1, and φ is a self-financing trading strategy, then

also in view of (2.27), we conclude that ξ is a self-financing strategy. Hence, ξ ∈ S(t),

and VT (ξ) = VT (φ)− Vt(φ) which implies that VT (ξ) ≥ 0, P(VT (ξ) > 0) > 0.

(2) ⇒ (3) Assume that ξ ∈ S(t), and VT (ξ) ≥ 0, P(VT (ξ) > 0) > 0. Then, we define

the process H as follows

Hs :=


0, s = 0, . . . , t,

∆Vs(ξ), s = t+ 1, . . . , T.

Then H ∈ H0(t),
∑T

s=t+1 Hs =
∑T

s=0 ∆Vs(ξ) = VT (ξ) ≥ 0, and thus P(
∑T

s=t+1Hs >

0) = P(VT (ξ) > 0) > 0.

(3)⇒ (2) Now, suppose that there exists a cash flow
(
0, . . . , 0, Ĥt+1, . . . , ĤT

)
∈ H0(t)

such that
∑T

s=t+1 Ĥs ≥ 0 and P(
∑T

s=t+1 Ĥs > 0) > 0. Then, by definition of H0(t)

there exists a ξ ∈ S(t) such that Vt(ξ) = 0, ∆Vs(ξ) = Ĥs, s ∈ {t+ 1, . . . , T} and

VT (ξ) =
T∑
s=0

∆Vs(ξ) =
T∑

s=t+1

Ĥs ≥ 0.

Moreover, P(VT (ξ) > 0) = P(
∑T

s=t+1 Ĥs > 0) > 0. Thus, (3) holds true.

This concludes the proof.
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Remark 2.3.2. With the results from Proposition 2.3.1 at hand, we say that the

no-arbitrage condition (NA) for H0(t) holds if (3) does not hold, and throughout this

section, we will characterize arbitrage opportunities by properties (2) or (3) as in

Proposition 2.3.1.

Clearly, since S(t+1) ⊂ S(t), absence of arbitrage at time t ∈ {0, 1, . . . , T−1}

implies absence of arbitrage at any future times s, s = t+ 1, . . . , T − 1. In particular,

if a market is arbitrage free at time 0, then such market is arbitrage free at any

time t ∈ T . Hence, to show that there is no arbitrage opportunity in the market,

it is enough to show that there is no arbitrage at time 0. Accordingly, we have the

following definition.

Definition 2.3.5. Our market model is called arbitrage free if there exists no arbitrage

opportunity in the model at time 0.

It is important to observe though, that, contrary to the classical frictionless

market model, absence of arbitrage at time t = 1, . . . , T − 1, in models considered

here does not (in general) imply absence of arbitrage at time s, where s < t. This

will be illustrated in the following example.

Example 2.3.4. Let T = 2, Ω = {ω1, ω2, ω3, ω4}, and we consider a market with one

banking account and one security paying no dividend. Assume that the pricing oper-

ator is homogeneous with respect to the number shares traded, and the price process

of the security is given in Table 2.2.

Consider the trading strategy ξ1 = (−10, 1), ξ2(ω1, ω2) = (1, 0) and

ξ2(ω3, ω4) = (0, 0). Thus, ξ is a self-financing strategy such that Ṽ0 = 0, V1(ω1, ω2) =

V2(ω1, ω2) = 1 and V1(ω3, ω4) = V2(ω3, ω4) = 0. According to Definition 2.3.4, it is

an arbitrage opportunity at time 0. However, it is not hard to observe that for any

ϕ ∈ S(1), ϕ could not be an arbitrage opportunity at time 1.
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Table 2.2. Stock Price Dynamics, Example 2.3.4.

P ask(ω1)/P bid(ω1) P ask(ω2)/P bid(ω2) P ask(ω3)/P bid(ω3) P ask(ω4)/P bid(ω4)

T = 0 10/10 10/10 10/10 10/10

T = 1 12/11 12/11 11/10 11/10

T = 2 13/12 11/10 12/11 10/9

2.3.3 Pricing Operators. In this section we will introduce some pricing operators

for cash flows D ∈ D through an acceptability method and show some properties of

these prices. Then, in the next section, we will show that a market model, in which

the fundamental assets are priced according to our pricing operators, satisfies the

properties postulated in (M2) and (M3), and that this market is arbitrage free in the

sense of Definition 2.3.4.

For any random variable a that is Ft-measurable, and for any process X =

(Xt)t∈T , we will use the following notation:

δt(a) = 1{t}a := {0, . . . , 0, a, 0, . . . , 0},

δ+
t (X) = {0, . . . , 0, Xt+1, . . . , XT}.

For any D ∈ D, δ+
t (D) represents the the future cash flow, at time t ∈ T , of

the dividend stream D. We are going to evaluate this future dividend cash flow, in

other words, to calculate the ex-dividend prices of D, by using an acceptability based

method.

Assume that an investor wants to buy ϕ shares of cash flow D ∈ D at time t ∈

T , where ϕ ∈ Ft, ϕ ≥ 0, then the market as the counterparty will charge P ask
t (ϕ,D)

at time t and promises to deliver δ+
t (D) to the buyer. Thus, the corresponding cash-

flow from the perspective of the market is {0, . . . , 0, P ask
t (ϕ,D),−ϕDt+1, . . . ,−ϕDT}.

To decide the proper price P ask
t (ϕ,D), the market will choose the smallest P ask,D

t (ϕ)

such that
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{0, . . . , 0, P ask
t (ϕ,D),−ϕDt+1, . . . ,−ϕDT} is acceptable with respect to some accept-

ability index αg at some level γ. Similarly, the market will choose the largest

P bid
t (ϕ,D) such that the cash flow

{0, . . . , 0,−P bid
t (ϕ,D), ϕDt+1, . . . , ϕDT} is acceptable at level γ, when an investor is

selling ϕ ≥ 0 shares of D ∈ D at time t ∈ T .

Throughout this section, we will always consider the family of drivers g =

(gx)x>0 that satisfy Assumption G. We proceed by defining the acceptability ask

price ag,γt and the acceptability bid price bg,γt .

Definition 2.3.6. Let g = (gx)x>0 be a family of drivers. The acceptability ask price

of ϕ ∈ L∞+ (Ft) shares of the cash flow D ∈ D, at level γ, at time t ∈ T is defined as

ag,γt (ϕ,D) = ess inf{a ∈ L2(Ft) : αgt (δt(a)− δ+
t (ϕD)) ≥ γ}; (2.28)

and the acceptability bid price of ϕ ∈ L∞+ (Ft) shares of D ∈ D, at level γ, at time

t ∈ T is defined as

bg,γt (ϕ,D) = ess sup{b ∈ L2(Ft) : αgt (δ
+
t (ϕD)− δt(b)) ≥ γ}. (2.29)

For ϕ ∈ L∞+ (Ft) and D ∈ D, ag,γt (ϕ,D) and bg,γt (ϕ,D) are the ex-dividend

prices at time t, therefore, they do not account for D0, . . . , Dt.

Remark 2.3.3. Note that in Definition 2.3.6, ϕ is a Ft-measurable random variable,

thus by applying the pricing operators ag,γt and bg,γt to cash flows generated by any

trading strategy φ, we will get well-defined set-up cost process Ṽt(φ) and liquidation

value process Vt(φ). Also by observing the fact that ag,γt (ϕ,D) = ag,γt (1, ϕD) and

bg,γt (ϕ,D) = bg,γt (1, ϕD), we will prove most results for ag,γt (1, D) and bg,γt (1, D). Then

such results are also true for ag,γt (ϕ,D) and bg,γt (ϕ,D).

Remark 2.3.4. We call ag,γt (1, D) the time t acceptability ask price of D at level γ,

and bg,γt (1, D) the time t acceptability bid price of D at level γ. For simplicity, we

will use the notation ag,γt (D) = ag,γt (1, D) and bg,γt (D) = bg,γt (1, D).
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Remark 2.3.5. We observe that in Definition 2.3.6 ϕ is non-negative. This is con-

sistent with the term “buy/sell ϕ shares of some security” which is used in practice.

Next, we provide some important properties of acceptability ask and bid prices.

Theorem 2.3.1. The acceptability ask and bid prices of D ∈ D, at level γ > 0, at

time t ∈ T , satisfy the following properties:

P1. Representation:

ag,γt (D) = Egγ
[ T∑
s=t+1

Ds

∣∣∣Ft],
bg,γt (D) = −Egγ

[
−

T∑
s=t+1

Ds

∣∣∣Ft].
P2. Non-negative Spread:

ag,γt (D) ≥ bg,γt (D).

P3. Convexity and Concavity:

ag,γt (λD1 + (1− λ)D2) ≤ λag,γt (D1) + (1− λ)ag,γt (D2),

bg,γt (λD1 + (1− λ)D2) ≥ λbg,γt (D1) + (1− λ)bg,γt (D2),

for D1, D2 ∈ D, λ ∈ L∞+ (Ft), 0 ≤ λ ≤ 1.

P4. Market Impact:

ag,γt (λϕ,D) ≤ λag,γt (ϕ,D), bg,γt (λϕ,D) ≥ λbg,γt (ϕ,D), λ, ϕ ∈ L∞+ (Ft), 0 ≤ λ ≤ 1;

ag,γt (λϕ,D) ≥ λag,γt (ϕ,D), bg,γt (λϕ,D) ≤ λbg,γt (ϕ,D), λ, ϕ ∈ L∞+ (Ft), λ ≥ 1.

P5. Time Consistency:

ag,γt (D) = ag,γt (δt+1(Dt+1 + ag,γt+1(D))),

bg,γt (D) = bg,γt (δt+1(Dt+1 + bg,γt+1(D))).
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P6. Linearity (if the drivers are linear): If gγ(t, z) = x(t)z, t ∈ T . Then, there exists

a probability measure Q ∼ P such that

ag,γt (ϕ,D) = bg,γt (ϕ,D) = ϕEQ

[ T∑
s=t+1

Ds

∣∣∣Ft],
for ϕ ∈ L∞+ (Ft).

Proof. In P1, P3, P4 and P5, we will prove the results only for acceptability ask

prices; the case of acceptability bid prices is treated similarly.

P1. Due to G3 of Assumption G, by similar arguments as in Theorem 2.2.2, we get

that αgt (X) ≥ γ for γ > 0 is equivalent to the fact that ρ
gγ
t (X) ≤ 0. Also, in view of

the definition of acceptability ask price, we have

ag,γt (D) = ess inf{a ∈ L2(Ft) : αgt (δt(a)− δ+
t (D)) ≥ γ}

= ess inf

{
a ∈ L2(Ft) : Egγ

[
− a+

T∑
s=t+1

Ds

∣∣∣Ft] ≤ 0

}

= ess inf

{
a ∈ L2(Ft) : a ≥ Egγ

[ T∑
s=t+1

Ds

∣∣∣Ft]}

= Egγ
[ T∑
s=t+1

Ds

∣∣∣Ft].
P2. By convexity of g-expectation, we have that

1

2
Egγ
[ T∑
s=t+1

Ds

∣∣∣Ft]+
1

2
Egγ
[
−

T∑
s=t+1

Ds

∣∣∣Ft] ≥ Egγ[1

2

( T∑
s=t+1

Ds −
T∑

s=t+1

Ds

)∣∣∣Ft] = 0.

Hence, due to property P1, we get ag,γt (D) ≥ bg,γt (D).

P3. Property P3 follows from convexity of gγ(t, ·), convexity of the g-expectation,

and from P1.

P4. By taking D1 = D, and D2 = 0, for λ, ϕ ∈ L∞(Ft), 0 ≤ λ ≤ 1, we have

ag,γt (λϕD) ≤ λag,γt (ϕD). Since ag,γt (λϕD) = ag,γt (λϕ,D) and ag,γt (ϕD) = ag,γt (ϕ,D),

we immediately get that ag,γt (λϕ,D) ≤ λag,γt (ϕ,D).
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For λ ∈ L∞(Ft), λ ≥ 1, D ∈ D, we have that ag,γt (ϕ, D
λ

) = ag,γt (ϕ
λ
, D) ≤

1
λ
ag,γt (ϕ,D).

P5. According to P1 and Proposition 2.1.1 (iii), we have that

ag,γt (δt+1(Dt+1 + ag,γt+1(D))) = Egγ
[
Dt+1 + Egγ

[ T∑
s=t+2

Ds

∣∣∣Ft+1

]∣∣∣Ft]
= Egγ

[
Egγ
[ T∑
s=t+1

Ds

∣∣∣Ft+1

]∣∣∣Ft] = Egγ
[ T∑
s=t+1

Ds

∣∣∣Ft]
= ag,γt (D).

P6. By Proposition 2.1.2, there exists a probability measure Q ∼ P, such that

Egγ [X|Ft] = EQ[X|Ft] for all X ∈ L2(FT ). Then, using P1, for ϕ ∈ Ft, we obtain

ag,γt (ϕ,D) =ag,γt (1, ϕD) = Egγ
[
ϕ

T∑
s=t+1

Ds

∣∣∣Ft]
=EQ

[
ϕ

T∑
s=t+1

Ds

∣∣∣Ft] = ϕEQ

[ T∑
s=t+1

Ds

∣∣∣Ft].
Hence, ag,γt (ϕ,D) = ϕαg,γt (1, D).

This concludes the proof.

Remark 2.3.6. By Property P4 in Theorem 2.3.1 we have that ag,γt (λ,D) ≥ λag,γt (D),

for any λ ≥ 1. This indicates that if an investor is buying a cash flow, the price moves

up against the buyer (the effect of market impact). Converse property holds for the bid

price. Such property of acceptability ask and bid prices is consistent with real market

quotes, as it was shown for equity markets in Example 2.3.3.

In case of classical risk-neutral pricing the discounted cumulative dividend

prices of cash flows are martingales under an equivalent martingale measure Q. In
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our pricing framework, a similar ‘martingale property’ also holds true as shown in

the next result. For a given dividend stream D ∈ D, we define the acceptability

cumulative dividend prices at time t as follows

acld,g,γ
t (D) :=

t∑
s=0

Ds + ag,γt (D),

bcld,g,γ
t (D) :=

t∑
s=0

Ds + bg,γt (D).

As an immediate consequence of Theorem 2.3.1.P5, we obtain.

Corollary 2.3.1. The acceptability ask and bid cumulative dividend prices of a cash-

flow D, at level γ > 0 satisfy

acld,g,γt (D) = ag,γt (δt+1(acld,g,γt+1 (D))),

bcld,g,γt (D) = bg,γt (δt+1(bcld,g,γt+1 (D))).

Remark 2.3.7. This corollary is a counterpart of martingale property in case of

linear pricing. The time t cumulative dividend price of D is equal to evaluating time

t+ 1 cumulative dividend price at time t. We call such property the time consistency

of acceptability ask/bid prices.

So far, we have showed that if the market picks the same level γ > 0 for

the given family of drivers g on both buying and selling side, then we have some

nice properties of the ask and bid prices. On the other hand, in general, market

participants will choose different acceptability levels or different acceptability indices

(different family of drivers) for buying and/or selling. In the rest of this section, we

will provide some results regarding such possibilities.

Proposition 2.3.2. Let g1 and g2 be two families of drivers. Then, ag
1,γ1
t (D) ≥

bg
2,γ2
t (D), for any D ∈ D, t ∈ T , γ1, γ2 > 0.

Proof. We will prove the statement recursively, backward in time component.
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Let At := {ω ∈ Ω : g1
γ1

(ω, t, z) ≥ g2
γ2

(ω, t, z), z ∈ R}, t ∈ T \ {0}. since the

drivers are predictable, both At and Act are Ft−1 measurable, .

By definition of AT , we have that 1AT g
1
γ1

(T, z) ≥ 1AT g
2
γ2

(T, z) and 1AcT g
1
γ1

(T, z)

≤ 1AcT
g2
γ2

(T, z), for all z ∈ R. Hence, in view of Theorem 2.1.2 and Theorem 2.3.1,

we get that

1AT Eg1γ1 [DT |FT−1] ≥ 1AT Eg2γ2 [DT |FT−1] ≥ −1AT Eg2γ2 [−DT |FT−1],

1AcT
Eg1γ1 [DT |FT−1] ≥ −1AcT Eg1γ1 [−DT |FT−1] ≥ −1AcT Eg2γ2 [−DT |FT−1].

Therefore, 1AT a
g1,γ1
T−1 (D) ≥ 1AT b

g2,γ2
T−1 (D) and 1AcT

ag
1,γ1
T−1 (D) ≥ 1AcT

bg
2,γ2
T−1 (D), and thus

the statement holds true for t = T .

Note that by definition of acceptability cumulative dividend prices, we have

that

ag
1,γ1
T−2 (D) +

T−2∑
s=1

Ds = acld,g1,γ1
T−2 (D),

bg
2,γ2
T−2 (D) +

T−2∑
s=1

Ds = bcld,g2,γ2
T−2 (D).

In view of Proposition 2.3.1, we also have that that

acld,g1,γ1
T−2 (D) =Eg1γ1

[
ag

1,γ1
T−1 (D) +

T−1∑
s=1

Ds

∣∣∣FT−2

]
=Eg1γ1

[
ag

1,γ1
T−1 (D) +DT−1

∣∣∣FT−2

]
+

T−2∑
s=1

Ds,

bcld,g2,γ2
T−2 (D) =− Eg2γ2

[
− bg

2,γ2
T−1 (D)−

T−1∑
s=1

Ds

∣∣∣FT−2

]
=− Eg2γ2

[
− bg

2,γ2
T−1 (D)−DT−1

∣∣∣FT−2

]
+

T−2∑
s=1

Ds.

Thus,

ag
1,γ1
T−2 (D) = Eg1γ1 [ag

1,γ1
T−1 (D) +DT−1|FT−2]

and

bg
2,γ2
T−2 (D) = Eg2γ2 [bg

2,γ2
T−1 (D) +DT−1|FT−2].
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In view of above, we have ag
1,γ1
T−1 (D) + DT−1 ≥ bg

2,γ2
T−1 (D) + DT−1. Consequently,

applying again the comparison Theorem 2.1.2 and Theorem 2.3.1, we deduce

1AT−1
Eg1γ1 [ag

1,γ1
T−1 (D) +DT−1|FT−2] ≥ 1AT−1

Eg2γ2 [bg
2,γ2
T−1 (D) +DT−1|FT−2]

≥ −1AT−1
Eg2γ2 [−bg

2,γ2
T−1 (D)−DT−1|FT−2],

and

1AcT−1
Eg1γ1 [ag

1,γ1
T−1 (D) +DT−1|FT−2] ≥ −1AcT−1

Eg1γ1 [−ag
1,γ1
T−1 (D)−DT−1|FT−2]

≥ −1AcT−1
Eg1γ1 [−bg

2,γ2
T−1 (D)−DT−1|FT−2].

Therefore, ag
1,γ1
T−2 (D) ≥ bg

2,γ2
T−2 (D). We continue this backward procedure for any finite

number of steps till t = 0.

The proof is complete.

Proposition 2.3.2 shows that regardless of what drivers and what level of ac-

ceptability one chooses for buying and selling side, the ask price will be greater than

the bid price. In particular, when the same family of drivers g is chosen for both

trading sides, then ag,γ1t (D) ≥ bg,γ2t (D), for any D ∈ D, t ∈ T , γ1, γ2 > 0.

The next result shows that the bid-ask spread increases when acceptability

level is increased.

Proposition 2.3.3. For any γ2 ≥ γ1 > 0, t ∈ T , and any D ∈ D,

ag,γ1t (D) ≤ ag,γ2t (D), bg,γ1t (D) ≥ bg,γ2t (D).

Proof. It is sufficient to note that

{a ∈ Ft : αgt (δt(a)− δ+
t (D)) ≥ γ2} ⊆ {a ∈ Ft : αgt (δt(a)− δ+

t (D)) ≥ γ1},

for any γ2 ≥ γ1. Using the definition of acceptability ask and bid prices, the result

follows at once.
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Suppose that two counterparties A and B are looking to make a trade on a

cash flow D at time t, such as, A is willing to sell ϕ ∈ L∞+ (Ft) shares of D, and

B wants to buy ϕ shares of D. Assume that both parties are using acceptability

pricing theory. Namely, party A will use the family of drivers g1, and level γ1, to

calculate his ask price, and party B will use g2, and level γ2, to calculate her bid

price. Clearly the trade will happen only if B’s bid price meets A’s ask price. Note

that Proposition 2.3.2 guarantees only that ag
1,γ1
t (ϕ,D) ≥ bg

2,γ2
t (ϕ,D), and hence, it

is important to investigate under which conditions ag
1,γ1
t (ϕ,D) = bg

2,γ2
t (ϕ,D). Not to

our surprise, this question has a close connection to linear pricing theory. As shown

in the next result, in order for bid and ask prices to coincide, the drivers (and hence

the prices) have to be locally linear.

Proposition 2.3.4. Let A ∈ Ft, g1 and g2 be two families of drivers, γ1, γ2 > 0.

Also, fix t ∈ T , D ∈ D. Then,

1Aa
g1,γ1
t (ϕ,D) = 1Ab

g2,γ2
t (ϕ,D)

if and only if there exists a driver g̃t,D,A,ϕ such that g̃t,D,A,ϕ(s, ·), s = t + 1, . . . , T , is

linear, and

1AEg1γ1
[
λ

T∑
s=t+1

Ds

∣∣∣Ft] = 1AEg̃t,D,A,ϕ
[
λ

T∑
s=t+1

Ds

∣∣∣Ft];
1AEg2γ2

[
− λ

T∑
s=t+1

Ds

∣∣∣Ft] = 1AEg̃t,D,A,ϕ
[
− λ

T∑
s=t+1

Ds

∣∣∣Ft],
(2.30)

for any 0 ≤ λ ≤ ϕ.

Proof. (⇐=) If there exists a driver g̃t,D,A,ϕ such that g̃t,D,A,ϕ(s, ·), s = t + 1, . . . , T ,

is linear, and

1AEg1γ1
[
λ

T∑
s=t+1

Ds

∣∣∣Ft] = 1AEg̃t,D,A,ϕ
[
λ

T∑
s=t+1

Ds

∣∣∣Ft],
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1AEg2γ2
[
− λ

T∑
s=t+1

Ds

∣∣∣Ft] = 1AEg̃t,D,A,ϕ
[
− λ

T∑
s=t+1

Ds

∣∣∣Ft],
for 0 ≤ λ ≤ ϕ, then, by taking λ = ϕ, we have

1Aa
g1,γ1
t (ϕ,D) = 1AEg1γ1

[
ϕ

T∑
s=t+1

Ds

∣∣∣Ft] = 1AEg̃t,D,A,ϕ
[
ϕ

T∑
s=t+1

Ds

∣∣∣Ft];
1Ab

g2,γ2
t (ϕ,D) = −1AEg2γ2

[
− ϕ

T∑
s=t+1

Ds

∣∣∣Ft] = 1AEg̃t,D,A,ϕ
[
ϕ

T∑
s=t+1

Ds

∣∣∣Ft],
and hence, 1Aa

g1,γ1
t (ϕ,D) = 1Ab

g2,γ2
t (ϕ,D).

(=⇒) Assume that 1Aa
g1,γ1
t (ϕ,D) = 1Ab

g2,γ2
t (ϕ,D). Then, for 0 ≤ λ ≤ ϕ, there exists

0 ≤ λ′ ≤ 1 such that λ = λ′ϕ. By Theorem 2.3.1.P4, we get

1Aa
g1,γ1
t (λ,D) ≤ 1Aλ

′ag
1,γ1
t (ϕ,D) = 1Aλ

′bg
2,γ2
t (ϕ,D) ≤ 1Ab

g2,γ2
t (λ,D),

however, in view of Proposition 2.3.2, we have that 1Aa
g1,γ1
t (λ,D) ≥ 1Ab

g2,γ2
t (λ,D).

Therefore,

1Aa
g1,γ1
t (λ,D) = 1Aλ

′ag
1,γ1
t (ϕ,D) = 1Aλ

′bg
2,γ2
t (ϕ,D) = 1Ab

g2,γ2
t (λ,D), (2.31)

Let (Eg1γ1 [1Aϕ
∑T

u=t+1Du|Fs], Z̃s, M̃s), t ≤ s ≤ T , be the solution of BS∆E corre-

sponding to driver g1
γ1

and terminal condition 1Aϕ
∑T

s=t+1Ds. Let us define xt,D,A,ϕs

for t+ 1 ≤ s ≤ T as

xt,D,A,ϕs =


g1γ1 (s,Z̃s)

Z̃s
if Z̃s 6= 0

0 if Z̃s = 0.

(2.32)

Next, we define g̃t,D,A,ϕ(s, z) = xt,D,A,ϕs z for t+ 1 ≤ s ≤ T , and z ∈ R. We will

show that g̃t,D,A,ϕ is the desired driver.

First, let us show that g̃t,D,A,ϕ satisfies Assumption A. First note that xt,D,A,ϕs

defined in (2.32) is Fs−1-measurable, and thus g̃t,D,A,ϕ(s, z) is Fs−1-measurable for

any z ∈ R, and so it satisfies A1. Since g1
γ1

satisfies assumption A2, then |xt,D,A,ϕs | =
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|g1γ1 (s,Z̃s)|
|Z̃s|

≤ c1
γ1

(s) on the set {Z̃s 6= 0}, where c1
γ1

(s) is the Lipschitz coefficient of

g1
γ1

, for s ∈ {t + 1, . . . , T}. Of course, |xt,D,A,ϕs | = 0 ≤ c1
γ1

(s) on the complement of

{Z̃s 6= 0}, for s ∈ {t + 1, . . . , T}. Thus, g̃t,D,A,ϕ satisfies A2. Clearly, g̃ satisfies A3,

and thus it satisfies Assumption A.

Next, we will show that the identities (2.30) are fulfilled. By the construction

of g̃t,D,A,ϕ, we have that 1AEg1γ1 [ϕ
∑T

s=t+1Ds|Ft] = 1AEg̃t,D,A,ϕ [ϕ
∑T

s=t+1 Ds|Ft], and

thus, for 0 ≤ λ ≤ ϕ, with λ = λ′ϕ, we get

1AEg̃t,D,A,ϕ
[
λ

T∑
s=t+1

Ds

∣∣∣Ft] = 1Aλ
′Eg̃t,D,A,ϕ

[
ϕ

T∑
s=t+1

Ds

∣∣∣Ft] = 1Aλ
′Eg1γ1

[
ϕ

T∑
s=t+1

Ds

∣∣∣Ft]
= 1AEg1γ1

[
λ

T∑
s=t+1

Ds

∣∣∣Ft],
where the last equality holds because of (2.31). Second identity in (2.30) is proved

similarly.

This concludes the proof.

Remark 2.3.8. Proposition 2.3.4 implies that ag
1,γ1
t (ϕ,D) = bg

2,γ2
t (ϕ,D) if and only

if ag
1,γ1
t (λ,D) = bg

2,γ2
t (λ,D), for any 0 ≤ λ ≤ ϕ. In other words, if two counterparties

agree on the prices for ϕ shares, then they will also agree on prices for any smaller

(positive) number of shares λϕ.

To conclude this section, we show that if αg
1,γ1
t (D) = bg

2,γ2
t (D) for all D ∈ D

and t ∈ T , then g1
γ1

and g2
γ2

have to be equal and linear. This is one reason why the

results in Proposition 2.3.4 hold true only locally.

Proposition 2.3.5. Let g1 and g2 be two families of drivers, and γ1, γ2 > 0.

(i) Assume that ag
1,γ1
t (D) = bg

2,γ2
t (D) for any D ∈ D, and for a fixed t ∈ T . Then,
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Eg1γ1
[
· |Ft]=Eg2γ2

[
· |Ft]. Moreover, in this case the functional Eg1γ1

[
· |Ft] is

linear.

(ii) Assume that ag
1,γ1
t (D) = bg

2,γ2
t (D) for any D ∈ D, and any t ∈ T . Then, there

exists a driver g̃(t, z) such that g̃(t, ·) is linear, and g1
γ1

(t, z) = g2
γ2

(t, z) = g̃(t, z)

for any t ∈ T , z ∈ R.

Proof. Due to the assumption and the representations of bid/ask prices, we have

Eg1γ1
[ T∑
s=t+1

Ds

∣∣∣Ft] = −Eg2γ2
[
−

T∑
s=t+1

Ds

∣∣∣Ft], D ∈ D. (2.33)

Clearly, (2.33) is also true for −D and therefore

Eg2γ2
[ T∑
s=t+1

Ds

∣∣∣Ft] =− Eg1γ1
[
−

T∑
s=t+1

Ds

∣∣∣Ft]
≤Eg1γ1

[ T∑
s=t+1

Ds

∣∣∣Ft] = −Eg2γ2
[
−

T∑
s=t+1

Ds

∣∣∣Ft].
Since −Eg2γ2 [−

∑T
s=t+1Ds|Ft] ≤ Eg2γ2 [

∑T
s=t+1Ds|Ft], then

Eg2γ2
[ T∑
s=t+1

Ds

∣∣∣Ft] =− Eg1γ1
[
−

T∑
s=t+1

Ds

∣∣∣Ft]
=Eg1γ1

[ T∑
s=t+1

Ds

∣∣∣Ft] = −Eg2γ2
[
−

T∑
s=t+1

Ds

∣∣∣Ft]
(2.34)

for any D ∈ D.

In view of (2.34), we have that ag
i,γi
t (ϕ,D) = ag

i,γi
t (1, ϕD) = bg

i,γi
t (1, ϕD) =

bg
i,γi
t (ϕ,D), i = 1, 2, and thus, by Proposition 2.3.4, we obtain that

Egiγi
[
ϕ

T∑
s=t+1

Ds

∣∣∣Ft] = ϕEgiγi
[ T∑
s=t+1

Ds

∣∣∣Ft], i = 1, 2, (2.35)

for any ϕ ∈ L∞+ (Ft), D ∈ D. Moreover, by (2.34) again, equation (2.35) is also true

for ϕ ∈ L∞− (Ft). Hence, (2.35) is true for any ϕ ∈ L∞(Ft).



69

To proceed, letD1, D2 ∈ D, a, b ∈ L∞(Ft). Then by convexity of g-expectation

and (2.35), we have that

Egiγi
[
a

T∑
s=t+1

D1
s + b

T∑
s=t+1

D2
s

∣∣∣Ft] ≤ 1

2
Egiγi
[
2a

T∑
s=t+1

D1
s

∣∣∣Ft]+
1

2
Egiγi
[
2b

T∑
s=t+1

D2
s

∣∣∣Ft]
= aEgiγi

[ T∑
s=t+1

D1
s

∣∣∣Ft]+ bEgiγi
[ T∑
s=t+1

D2
s

∣∣∣Ft].
Due to (2.34), it is also true that

Egiγi
[
a

T∑
s=t+1

D1
s + b

T∑
s=t+1

D2
s

∣∣∣Ft] ≥ aEgiγi
[ T∑
s=t+1

D1
s

∣∣∣Ft]+ bEgiγi
[ T∑
s=t+1

D2
s

∣∣∣Ft],
and consequently, in view of the above, we deduce that

Egiγi
[
a

T∑
s=t+1

D1
s + b

T∑
s=t+1

D2
s

∣∣∣Ft] = aEgiγi
[ T∑
s=t+1

D1
s

∣∣∣Ft]+ bEgiγi
[ T∑
s=t+1

D2
s

∣∣∣Ft]. (2.36)

Thus, (2.34), (2.35) and (2.36) imply that Eg1γ1 [ · |Ft] = Eg2γ2 [ · |Ft], and that they are

linear.

If ag
1,γ1
t (D) = bg

2,γ2
t (D) for any D ∈ D, t ∈ T , then Eg1γ1 [ · |Ft] = Eg2γ2 [ · |Ft]

and they are linear for any t ∈ T . By Proposition 2.1.3, there exists a linear driver

g̃(t, z) such that g1
γ1

(t, z) = g2
γ2

(t, z) = g̃(t, z), t ∈ T , z ∈ R.

This concludes the proof.

2.3.4 Market Models. In this section, we will consider some market models that

follow the set-up introduced in Section 2.3.1. Recall that a market is denoted by

a triple (M, P ask, P bid), where M is the subspace of D that consists of processes

Dask/bid,i, i = 1, . . . , K, as in (M1), and of D0 = (0, . . . , 0, 1), which is the dividend

process of the banking account. The functionals P ask and P bid allow to compute the

ex-dividend prices of the cash flow D̃ ∈ M. We will define P ask and P bid by using

pricing operators introduced in Section 2.3.3.



70

Ask and Bid Prices Computed at the Same Acceptability Level

Let g be a family of drivers that satisfies Assumption G, and let γ > 0. We

consider the market model (M, ag,γ, bg,γ). Namely, we put

P ask
t (ϕ, D̃) = ag,γt (ϕ, D̃), P bid

t (ϕ, D̃) = bg,γt (ϕ, D̃),

for any cash flow D̃ ∈M, and ϕ ∈ L∞+ (Ft).

Since ag,γ, bg,γ : L∞+ (Ft)×D → L2(Ft), for any t ∈ T , then such market is well-

defined. Moreover, due to Theorem 2.3.1, we also have the following representation

P ask
t (ϕ, D̃) = Egγ

[
ϕ

T∑
s=t+1

D̃s

∣∣∣Ft],
P bid
t (ϕ, D̃) = −Egγ

[
− ϕ

T∑
s=t+1

D̃s

∣∣∣Ft].
According to Proposition 2.1.1, we have that P ask

t (0, D̃) = Egγ [0|Ft] = 0, and

P bid
t (0, D̃) = −Egγ [0|Ft] = 0. Hence, the market satisfies assumption (M2). In

particular, for D0 = (0, . . . , 0, 1), it is clear that

P ask
t (ϕ,D0) = ag,γt (ϕ,D0) = Egγ [ϕ|Ft] = ϕ,

P bid
t (ϕ,D0) = bg,γt (ϕ,D0) = −Egγ [−ϕ|Ft] = ϕ,

for any ϕ ∈ L∞+ (Ft), which implies that the market satisfies (M3).

Next, we will show that our market satisfies the following important properties,

proved over the course of two theorems:

(M4) The market is arbitrage-free.

(M5) For any D̃ ∈M, λ ∈ L∞(Ft), 0 ≤ λ ≤ 1, t ∈ T ,

P ask
t (λϕ1 + (1− λ)ϕ2, D̃) ≤ λP ask

t (ϕ1, D̃) + (1− λ)P ask
t (ϕ2, D̃),

P bid
t (λϕ1 + (1− λ)ϕ2, D̃) ≥ λP bid

t (ϕ1, D̃) + (1− λ)P bid
t (ϕ2, D̃).
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(M6) For any D̃ ∈ M, ϕ1, λ ∈ L∞+ (Ft), ϕ2 ∈ L∞− (Ft), 0 ≤ λ ≤ 1, i = 1, . . . , K, and

t ∈ T ,

λP ask
t (ϕ1, D̃)− (1− λ)P bid

t (−ϕ2, D̃) ≥ 1ϑ≥0P
ask
t (ϑ, D̃)− 1ϑ<0P

bid
t (−ϑ, D̃),

where ϑ = λϕ1 + (1− λ)ϕ2.

Properties (M5) and (M6) imply that diversification in the trading is favored. If an

investor nets his purchasing and selling in a convex way, then the cost of trading will

be reduced.

Now we proceed by showing that such market is arbitrage free.

Theorem 2.3.2. The market model (M, ag,γ, bg,γ), γ > 0, is arbitrage free.

Proof. Assume, the market admits an arbitrage, so that, according to Proposition

2.3.1, there is a trading strategy φ ∈ S(0, γ) := S(0, ag,γ, bg,γ), such that VT (φ) ≥ 0

and P(VT (φ) > 0) > 0. We will show that this leads to a contradiction, by showing

that for a self-financing portfolio φ inequality (2.40) below is satisfied, leading to a

contradictory inequality that P(0 > 0) > 0.

Note that

VT (φ) =φ0
T +

K∑
i=1

(
φl,iT D

ask,i
T − φs,iT D

bid,i
T

)
=φ0

1 +
T∑
s=2

∆φ0
s +

K∑
i=1

(
φl,iT D

ask,i
T − φs,iT D

bid,i
T

)
.

Since φ is self-financing, then we have

∆φ0
u =

K∑
i=1

(
φl,iu−1D

ask,i
u−1 − φ

s,i
u−1D

bid,i
u−1

)
−

K∑
i=1

(
1∆φl,iu ≥0a

g,γ
u−1(∆φl,iu , D

ask,i)

− 1∆φl,iu <0b
g,γ
u−1(−∆φl,iu , D

ask,i)− 1∆φs,iu ≥0b
g,γ
u−1(∆φs,iu , D

bid,i)

+ 1∆φs,iu <0a
g,γ
u−1(∆φs,iu , D

bid,i)
)
, u = 2, . . . , T.
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For convenience, we use the following notations:

ξ0
t = φ0

t , t = 1, . . . , T,

ξit = φl,it , i = 1, . . . , K, t = 1, . . . , T, (2.37)

ξjt = −φs,j−Kt , j = K + 1, . . . , 2K, t = 1, . . . , T.

Also, let us define D̂ as

D̂0 = D0,

D̂i = Dask,i, i = 1, . . . , K,

D̂j = Dbid,j−K , j = K + 1, . . . , 2K.

Then, we have that

∆ξ0
t =

2K∑
i=1

ξit−1D̂
i
t−1 −

2K∑
i=1

Egγ
[
∆ξit

T∑
s=t

D̂i
s

∣∣∣Ft−1

]
, t = 2, . . . , T,

VT (φ) =ξ0
T +

2K∑
i=1

ξiT D̂
i
T = ξ0

1 +
T∑
s=2

∆ξ0
s +

2K∑
i=1

ξiT D̂
i
T

=ξ0
1 +

T∑
s=2

( 2K∑
i=1

ξis−1D̂
i
s−1 −

2K∑
i=1

Egγ
[
∆ξis

T∑
u=s

D̂i
u

∣∣∣Fs−1

])
+

2K∑
i=1

ξiT D̂
i
T

=ξ0
1 +

T∑
s=2

( 2K∑
i=1

ξis−1D̂
i
s−1 −

2K∑
i=1

Egγ
[
∆ξis

T∑
u=s

D̂i
u

∣∣∣Fs−1

])
+

2K∑
i=1

(ξi1 +
T∑
s=2

∆ξis)D̂
i
T .

By multiplying both sides by 1
2KT

, and applying the conditional g-expectation
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Egγ [ · |FT−1] to both sides, in view of Proposition 2.1.1.(v), we deduce

Egγ
[ 1

2KT
VT (φ)

∣∣∣FT−1

]
=

1

2TK
ξ0

1 +
1

2TK

T∑
s=2

2K∑
i=1

ξis−1D̂
i
s−1 (2.38)

− 1

2TK

T∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=s

D̂i
u

∣∣∣Fs−1

]
+ Egγ

[ 1

2KT

2K∑
i=1

(ξi1 +
T∑
s=2

∆ξis)D̂
i
T

∣∣∣FT−1

]
≤ 1

2KT
ξ0

1 +
1

2KT

T∑
s=2

2K∑
i=1

ξis−1D̂
i
s−1 −

1

2KT

T∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=s

D̂i
u

∣∣∣Fs−1

]
+

1

2KT

2K∑
i=1

Egγ
[
ξi1D̂

i
T

∣∣∣FT−1

]
+

1

2KT

T∑
s=2

2K∑
i=1

Egγ
[
∆ξisD̂

i
T

∣∣∣FT−1

]
=

1

2KT
ξ0

1 +
1

2KT

T∑
s=2

2K∑
i=1

ξis−1D̂
i
s−1 −

1

2KT

T−1∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=s

D̂i
u

∣∣∣Fs−1

]
+

1

2KT

2K∑
i=1

Egγ
[
ξi1D̂

i
T

∣∣∣FT−1

]
+

1

2KT

T−1∑
s=2

2K∑
i=1

Egγ
[
∆ξisD̂

i
T

∣∣∣FT−1

]
.

Since VT (φ) ≥ 0, P(VT (φ) > 0) > 0, then by Proposition 2.1.1.(ii) applied to the left

hand side of (2.38), we have that

Egγ
[ 1

2KT
VT (φ)

∣∣∣FT−1

]
≥ 0, and P

(
Egγ
[ 1

2KT
VT (φ)

∣∣∣FT−1

]
> 0

)
> 0.

Consequently,

ξ0
1 +

T−1∑
s=2

2K∑
i=1

ξis−1D̂
i
s−1 −

T−1∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=s

D̂i
u

∣∣∣Fs−1

]
+

2K∑
i=1

Egγ
[
ξi1

T∑
u=T−1

D̂i
u

∣∣∣FT−1

]
+

T−1∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=T−1

D̂i
u

∣∣∣FT−1

]
≥ 0,

and the strict inequality holds on some set with positive probability. Let us use the

notation

Πt :=ξ0
1 +

t∑
s=2

2K∑
i=1

ξis−1D̂
i
s−1 −

t∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=s

D̂i
u

∣∣∣Fs−1

]
+

2K∑
i=1

Egγ
[
ξi1

T∑
u=t

D̂i
s

∣∣∣Ft]+
t∑

s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=t

D̂i
u

∣∣∣Ft], (2.39)

where t ∈ {1, . . . , T − 1}. We just showed that ΠT−1 ≥ 0 and P(ΠT−1 > 0) > 0.

Next, we are going to prove that Πt ≥ 0 and P(Πt > 0) > 0 will imply that Πt−1 ≥ 0,

P(Πt−1 > 0) > 0, for any t ∈ {2, . . . , T − 1}.
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Using Proposition 2.1.1.(iii)-(iv), we obtain that

Egγ
[ 1

2Kt
Πt

∣∣∣Ft−1

]
=

1

2Kt

(
ξ0

1 +
t∑

s=2

2K∑
i=1

ξis−1D̂
i
s−1 −

t∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=s

D̂i
u

∣∣∣Fs−1

])
+ Egγ

[ 1

2Kt

2K∑
i=1

Egγ
[
ξi1

T∑
u=t

D̂i
u

∣∣∣Ft]+
1

2Kt

t∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=t

D̂i
u

∣∣∣Ft]∣∣∣Ft−1

]
≤ 1

2Kt

(
ξ0

1 +
t∑

s=2

2K∑
i=1

ξis−1D̂
i
s−1 −

t∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=s

D̂i
u

∣∣∣Fs−1

])
+

1

2Kt

2K∑
i=1

Egγ
[
ξi1

T∑
u=t

D̂i
u

∣∣∣Ft−1

]
+

1

2Kt

t∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=t

D̂i
u

∣∣∣Ft−1

]
=

1

2Kt

(
ξ0

1 +
t∑

s=2

2K∑
i=1

ξis−1D̂
i
s−1 −

t−1∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=s

D̂i
u

∣∣∣Fs−1

])
+

1

2Kt

2K∑
i=1

Egγ
[
ξi1

T∑
u=t

D̂i
u

∣∣∣Ft−1

]
+

1

2Kt

t−1∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=t

D̂i
u

∣∣∣Ft−1

]
=

1

2Kt

(
ξ0

1 +
t−1∑
s=2

2K∑
i=1

ξis−1D̂
i
s−1 −

t−1∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=s

D̂i
u

∣∣∣Fs−1

])
+

1

2Kt

2K∑
i=1

Egγ
[
ξi1

T∑
u=t−1

D̂i
u

∣∣∣Ft−1

]
+

1

2Kt

t−1∑
s=2

2K∑
i=1

Egγ
[
∆ξis

T∑
u=t−1

D̂i
u

∣∣∣Ft−1

]
=

1

2Kt
Πt−1,

for t ∈ {2, . . . , T − 1}. Since Πt ≥ 0 and P(Πt > 0) > 0, then according to Propo-

sition 2.1.1.(ii), we get that Egγ
[

1
2Kt

Πt

∣∣∣Ft−1

]
and P(Egγ

[
1

2Kt
Πt

∣∣∣Ft−1

]
> 0) > 0, and

thus Πt−1 ≥ 0, P(Πt−1 > 0) > 0. Hence, by backward induction, it is true that

Π1 = ξ0
1 +

2K∑
i=1

Egγ
[
ξi1

T∑
s=1

D̂i
s

∣∣∣F1

]
≥ 0,

and P(Π1 > 0) > 0. Consequently, in view of (2.37) and the representation for ag,γ

and bg,γ (cf. Theorem 2.3.1) we obtain that

0 ≤ 1

2K
ξ0

1 +
1

2K

2K∑
i=1

Egγ
[
ξi1

T∑
s=1

D̂i
s

]
=

1

2K
φ0

1 +
1

2K

K∑
i=1

(
ag,γ0 (φl,i1 , D

ask,i)− bg,γ0 (−φs,i1 , D
bid,i)

)
,
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and

P
(
φ0

1 +
K∑
i=1

(
ag,γ0 (φl,i1 , D

ask,i)− bg,γ0 (−φs,i1 , D
bid,i)

)
> 0
)
> 0. (2.40)

Since φ is a self-financing, then

ξ0
1 = −

K∑
i=1

(
ag,γ0 (φl,i1 , D

ask,i)− bg,γ0 (−φs,i1 , D
bid,i)

)
.

Thus, (2.40) means that P(0 > 0) > 0, which is a contradiction.

Proposition 2.3.6. Assume that (M, P ask, P bid) = (M, ag,γ, bg,γ), γ > 0. Then,

properties (M5) and (M6) hold true.

Proof. Due to Theorem 2.3.1.P3, we have that

P ask
t (λϕ1 + (1− λ)ϕ2, D̃) ≤ λP ask

t (ϕ1, D̃) + (1− λ)P ask
t (ϕ2, D̃),

and

P bid
t (λϕ1 + (1− λ)ϕ2, D̃) ≥ λP bid

t (ϕ1, D̃) + (1− λ)P bid
t (ϕ2, D̃),

for any D̃ ∈M, λ ∈ L∞(Ft), 0 ≤ λ ≤ 1, t ∈ T , which implies that condition (M5) is

satisfied.

We are left to show that (M6) holds. In view of Theorem 2.3.1.P1, we have

that

λP ask
t (ϕ1, D̃)− (1− λ)P bid

t (−ϕ2, D̃)

= λEgγ
[
ϕ1

T∑
s=t+1

D̃s

∣∣∣Ft]+ (1− λ)Egγ
[
ϕ2

T∑
s=t+1

D̃s

∣∣∣Ft]
≥ Egγ

[
ϑ

T∑
s=t+1

D̃s

∣∣∣Ft] = 1ϑ≥0P
ask
t (ϑ, D̃)− 1ϑ<0P

bid
t (−ϑ, D̃).

This concludes the proof.
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In Theorem 2.3.2, we showed that if we take a family of drivers g = (gx)x>0,

and if we choose the same acceptability level γ > 0 to define the ask and bid prices,

then the market model using such prices is arbitrage free. In next section, using the

results from the current section, we will prove that market model is still arbitrage

free even we choose different acceptability level for the two trading sides.

Ask and Bid Prices Computed at Different Acceptability Levels

Let g be a family of drivers that satisfies Assumption G. Also, let γ1, γ2 > 0.

We consider the market model (M, ag,γ1 , bg,γ2). That is P ask
t (ϕ, D̃) = ag,γ1t (ϕ, D̃) and

P bid
t (ϕ, D̃) = bg,γ2t (ϕ, D̃), for D̃ ∈M, ϕ ∈ L∞+ (Ft).

Similarly as in Section 2.3.4, it is not hard to verify here that the market model

of the present section satisfies properties (M2) and (M3), and we leave the verification

of these properties to the reader. At this time we are unable to verify that property

(M6) holds for this market. However, we can verify that property (M5) holds.

Theorem 2.3.3. The market model (M, ag,γ1 , bg,γ2), γ1, γ2 > 0, is arbitrage free.

Proof. First, we consider the case γ1 ≤ γ2. We will prove the result by contradiction.

Namely, we will assume that market model (M, ag,γ1 , bg,γ2) admits an arbitrage, and

we will conclude that market model (M, ag,γ1 , bg,γ1) also admits an arbitrage, which is

impossible in view of Theorem 2.3.2. Intuitively, the statement and its proof is clear:

since bg,γ1 ≥ bg,γ2 , one will trade at higher bid prices in the new market (M, ag,γ1 , bg,γ1),

and hence it is enough to trade in this market all assets but banking account according

to the arbitrage strategy from (M, ag,γ1 , bg,γ2). Finally, the banking account is set up

such that the trading strategy remains self-financing in (M, ag,γ1 , bg,γ1).

Let us assume that the market model (M, ag,γ1 , bg,γ2) admits an arbitrage

opportunity, which, according to Proposition 2.3.1, means that there is a trading
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strategy φ ∈ S(0, ag,γ1 , bg,γ2), such that VT (φ) ≥ 0 and P(VT (φ) > 0) > 0. Using φ,

we will construct an arbitrage strategy ξ ∈ S(0, ag,γ1 , bg,γ1). Specifically, we set

ξ0
1 = −

K∑
i=1

(
ag,γ10 (φl,i1 , D

ask,i)− bg,γ10 (φs,i1 , D
bid,i)

)
,

ξ
l/s,i
1 = φ

l/s,i
1 , i = 1, . . . , K,

and

ξ0
t = ξ0

1 +
t∑

u=2

ζu, t = 2, . . . , T,

ξit = φit, i = 1, . . . , K, t = 2, . . . , T,

where

ζ0
t =

K∑
i=1

(
φl,it−1D

ask,i
t−1 − φ

s,i
t−1D

bid,i
t−1

)
−

K∑
i=1

(
1∆φl,it ≥0a

g,γ1
t−1 (∆φl,it , D

ask,i)

− 1∆φl,it <0b
g,γ1
t−1 (−∆φl,it , D

ask,i)− 1∆φs,it ≥0b
g,γ1
t−1 (∆φs,it , D

bid,i)

+ 1∆φs,it <0a
g,γ1
t−1 (−∆φs,it , D

bid,i)
)
, t = 2, . . . , T.

First, we will show that ξ ∈ S(0, ag,γ1 , bg,γ1). We have that3

V γ1
0 (ξ) =∆ξ0

1 +
K∑
i=1

(
1∆ξl,i1 ≥0P

ask
0 (∆ξl,i1 , D

ask,i)− 1∆ξl,i1 <0P
bid
0 (−∆ξl,i1 , D

ask,i)

− 1∆ξs,i1 ≥0P
bid
0 (∆ξs,i1 , Dbid) + 1∆ξs,i1 <0P

ask
0 (−∆ξs,i1 , Dbid)

)
=−

K∑
i=1

(
ag,γ10 (φl,i1 , D

ask,i)− bg,γ10 (φs,i1 , D
bid,i)

)
+

K∑
i=1

(
ag,γ10 (φl,i1 , D

ask,i)− bg,γ10 (φs,i1 , D
bid,i)

)
=0 =

K∑
i=1

(
ξl,i1 D

ask,i
0 − ξs,i1 Dbid,i

0

)
,

3Here, we are using the convention that V γ1 is computed relative to the model
(M, ag,γ1 , bg,γ1), and that V γ1,γ2 is computed relative to the model (M, ag,γ1 , bg,γ2).
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and

∆ξ0
t+1 +

K∑
i=1

(
1∆ξl,it+1≥0P

ask
t (∆ξl,it+1, D

ask,i)− 1∆ξl,it+1<0P
bid
t (−∆ξl,it+1, D

ask,i)

− 1∆ξs,it+1≥0P
bid
t (∆ξs,it+1, D

bid) + 1∆ξs,it+1<0P
ask
t (−∆ξs,it+1, D

bid)
)

=ζ0
t+1 +

K∑
i=1

(
1∆φl,is ≥0a

g,γ1
s−1(∆φl,is , D

ask,i)− 1∆φl,is <0b
g,γ1
s−1(−∆φl,is , D

ask,i)

− 1∆φs,is ≥0b
g,γ1
s−1(∆φs,is , D

bid,i) + 1∆φs,is <0a
g,γ1
s−1(−∆φs,is , D

bid,i)
)

=
K∑
i=1

(ξl,it D
ask,i
t − ξs,it D

bid,i
t ), t = 2, . . . , T.

Hence, ξ is a self-financing trading strategy and ξ ∈ S(0, ag,γ1 , bg,γ1).

Next we will show that ξ0
1 ≥ φ0

1 and ∆ξ0
t ≥ ∆φ0

t , t ∈ {2, . . . , T}, which will

imply that

V γ1
T (ξ) = ξ0

1 +
T∑
t=2

ξ0
t ≥ φ0

1 +
T∑
t=2

φ0
t = V γ1,γ2

T (φ).

Consequently, we have that V γ1
T (ξ) ≥ 0 and P(V γ1

T (ξ) > 0) > 0, and thus ξ is an arbi-

trage opportunity in market model (M, ag,γ1 , bg,γ1), which contradicts Theorem 2.3.2.

Since γ1 ≤ γ2, by Proposition 2.3.3, we get that bg,γ1t (ϕ,D) ≥ bg,γ2t (ϕ,D), for

any ϕ ∈ L∞+ (Ft) and D ∈ D. Hence,

ξ0
1 = −

K∑
i=1

(
ag,γ10 (φl,i1 , D

ask,i)− bg,γ10 (φs,i1 , D
bid,i)

)
≥ −

K∑
i=1

(
ag,γ10 (φl,i1 , D

ask,i)− bg,γ20 (φs,i1 , D
bid,i)

)
= φ0

1,
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and it is clear that ∆ξ0
t = ζt, t ∈ {2, . . . , T}. Moreover,

∆ξ0
t =

K∑
i=1

(
φl,it−1D

ask,i
t−1 − φ

s,i
t−1D

bid,i
t−1

)
−

K∑
i=1

(
1∆φl,it ≥0a

g,γ1
t−1 (∆φl,it , D

ask,i)

− 1∆φl,it <0b
g,γ1
t−1 (−∆φl,it , D

ask,i)− 1∆φs,it ≥0b
g,γ1
t−1 (∆φs,it , D

bid,i)

+ 1∆φs,it <0a
g,γ1
t−1 (−∆φs,it , D

bid,i)
)

≥
K∑
i=1

(
φl,it−1D

ask,i
t−1 − φ

s,i
t−1D

bid,i
t−1

)
−

K∑
i=1

(
1∆φl,it ≥0a

g,γ1
t−1 (∆φl,it , D

ask,i)

− 1∆φl,it <0b
g,γ2
t−1 (−∆φl,it , D

ask,i)− 1∆φs,it ≥0b
g,γ2
t−1 (∆φs,it , D

bid,i)

+ 1∆φs,it <0a
g,γ1
t−1 (−∆φs,it , D

bid,i)
)

=∆φ0
t ,

for every t = 2, . . . , T . Therefore, we have that ξ0
T = ξ0

1+
∑T

t=2 ∆ξ0
t ≥ φ0

1+
∑T

t=2 ∆φ0
t =

φ0
T .

The proof for γ1 ≥ γ2 is analogous.

2.4 Derivatives Valuation with Dynamic Conic Finance

The aim of this section is to build a pricing methodology for general contingent

claims, by using the theory of dynamic acceptability indices. We assume that there

exists an underlying market4 (M, P ask, P bid) that satisfies conditions (M1)-(M6). We

will use the securities from underlying market as hedging instruments.

2.4.1 Conic Valuation of Derivative Cash flows. We start by introducing the

concept of super-hedging in our context. and then an extension of H0(t).

Definition 2.4.1. Let us fix t ∈ T , and let V (φ) be the liquidation value process

generated by a trading strategy φ ∈ S(t). A process V ∈ D, is said to be super-hedged

4Note that in view of previous section such markets exist.
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at zero-cost, at time t, by φ, if there exists Z ∈ L+(t), where

L+(t) :=
{

(Zs)
T
s=0 : Zs ∈ L2

+(Ω,Fs,P), Zs = 0, s ≤ t
}
,

such that

V s = Vs(φ)− Zs, s = 0, . . . , T, (2.41)

If in (2.41), Z = 0, then we say that V can be replicated by φ.

We now introduce the set of cash flows that can be super-hedged by strategies

φ ∈ S(t) at zero cost:

H(t) :=
{(

0, . . . , 0,∆(Vt+1(φ)− Zt+1), . . . ,∆(VT (φ)− ZT )
)

: φ ∈ S(t), Z ∈ L+(t)
}
.

(2.42)

We proceed by defining acceptability ask and bid prices for a cash flow D ∈ D.

Definition 2.4.2. Let g = (gx)x>0 be a family of drivers that satisfy Assumption G.

The acceptability ask price of ϕ ∈ L∞+ (Ft) shares of the cash flow D, at level γ, at

time t ∈ T , is defined as

âg,γt (ϕ,D) = ess inf{a ∈ L2(Ft) : ∃H ∈ H(t) so that αgt (δt(a) +H − δ+
t (ϕD)) ≥ γ},

(2.43)

and the acceptability bid price of ϕ ≥ 0, ϕ ∈ L∞+ (Ft), shares of D, at level γ, at time

t ∈ T is defined as

b̂g,γt (ϕ,D) = ess sup{b ∈ L2(Ft) : ∃H ∈ H(t) so that αgt (δ
+
t (ϕD) +H − δt(b)) ≥ γ}.

(2.44)

Remark 2.4.1. (i) If H(t) is equal to {(0, . . . , 0)}, which means hedging is not ad-

mitted, then

âg,γt (ϕ,D) = ess inf{a ∈ L2(Ft) : αgt (δt(a)− δ+
t (ϕD)) ≥ γ}

= ag,γt (ϕ,D),
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and

b̂g,γt (ϕ,D) = ess sup{b ∈ L2(Ft) : αgt (δ
+
t (ϕD)− δt(b)) ≥ γ}

= bg,γt (ϕ,D).

(ii) Clearly, âg,γt (ϕ,D) ≤ ag,γt (ϕ,D) and b̂g,γt (ϕ,D) ≥ bg,γt (ϕ,D), for ϕ ∈ L∞+ (Ft),

D ∈ D.

Similarly as in Section 2.3.3, we note that âg,γt (ϕ,D) = âg,γt (1, ϕD) and

b̂g,γt (ϕ,D) = b̂g,γt (1, ϕD), and thus, we will prove most of the results for âg,γt (1, D) and

b̂g,γt (1, D), from which the general case will follow.

Proposition 2.4.1. The acceptability ask and bid prices admit the following repre-

sentations

âg,γt (D) = ess inf
H∈H(t)

Egγ

[
T∑

s=t+1

(Ds −Hs)
∣∣∣Ft] ,

b̂g,γt (D) = ess sup
H∈H(t)

−Egγ

[
T∑

s=t+1

(−Hs −Ds)
∣∣∣Ft] ,

(2.45)

for D ∈ D, at level γ > 0, at time t ∈ T .

Proof. We show the proof of first equality; the proof for the bid price is similar.

From the definition of âg,γt , we get that

âg,γt (D) = ess inf

{
a ∈ L2(Ft) : ∃H ∈ H(t), Egγ

[
T∑

s=t+1

(Ds −Hs)
∣∣∣Ft] ≤ a

}
,

and consequently

ess inf
H∈H(t)

Egγ
[ T∑
s=t+1

(Ds −Hs)
∣∣∣Ft]

≤ ess inf
{
a ∈ L2(Ft) : ∃H ∈ H(t), Egγ

[ T∑
s=t+1

(Ds −Hs)
∣∣∣Ft] ≤ a

}
.

(2.46)
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To prove the converse inequality, we show that strict inequality in (2.46) does not

hold true. Assume that on some set A ∈ Ft, P(A) > 0, we have that

ess inf
H∈H(t)

Egγ
[ T∑
s=t+1

(Ds −Hs)
∣∣∣Ft]

< ess inf
{
a ∈ L2(Ft) : ∃H ∈ H(t), Egγ

[
T∑

s=t+1

(Ds −Hs)
∣∣∣Ft] ≤ a

}
.

Then, there exists an H ′ ∈ H, such that on A

Egγ

[
T∑

s=t+1

(Ds −H ′s)
∣∣∣Ft]

< ess inf

{
a ∈ L2(Ft) : ∃H ∈ H(t), Egγ

[
T∑

s=t+1

(Ds −Hs)
∣∣∣Ft] ≤ a

}
.

Consider b ∈ L2(Ft), such that on set A

Egγ

[
T∑

s=t+1

(Ds −H ′s)
∣∣∣Ft] < b

< ess inf

{
a ∈ L2(Ft) : ∃H ∈ H(t), Egγ

[
T∑

s=t+1

(Ds −Hs)
∣∣∣Ft] ≤ a

}
.

(2.47)

Then, we have that

1Ab ∈

{
a ∈ L2(Ft) : ∃H ∈ H(t), 1AEgγ

[
T∑

s=t+1

(Ds −Hs)
∣∣∣Ft] ≤ a

}
.

Hence, for almost all ω ∈ A, we get âg,γt (D)(ω) ≤ b(ω). However, by (2.47), we

also have that âg,γt (D)(ω) > b(ω) for such ω’s, that leads to a contradiction. This

concludes the proof.

As an immediate consequence of Proposition 2.4.1, a technical result is pro-

vided, which shows a “symmetry” between acceptability ask and bid prices, that will

be used later.

Corollary 2.4.1. Let g = (gx)x>0 be a family of drivers that satisfy Assumption G.

Then,

âg,γt (D) = −b̂g,γt (−D),

for D ∈ D, γ > 0, t ∈ T .
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2.4.2 Arbitrage. Here, we will define and study arbitrage with regard to the ex-

tended market model consisting of the underlying market (M, P ask, P bid) and of the

(derivative) cash flows priced according to acceptability bid and ask prices given in

Definition 2.4.2.

Towards this end we first introduce some relevant notions and notations. Fix

some t ∈ T . Let D ∈ D be a cash flow, and let ϕ ∈ L∞(Ft) be the number of

shares that D is traded. Assume that the ask price for |ϕ| shares of D at time t is

P̂ ask
t (|ϕ|, D), and respectively, the bid price is P̂ bid

t (|ϕ|, D). We say that St(ϕ,D) :

L∞(Ft)×D → L2(Ft) is the set-up cost for ϕ shares of D at time t ∈ T if

St(ϕ,D) = 1ϕ≥0P̂
ask
t (ϕ,D)− 1ϕ<0P̂

bid
t (−ϕ,D).

Accordingly, we denote by D̂(t) = {(0, . . . ,−St(ϕ,D), ϕDt+1, . . . , ϕDT ) : D ∈

D, ϕ ∈ L∞(Ft)} the set of all derivative cash flows initiated at set-up cost St, and

time t ∈ T . It is clear that D̂(t) ⊂ D.

Definition 2.4.3. An arbitrage opportunity at time t ∈ T is a pair (D̂, φ) consisting

of derivative cash flow D̂ ∈ D̂(t) and a trading strategy φ ∈ S(t), such that VT (φ) +∑T
s=t D̂s ≥ 0 and P(VT (φ) +

∑T
s=t D̂s > 0) > 0.

Similarly to Proposition 2.3.1, we will characterize arbitrage opportunities in

the derivative market model in terms of cash flows.

Proposition 2.4.2. Fix t ∈ T . The following statements are equivalent:

(1) There exists an arbitrage opportunity at time t.

(2) There exists a derivative cash flow D̂ ∈ D̂(t) and a super-hedging cash flow H ∈

H(t), such that
∑T

s=t(D̂s +Hs) ≥ 0 and P
(∑T

s=t(D̂s +Hs) > 0
)
> 0.
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Proof. (1)⇒ (2) Assume that there exists an arbitrage opportunity at time t. Then,

according to Definition 2.4.3, there exists D̂ ∈ D̂(t) and φ ∈ S(t), such that

VT (φ) +
T∑
s=t

D̂s ≥ 0,

P(VT (φ) +
T∑
s=t

D̂s > 0) > 0.

(2.48)

By definition of H(t), we have that H = (0, . . . , 0,∆Vt+1(φ), . . . ,∆VT (φ)) ∈

H(t). Then according to (2.48), it follows that
∑T

s=t(D̂s+Hs) ≥ 0 and P
(∑T

s=t(D̂s+

Hs) > 0
)
> 0.

(2)⇒ (1) Assume that there exists D̂ ∈ D̂(t), and H ∈ H, such that
∑T

s=t(D̂s+Hs) ≥

0 and P
(∑T

s=t(D̂s +Hs) > 0
)
> 0. Then, by definition of H(t), there exists φ ∈ S(t)

such that

VT (φ) +
T∑
s=t

D̂s ≥
T∑
s=t

Hs +
T∑
s=t

D̂s ≥ 0,

P
(
VT (φ) +

T∑
s=t

D̂s > 0
)
≥ P

( T∑
s=t

Hs +
T∑
s=t

D̂s > 0
)
> 0.

Hence, (D̂, φ) is an arbitrage opportunity.

2.4.3 Good Deals and No-Good Deals. Next, we introduce the concept of good

deals for sets of cash flows, which plays an essential role in the theory of no-arbitrage

pricing in the extended market, and in derivation of fundamental properties of the

acceptability ask and bid prices. Towards this end, let (µx)x>0 be an increasing family

of DCRMs (cf. Definition 2.2.1):

Definition 2.4.4. A good deal for H(t), t ∈ T , at level γ > 0, is a cash flow

H ∈ H(t), such that µγt (H)(ω) < 0, for ω ∈ A, for some A ∈ Ft, and P(A) > 0.

Respectively, we say that the no-good deal condition (NGD) holds true for H(t), at

time t ∈ T , and at level γ > 0, if µγt (H) ≥ 0 for any H ∈ H(t).
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In the rest of this chapter, we take µx := ρgx , x > 0, where g = (gx)x>0 is a

family of drivers that satisfy Assumption G, and (ρgx)x>0 is the family of DCRMs

such that for each x > 0 the DCRM ρgx is given as in (2.18).5

We proceed by proving some technical results as preparation for showing the

relationship between NGD and no-arbitrage pricing in the extended market. We begin

with three technical lemmas.

Lemma 2.4.1. Let φ ∈ S(t), and let L+(t) be defined as

L+(t) :=
{

(Zs)
T
s=0 : Zs ∈ L2

+(Ω,Fs,P), Zs = 0, s ≤ t
}
,

for t = 0, . . . , T − 1. Then, for any t ∈ {0, . . . , T − 1}, the set

H(t) :=
{(

0, . . . , 0,∆(Vt+1(φ)− Zt+1), . . . ,∆(VT (φ)− ZT )
)

: φ ∈ S(t), Z ∈ L+(t)
}

is a convex set.

Proof. Let H1, H2 ∈ H(t), and let λ ∈ L∞(Ft) such that 0 ≤ λ ≤ 1. Then, there

exists φ, ξ ∈ S(t), Z1, Z2 ∈ L+(t), such that

H1 =
(

0, . . . , 0,∆(Vt+1(φ)− Z1
t+1), . . . ,∆(VT (φ)− Z1

T )
)
,

and

H2 =
(

0, . . . , 0,∆(Vt+1(ξ)− Z2
t+1), . . . ,∆(VT (ξ)− Z2

T )
)
.

It can be proved that there exists θ ∈ S(t), such that λVs(φ) + (1− λ)Vs(ξ) ≤ Vs(θ)

for any s = t+ 1, . . . , T . Therefore,

λ

s∑
u=t+1

H1
u + (1− λ)

s∑
u=t+1

H2
u = λVs(φ) + (1− λ)Vs(ξ)− λZ1

s − (1− λ)Z2
s

≤ Vs(θ)− (λZ1
s + (1− λ)Z2

s ) ≤ Vs(θ),

5Note though, that in (2.18) symbol g represents a single driver.
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for any s = t+ 1, . . . , T . By Definition 2.4.1, we have that λH1 + (1− λ)H2 ∈ H(t).

The proof is complete.

Lemma 2.4.2. Fix t ∈ T , and level γ > 0. Assume that there exists B ∈ Ft, such

that 1Bρ
gγ
t (H) ≥ 0 for any H ∈ H(t). Then, for any D ∈ D, 1Bâ

g,γ
t (D) ≥ 1B b̂

g,γ
t (D).

Proof. We prove the statement by contradiction. Assume that there exists some D ∈

D, B′ ⊂ B, such that b̂g,γt (D)(ω) > âg,γt (D)(ω), on B′. Then, by Proposition 2.4.1,

we have that

ess sup
H∈H(t)

−Egγ
[ T∑
s=t+1

(−Hs −Ds)
∣∣∣Ft](ω) > ess inf

H∈H(t)
Egγ
[ T∑
s=t+1

(Ds −Hs)
∣∣∣Ft](ω),

where ω ∈ B′. Let M = (̂bg,γt (D) + âg,γt (D))/2. Then, there exists H1, H2 ∈ H(t)

such that

−Egγ
[ T∑
s=t+1

(−H1
s −Ds)

∣∣∣Ft](ω) > M(ω) > Egγ
[ T∑
s=t+1

(Ds −H2
s )
∣∣∣Ft](ω),

for ω ∈ B′. Hence, we get that

Egγ
[ T∑
s=t+1

(−H1
s −Ds)

∣∣∣Ft](ω) + Egγ
[ T∑
s=t+1

(Ds −H2
s )
∣∣∣Ft](ω) < 0, ω ∈ B′. (2.49)

On the other hand, in view of Proposition 2.1.1.(vi), we have

Egγ
[1

2

( T∑
s=t+1

(−H1
s −Ds) +

T∑
s=t+1

(Ds −H2
s )
)∣∣∣Ft]

≤1

2

(
Egγ
[ T∑
s=t+1

(−H1
s −Ds)

∣∣∣Ft]+ Egγ
[ T∑
s=t+1

(Ds −H2
s )
∣∣∣Ft]),

which combined with (2.49), and using (2.18), we obtain

ρ
gγ
t (

1

2
(H1 +H2))(ω) = Egγ

[1

2

T∑
s=t+1

(−H1
s −H2

s )
∣∣∣Ft](ω) < 0,

for ω ∈ B′. However, by Lemma 2.4.1, we have that 1
2
(H1 + H2) ∈ H(t), and since

1Bρ
gγ
t (H) ≥ 0 for any H ∈ H(t), we have that 1Bρ

gγ
t (1

2
(H1 + H2)) ≥ 0, which leads

to a conclusion that P(B′) = 0, and hence, 1Bâ
g,γ
t (D) ≥ 1B b̂

g,γ
t (D). The proof is

complete.
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An application of Lemma 2.4.2, which is also useful to our study of arbitrage,

is stated as follows:

Lemma 2.4.3. Fix t ∈ T , and level γ > 0. Assume that there exists B ∈ Ft, such

that 1Bρ
gγ
t (H) ≥ 0 for any H ∈ H(t). Then, 1Bâ

g,γ
t (D) = 1B b̂

g,γ
t (D) = 0, for any

D ∈ H(t).

Proof. Since D ∈ H(t), then D − δ+
t (D) = 0, and thus

âg,γt (D) = ess inf{a ∈ Ft : ∃H ∈ H(t), s.t. αgt (δt(a) +H − δ+
t (D)) ≥ γ} ≤ 0.

Similarly, b̂g,γt (D) ≥ 0, and therefore âg,γt (D) ≤ 0 ≤ b̂g,γt (D). On the other hand, by

Lemma 2.4.2, 1Bâ
g,γ
t (D) ≥ 1B b̂

g,γ
t (D). Hence, 1Bâ

g,γ
t (D) = 1B b̂

g,γ
t (D) = 0.

With the help of Lemma 2.4.2 and Lemma 2.4.3 we can now prove the main

theorem in this section.

Theorem 2.4.1. Fix γ > 0, t ∈ T . Assume that

P̂ ask(ϕ,D) = âg,γt (ϕ,D), P̂ bid(ϕ,D) = b̂g,γt (ϕ,D), (2.50)

and consequently,

St(ϕ,D) = 1ϕ≥0â
g,γ
t (ϕ,D)− 1ϕ<0b̂

g,γ
t (−ϕ,D),

for any D ∈ D, and ϕ ∈ L∞(Ft). Then, NGD holds for H(t) at level γ > 0, if and

only if there is no arbitrage opportunity at time t.

Proof. (=⇒) Assume that NGD holds forH(t) at level γ > 0, and assume that there is

an arbitrage opportunity at time t. Then, according to Proposition 2.4.2, there exists

D̂ ∈ D̂(t) and H ∈ H(t) such that
∑T

s=t(D̂s+Hs) ≥ 0 and P(
∑T

s=t(D̂s+Hs) > 0) > 0.
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Due to (2.50), there exists D ∈ D, and ϕ ∈ L∞(Ft) such that

T∑
s=t+1

(Hs − ϕDs)− (1ϕ≤0â
g,γ
t (−ϕ,D)− 1ϕ>0b̂

g,γ
t (ϕ,D)) ≥ 0,

P(
T∑

s=t+1

(Hs − ϕDs)− (1ϕ≤0â
g,γ
t (−ϕ,D)− 1ϕ>0b̂

g,γ
t (ϕ,D)) > 0) > 0.

In view of Corollary 2.4.1, we get that

T∑
s=t+1

(Hs − ϕDs) + b̂g,γt (ϕD) ≥ 0,

P(
T∑

s=t+1

(Hs − ϕDs) + b̂g,γt (ϕD) > 0) > 0. (2.51)

Since NGD holds for H(t) at level γ, then by Lemma 2.4.2,

Egγ
[ T∑
s=t+1

(ϕDs −Hs)
∣∣∣Ft] ≥ âg,γt (ϕD) ≥ b̂g,γt (ϕD) ≥

T∑
s=t+1

(ϕDs −Hs),

and (2.51) implies that

Egγ
[ T∑
s=t+1

(ϕDs −Hs)
∣∣∣Ft] > T∑

s=t+1

(ϕDs −Hs),

with strictly positive probability. Consequently, by Theorem 2.1.1, we get that

Egγ
[ T∑
s=t+1

(ϕDs −Hs)
]

= Egγ
[
Egγ
[ T∑
s=t+1

(ϕDs −Hs)
∣∣∣Ft]]

≥ Egγ
[ T∑
s=t+1

(ϕDs −Hs)
]
,

with strict inequality holding true on some set A such that P(A) > 0, which leads to

contradiction. Hence, there exists no arbitrage opportunity.

(⇐=) To prove that absence of arbitrage at time t implies that NGD holds for H(t)

at level γ > 0, we will show that if NGD does not hold for H(t), then there exists an

arbitrage opportunity at time t. In fact, if NGD does not hold true, then there exists

some H ′ ∈ H(t) and A ∈ Ft such that P(A) > 0 and ρ
gγ
t (H ′) < 0 on A. Without loss

of generality, we assume that 1Acρ
gγ
t (H) ≥ 0 for any H ∈ H(t).
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Let us consider D = (0, . . . , 0), then by Proposition 2.4.1, the acceptability

ask price of D is

âg,γt (D) = ess inf
H∈H(t)

Egγ
[
−

T∑
s=t+1

Hs

∣∣∣Ft] ≤ ρ
gγ
t (H ′),

and therefore

âg,γt (D)(ω) ≤ ρ
gγ
t (H ′)(ω) < 0,

for any ω ∈ A. Also note that D ∈ H(t), then Lemma 2.4.3 implies that 1Ac â
g,γ
t (D) =

0. Thus, the pair (D̂, φ), where D̂ = (0, . . . , 0,−âg,γt (D), 0, . . . , 0) and φ = 0, satisfies

that

VT (φ) +
T∑
s=t

D̂s = −âg,γt (D) ≥ 0,

P
(
VT (φ) +

T∑
s=t

D̂s > 0
)

= P(A) > 0.

According to Proposition 2.4.2, there exists an arbitrage opportunity at time t, and

the proof is complete.

Remark 2.4.2. In [BCIR13], the authors prove, in case of D̂ = {0} and pricing

according to dynamic coherent risk measure, that absence of arbitrage is equivalent

to NGD at the some level γ > 0, and the derived acceptability ask and bid prices are

no-arbitrage prices. In our set-up, those two results are implications of Theorem 2.4.1.

In fact, the notion of NGD not only plays an essential role in no-arbitrage pric-

ing of derivative market, but also is crucial to the study of properties of the proposed

acceptability ask and bid prices. We will show that, under NGD condition, accept-

ability ask and bid prices satisfy nice properties similar to those in Theorem 2.3.1. To

start, we give the next two propositions without proof as they are direct applications

of Lemma 2.4.2 and 2.4.3.
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Proposition 2.4.3. Assume that NGD holds for H(t) at level γ > 0 and some fixed

t ∈ T . Then, for any D ∈ D, we have âg,γt (D) ≥ b̂g,γt (D).

Recall Theorem 2.3.1 P2, the pricing operators ag,γt and bg,γt satisfy the property

of non-negative spread. Proposition 2.4.3 shows that under the assumption of NGD,

the acceptability ask and bid prices âg,γt and b̂g,γt also admit a similar result. Such

proposition is in accord with observations from the real market. We also want to

stress that, as discussed in [BCIR13], if NGD does not hold, then the ask-bid spread

is equal to −∞.

The following result shows that under NGD, by implementing the acceptability

pricing method, the set-up cost of cash flows which can be super-hedged at zero cost

is indeed 0.

Proposition 2.4.4. Assume that NGD holds for H(t) at level γ > 0, at time t ∈ T .

Then, âg,γt (D) = b̂g,γt (D) = 0, for any D ∈ H(t).

Next we will show that pricing the underlying securities D ∈ M by the bid

and ask acceptability prices defined by (2.44) and (2.43) yields the market prices

P ask/bid of these securities.

Proposition 2.4.5. Fix t ∈ T . Assume that NGD holds for H(t) at level γ > 0, at

time t ∈ T . Then,

âg,γt (ϕ, D̃) = P ask
t (ϕ, D̃)

b̂g,γt (ϕ, D̃) = P bid
t (ϕ, D̃),

for any ϕ ∈ L∞+ (Ft), and D̃ ∈M.

Proof. Since D̃ ∈ M, then H := (0, . . . , 0, ϕD̃t+1 − P ask
t (ϕ, D̃), ϕD̃t+2, . . . , ϕD̃T ) ∈
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H(t). Therefore, by Proposition 2.4.4, we get âg,γt (H) = 0, which is equivalent to

ess inf
H∈H(t)

Egγ
[ T∑
s=t+1

(ϕD̃s −Hs)− P ask
t (ϕ, D̃)

∣∣∣Ft] = 0.

Note that P ask
t (ϕ, D̃) is Ft-measurable, and it does not depend on the argument

H ∈ H(t) over which the ess inf is taken. Hence, we immediately get that

P ask
t (ϕ, D̃) = ess inf

H∈H(t)
Egγ
[ T∑
s=t+1

(ϕD̃s −Hs)
∣∣∣Ft] = âg,γt (ϕ, D̃).

The proof for the bid price is analogous.

In [CM10] and [BCIR13], the authors consider ask-bid prices produced by

coherent acceptability indices. However, in some literature there are arguments that

coherent acceptability indices fail to take liquidity risk into account. In our set-

up, acceptability indices are assumed to be quasi-concave and we will show that

corresponding ask-bid prices reflect liquidity risk as in the following proposition.

Proposition 2.4.6. The acceptability ask and bid prices satisfy

âg,γt (λD1 + (1− λ)D2) ≤ λâg,γt (D1) + (1− λ)âg,γt (D2), (2.52)

b̂g,γt (λD1 + (1− λ)D2) ≥ λb̂g,γt (D1) + (1− λ)̂bg,γt (D2), (2.53)

for D1, D2 ∈ D, λ ∈ Ft, 0 ≤ λ ≤ 1, at level γ > 0, at time t ∈ T .

Proof. In view of Proposition 2.4.1, and by convexity of g-expectation, for any

H1, H2 ∈ H(t), λ ∈ Ft,

λEgγ
[ T∑
s=t+1

(D1
s −H1

s )
∣∣∣Ft]+(1− λ)Egγ

[ T∑
s=t+1

(D2
s −H2

s )
∣∣∣Ft]

≥Egγ
[ T∑
s=t+1

(λD1
s + (1− λ)D2

s −H3
s )
∣∣∣Ft],
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where H3 = λH1 + (1− λ)H2. Due to convexity of H(t) (see Lemma 2.4.1), we have

that H3 ∈ H(t). Consequently, using Proposition 2.4.1, we continue

λâg,γt (D1) + (1− λ)âg,γt (D2)

= ess inf
H1,H2∈H(t)

(
λEgγ

[ T∑
s=t+1

(D1
s −H1

s )
∣∣∣Ft]+ (1− λ)Egγ

[ T∑
s=t+1

(D2
s −H2

s )
∣∣∣Ft])

≥ ess inf
H1,H2∈H(t)

Egγ
[ T∑
s=t+1

(λD1
s + (1− λ)D2

s −H3
s )
∣∣∣Ft]

≥ ess inf
H∈H(t)

Egγ
[ T∑
s=t+1

(λD1
s + (1− λ)D2

s −Hs)
∣∣∣Ft]

=âg,γt (λD1 + (1− λ)D2).

The proof of (2.53) is similar. This conclude the proof.

As an immediate consequence of Proposition 2.4.4 and Proposition 2.4.6 we

deduce the following result about market impact on acceptability ask and bid prices.

Namely we show that the acceptability bid and ask prices may not be homogenous

in number of shares traded - larger number of shares one trades, a higher price per

share it will cost.

Corollary 2.4.2. Assume that NGD holds for H(t) at level γ > 0, t ∈ T . Then, the

acceptability ask and bid prices satisfy the following inequalities

âg,γt (λϕ,D) ≤ λâg,γt (ϕ,D), b̂g,γt (λϕ,D) ≥ λb̂g,γt (ϕ,D), λ, ϕ ∈ L∞+ (Ft), 0 ≤ λ ≤ 1;

âg,γt (λϕ,D) ≥ λâg,γt (ϕ,D), b̂g,γt (λϕ,D) ≤ λb̂g,γt (ϕ,D), λ, ϕ ∈ L∞+ (Ft), λ ≥ 1,

for γ > 0, t ∈ T .

Similar to the discussion in Section 2.3.4, we study the relationship between

the acceptability ask and bid prices in the case when these prices are generated by
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different families of drivers and and different acceptability levels. We start with a

result analogous to Proposition 2.3.3.

Proposition 2.4.7. The acceptability ask and bid prices at time t ∈ T of a cash flow

D ∈ D, satisfy the following inequalities âg,γ1t (D) ≤ âg,γ2t (D) and b̂g,γ1t (D) ≥ b̂g,γ2t (D),

for γ2 ≥ γ1 > 0.

Proof. Since gγ1 ≤ gγ2 , according to Theorem 2.1.2, we get that

Egγ1
[ T∑
s=t+1

(Ds −Hs)
∣∣∣Ft] ≤ Egγ2[ T∑

s=t+1

(Ds −Hs)
∣∣∣Ft],

for any H ∈ H(t). Hence, using the representation (2.45), we obtain

âg,γ1t (D) = ess inf
H∈H(t)

Egγ1
[ T∑
s=t+1

(Ds −Hs)
∣∣∣Ft]

≤ ess inf
H∈H(t)

Egγ2
[ T∑
s=t+1

(Ds −Hs)
∣∣∣Ft]

≤âg,γ2t (D).

Analogously, one proofs the corresponding inequality for the bid prices.

Corollary 2.4.3. Assume that NGD holds for H(t) at time t ∈ T , and at levels

γ1, γ2 > 0. Then, âg,γ2t (D) ≥ b̂g,γ1t (D), for any D ∈ D.

Proof. If γ1 ≥ γ2, then by Proposition 2.4.3 and 2.4.7, we have that âg,γ2t (D) ≥

b̂g,γ2t (D) ≥ b̂g,γ1t (D). Similarly, if γ1 ≤ γ2, then âg,γ2t (D) ≥ âg,γ1t (D) ≥ b̂g,γ1t (D). This

completes the proof.

Finally we want to mention that we were not able to establish a general result

on comparison of acceptability bid and ask prices, similar to Proposition 2.3.2. Gen-

erally speaking we do not know if âg
1,γ1 ≥ b̂g

2,γ2 , for some arbitrary family of drivers
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g1, g2, and levels γ1, γ2 > 0. In the nutshell, this is due to the lack of an appro-

priate form of time consistency property for âg,γ, and b̂g,γ, similar to Property P5,

in Theorem 2.3.1. We leave the answer to this question for further investigations.

Nevertheless, we do have a result that shows that once two couterparties, who may

use different acceptability levels and different drivers, find that their prices are such

that âg
1,γ1
t (D) ≤ b̂g

2,γ2
t (D) for all D ∈ D, then the bid and ask prices coincide and

hence the trade will go through.

Proposition 2.4.8. Fix t ∈ T . Let g1 and g2 be two families of drivers. Assume

that âg
1,γ1
t (D) ≤ b̂g

2,γ2
t (D), and for any D ∈ D. Then,

âg
1,γ1
t (D) = b̂g

1,γ1
t (D) = âg

2,γ2
t (D) = b̂g

2,γ2
t (D),

for any D ∈ D.

Proof. Since âg
1,γ1
t (D) ≤ b̂g

2,γ2
t (D) for any D ∈ D, then we have that

âg
1,γ1
t (−D) ≤ b̂g

2,γ2
t (−D), D ∈ D.

According to Proposition 2.4.1, it is clear that

âg
1,γ1
t (D) = −b̂g

1,γ1
t (−D),

âg
2,γ2
t (D) = −b̂g

2,γ2
t (−D).

Therefore, −b̂g
1,γ1
t (D) = âg

1,γ1
t (−D) ≤ b̂g

2,γ2
t (−D) = −âg

2,γ2
t (D), for any D ∈ D.

Hence, âg
2,γ2
t (D) ≤ b̂g

1,γ1
t (D), and due to Proposition 2.4.3, we get that

b̂g
2,γ2
t (D) ≤ âg

2,γ2
t (D) ≤ b̂g

1,γ1
t (D) ≤ âg

1,γ1
t (D), D ∈ D.

Thus, using our initial assumptions, we have that

b̂g
2,γ2
t (D) = âg

2,γ2
t (D) = b̂g

1,γ1
t (D) = âg

1,γ1
t (D), D ∈ D.

This concludes the proof.
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CHAPTER 3

RECURSIVE CONSTRUCTION OF CONFIDENCE REGIONS

3.1 Preliminaries

Let (Ω,F) be a measurable space, and Θ ⊂ Rd be a non-empty set, which will

play the role of the parameter space throughout.6 On the space (Ω,F) we consider

a discrete time, real valued random process Z = {Zn, n ≥ 0}.7 We postulate that

this process is observed, and we denote by F = (Fn, n ≥ 0) its natural filtration.

The (true) law of Z is unknown, and assumed to belong to a parameterized family of

probability distributions on (Ω,F), say {Pθ, θ ∈ Θ}. It will be convenient to consider

(Ω,F) to be the canonical space for Z, and to consider Z to be the canonical process

(see Appendix A for details). Consequently, the law of Z under Pθ is the same as Pθ.

The (true) law of Z will be denoted by Pθ∗ ; accordingly, θ∗ ∈ Θ is the (unknown)

true parameter.

The set of probabilistic models that we are concerned with is {(Ω,F ,F, Z,Pθ),

θ ∈ Θ}. The model uncertainty addressed in this work occurs if Θ 6= {θ∗}, which

we assume to be the case. Our objective is to provide a recursive construction of

confidence regions for θ∗, based on accurate observations of realizations of process Z

through time, and satisfying desirable asymptotic properties.

In what follows, all equalities and inequalities between random variables will

be understood in Pθ∗ almost surely sense. We denote by Eθ∗ the expectation operator

corresponding to probability Pθ∗ .

6In general, the parameter space may be infinite dimensional, consisting for
example of dynamic factors, such as deterministic functions of time or hidden Markov
chains. In this study, for simplicity, we chose the parameter space to be a subset of
Rd.

7The study presented in this thesis extends to the case when process Z takes
values in Rd, for d > 1. We focus here the case of d = 1 for simplicity of presentation.
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We impose the the following structural standing assumption.

Assumption M:

(i) Process Z is a time homogenous Markov process under any Pθ, θ ∈ Θ.

(ii) Process Z is an ergodic Markov process under Pθ∗ .8

(iii) The transition kernel of process Z under any Pθ, θ ∈ Θ is absolutely continuous

with respect to the Lebesgue measure on R, that is, for any Borel subset of R

Pθ(Z1 ∈ A | Z0 = x) =

∫
A

pθ(x, y)dy,

for some positive and measurable function pθ.
9

For any θ ∈ Θ and n ≥ 1, we define πn(θ) := log pθ(Zn−1, Zn).

Remark 3.1.1. In view of the Remark A.0.2, the process Z is a stationary process

under Pθ∗. Consequently, under Pθ∗, for each θ ∈ Θ and for each n ≥ 0, the law of

πn(θ) is the same as the law of π1(θ).

We will need to impose several technical assumptions in what follows. We

begin with the assumption

R0. For any θ ∈ Θ, π1(θ) is integrable under Pθ∗ .

Then, we have the following result.

Proposition 3.1.1. Assume that M and R0 hold. Then,

8See Appendix A for the definition of ergodicity that we postulate here.

9This postulate is made solely in order to streamline the presentation. In gen-
eral, our methodology works for Markov processes for which the transition kernel is
not absolutely continuous with respect to the Lebesgue.
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(i) For any θ ∈ Θ,

lim
n→∞

1

n

n∑
i=1

πi(θ) = Eθ∗ [π1(θ)].

(ii) Moreover, for any θ ∈ Θ,

Eθ∗ [π1(θ∗)] ≥ Eθ∗ [π1(θ)].

Proof. Fix θ ∈ Θ, since Z is ergodic under Pθ∗ and Eθ∗ [π1(θ)] < ∞, then according

to Proposition A.0.1 we have that

lim
n→∞

1

n

n∑
i=1

πi(θ) = Eθ∗ [π1(θ)]

which proves (i).

Now we prove that (ii) holds. In fact, denote by fZ1 the density function of

Z1 under Pθ∗ , we have that

Eθ∗ [π1(θ)]− Eθ∗ [π1(θ∗)]

=Eθ∗
[

log
pθ(Z1, Z2)

pθ∗(Z1, Z2)

]
=

∫
R
Eθ∗
[

log
pθ(Z1, Z2)

pθ∗(Z1, Z2)

∣∣∣Z1 = z1

]
fZ1(z1)dz1

≤
∫
R

[
logEθ∗

[ pθ(Z1, Z2)

pθ∗(Z1, Z2)

∣∣∣Z1 = z1

]
fZ1(z1)dz1

=

∫
R

log

∫
R

pθ(z1, z2)

pθ∗(z1, z2)
pθ∗(z1, z2)dz2fZ1(z1)dz1

=

∫
R

log

∫
R
pθ(z1, z2)dz2fZ1(z1)dz1 = 0,

where the inequality holds due to Jensen’s inequality.

In the statement of the technical assumptions R1-R8 below we use the nota-

tions

ψn(θ) = ∇πn(θ), Ψn(θ) = Hπn(θ), βn(θ) = Eθ∗ [ψn(θ)|Fn−1], (3.1)

where ∇ denotes the gradient vector and H denotes the Hessian matrix with respect

to θ, respectively.
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R1. For each x, y ∈ R the function p·(x, y) : Θ → R+ is three times differentiable,

and

∇
∫
R
pθ(x, y)dy =

∫
R
∇pθ(x, y)dy, H

∫
R
pθ(x, y)dy =

∫
R
Hpθ(x, y)dy. (3.2)

R2. For any θ ∈ Θ, ψ1(θ) and Ψ1(θ) are integrable under Pθ∗ . The function Eθ∗ [π1( · )]

is twice differentiable in θ, and

∇Eθ∗ [π1(θ)] = Eθ∗ [ψ1(θ)], HEθ∗ [π1(θ)] = Eθ∗ [Ψ1(θ)].

R3. There exists a unique θ ∈ Θ such that

Eθ∗ [ψ1(θ)] = 0.

R4. There exists a constant c > 0 such that, for any n ≥ 1 and θ ∈ Θ,

Eθ∗ [‖ψn(θ)‖2 | Fn−1] ≤ c(1 + ‖θ − θ∗‖2). (3.3)

R5. There exist some positive constants Ki, i = 1, 2, 3, such that for any θ, θ1, θ2 ∈ Θ,

and n ≥ 1,10

(θ − θ∗)T bn(θ) ≤ −K1‖θ − θ∗‖2, (3.4)

‖βn(θ1)− βn(θ2)‖ ≤ K2‖θ1 − θ2‖, (3.5)

Eθ∗ [‖Ψn(θ1)−Ψn(θ2)‖ | Fn−1] ≤ K3‖θ1 − θ2‖. (3.6)

R6. There exists a positive constant K4, such that for any θ ∈ Θ, and n ≥ 1,

Eθ∗ [‖Hψn(θ)‖|Fn−1] ≤ K4. (3.7)

R7. For any n ≥ 1,

sup
θ∈Θ

Eθ∗‖ψn(θ)− βn(θ)‖2 <∞. (3.8)

10Superscript T will denote the transpose.
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R8. For each θ ∈ Θ the Fisher information matrix

I(θ) := Eθ[ψ1(θ)ψT1 (θ)]

exists and is positive definite. Moreover, I(θ) is continuous with respect to θ.

R9.

lim
n→∞

Eθ∗
[

sup
0≤i≤n

∣∣∣ 1√
n
ψi(θ

∗)
∣∣∣] = 0. (3.9)

Remark 3.1.2. (i) Note that in view of the Remark 3.1.1 properties assumed in R2,

R3, and R8 imply that analogous properties hold with time n in place of time 1.

(ii) According to Proposition C.0.6, we have that if R4-R6 hold, then (3.3)-(3.7) are

also satisfied for any Fn−1-measurable random vector θ ∈ Θ.

As stated above, our aim is to provide a recursive construction of the confidence

regions for θ∗. In the sequel, we will propose a method for achieving this goal that

will be derived from a suitable recursive point estimator of θ∗. Note that due to

Proposition 3.1.1 (ii) and Assumption R3, we have that θ∗ is the unique solution of

Eθ∗ [ψ1(θ)] = 0. (3.10)

Therefore, point-estimating θ∗ is equivalent to point-estimating the solution of the

equation (3.10). Since θ∗ is unknown, equation (3.10) is not really known to us.

We will therefore apply an appropriate version of the so called stochastic approxima-

tion method, which is a recursive method used to point-estimate zeros of functions

that can not be directly observed. This can be done in our set-up since, thanks to

Proposition 3.1.1 (i), we are provided with a sequence of observed random variables

1
n

∑n
i=1 ψi(θ) that Pθ∗ almost surely converges to Eθ∗ [ψ1(θ)] – a property, which will

enable us to adopt the method of stochastic approximation. Accordingly, in the next

two sections, we will introduce two recursive point estimators of θ∗, and we will derive

properties of these estimators that are relevant for us.



100

3.2
√
n-consistent base point estimator

In this section we consider a recursive point estimator θ̃ = {θ̃n, n ≥ 1} of θ∗,

that will be defined in (3.11). Towards this end, we fix a positive constant η such that

ηK1 >
1
2
, where K1 was introduced in Assumption R6, and we define the process θ̃

recursively as follows,

θ̃n = θ̃n−1 +
η

n
ψn(θ̃n−1), n ≥ 1, (3.11)

with the initial guess θ̃0 being an element in Θ, where ψn was defined in (3.1).

Given the definition of ψn, we see that θ̃n is updated from θ̃n−1 based on new

observation Zn available at time n; of course, Zn−1 is used as well. We note that the

recursion (3.11) is a version of the stochastic approximation method, which is meant

to recursively approximate roots of the unknown equations, such as equation (3.10)

(see e.g. [RM51], [KW52], [LS87], [KC78], [KY03]).

Remark 3.2.1. It is implicitly assumed in the recursion (3.11) that θ̃n ∈ Θ. One

typical and easy way of making sure that this happens is to choose Θ as the “largest

possible set” that θ∗ is an element of. So typically, one takes Θ = Rd. However, this

is not always possible, in which case one needs to implement a version of constrained

stochastic approximation method (cf. e.g. [KC78] or [BK02]). We are not considering

constrained stochastic approximation in this chapter. This is planned for a future

work.

Remark 3.2.2. As we will see later, the requirement ηK1 > 1
2

guarantees that θ̃

converges at a rate of 1√
n

in probability. Other than that, the importance of choice of

η is neglectable. Hence, a simple choice of η would be d 1
2K1
e+ 1 where d·e denotes the

ceiling function.

As mentioned above, we are interested in the study of asymptotic properties of

confidence regions that we will construct recursively in Section 3.4. These asymptotic
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properties crucially depend on the asymptotic properties of our recursive (point)

estimators. One of such required properties is asymptotic normality. In this regard we

stress that although the theory of asymptotic normality for stochastic approximation

estimators is quite a mature field (see e.g. [Sac58], [Fab68], [LR79]), the existing

results do not apply to θ̃ as they require ψn(θ̃n−1)−Eθ∗ [ψn(θ̃n−1)] to be a martingale,

the property, which is not satisfied in our set-up. Thus, we need to modify the base

estimator θ̃ to the effect of producing a recursive estimator that is asymptotically

normal. In the next section we will construct such estimator, denoted there as θ̂,

and we will study its asymptotic properties in the spirit of the method proposed

by Fisher [Fis25]. Motivated by finding estimators that share the same asymptotic

property as maximum likelihood estimators (MLEs), Fisher proposed in [Fis25] that

if an estimator is
√
n-consistent (see below), then appropriate modification of the

estimator has the same asymptotic normality as the MLE. This subject was further

studied by LeCam in [LeC56] and [LeC60], where a more general class of observation

than i.i.d. observations are considered.

Accordingly, we will show that θ̃ is strongly consistent, and, moreover it main-

tains
√
n convergence rate, i.e.

Eθ∗‖θ̃n − θ∗‖2 = O(n−1). (3.12)

An estimator that satisfies this equality is said to be
√
n-consistent.

We begin with the following proposition, which shows that the estimator θ̃

is strongly consistent. For convenience, throughout, we will use the notation ∆n :=

θ̃n − θ∗, n ≥ 1.

Proposition 3.2.1. Assume that (3.3), and (3.4) are satisfied, then

lim
n→∞

θ̃n = θ∗, Pθ∗ − a.s.
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Proof. Let us fix n ≥ 1. Clearly, ∆n = ∆n−1 + η
n
ψn(θ∗ + ∆n−1), so that

‖∆n‖2 = ‖∆n−1‖2 +
2η

n
∆T
n−1ψn(θ∗ + ∆n−1) +

η2

n2
‖ψn(θ∗ + ∆n−1)‖2.

Taking conditional expectation on both sides leads to

Eθ∗ [‖∆n‖2|Fn−1] ≤‖∆n−1‖2 +
2η

n
∆T
n−1βn(θ∗ + ∆n−1) +

cη2

n2
(1 + ‖∆n−1‖2) (3.13)

≤‖∆n−1‖2 +
cη2

n2
(1 + ‖∆n−1‖2), (3.14)

where the first inequality comes from (3.3) and the second is implied by (3.4). Let

Ym := ‖∆m‖2

∞∏
k=m+1

(1 +
cη2

k2
) +

∞∑
k=m+1

cη2

k2

∞∏
j=k+1

(1 +
cη2

j2
), m ≥ 0.

Then, (3.14) yields that

Eθ∗ [Ym+1|Fm] ≤ Ym, m ≥ 0,

and therefore process Y is a supermartingale. Noting that Y is a positive process,

and invoking the supermartingale convergence theorem, we conclude that hence the

sequence {Ym,m ≥ 0} converges Pθ∗ almost surely. This implies that the sequence

{‖∆m‖,m ≥ 0} converges, and we will show now that its limit is zero. According to

(3.13), we have

Eθ∗‖∆m‖2 ≤Eθ∗‖∆m−1‖2 +
2η

m
Eθ∗
[
∆T
m−1βm(θ∗ + ∆m−1)

]
+
cη2

m2
Eθ∗

[
1 + ‖∆m−1‖2

]
≤Eθ∗‖∆1‖2 +

m∑
k=1

2η

k
Eθ∗
[
∆T
k−1βk(θ

∗ + ∆k−1)
]

+
m∑
k=1

cη2

k2
Eθ∗
[
1 + ‖∆k−1‖2

]
.

Hence, we get

m∑
k=1

2η

k
Eθ∗
∣∣∆T

k−1βk(θ
∗ + ∆k−1)

∣∣ ≤ Eθ∗‖∆1‖2 − Eθ∗‖∆m‖2 +
m∑
k=1

cη2

k2
Eθ∗
[
1 + ‖∆k−1‖2

]
.

Since

lim
m→∞

‖∆m‖2 = lim
m→∞

Ym <∞,
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and

lim
m→∞

m∑
k=1

cη2

k2
Eθ∗

[
1 + ‖∆k−1‖2

]
≤

∞∑
k=1

cηEθ∗ [1 + Y1]

k2
<∞,

then, the series
m∑
k=1

1

k
Eθ∗

∣∣∆T
k−1βk(θ

∗ + ∆k−1)
∣∣ , m ≥ 1,

converges Pθ∗ almost surely, and thus

lim
k→∞

Eθ∗
∣∣∆T

k−1βk(θ
∗ + ∆k−1)

∣∣ = 0.

This implies that there exists a subsequence ∆T
mk−1bmk(θ

∗ + ∆mk−1) which converges

Pθ∗ almost surely to zero, as k →∞. According to (3.4), we also have that

‖∆mk−1‖2 ≤ 1

K1

‖∆T
mk−1βmk(θ

∗ + ∆mk−1)‖.

Therefore, limk→∞∆mk−1 = 0, Pθ∗ almost surely, and this concludes the proof.

Proposition 3.2.2. Assume that (3.3), (3.4), (3.5) and (3.8) hold. Then,

Eθ∗‖θ̃n − θ∗‖2 = O(n−1).

Proof. Putting Vn(θ̃n−1) := ψn(θ̃n−1) − βn(θ̃n−1), from (3.11) we immediately have

that

∆n = ∆n−1 +
η

n
βn(θ̃n−1) +

η

n
Vn(θ̃n−1),

that yields

Eθ∗‖∆n‖2 = Eθ∗‖∆n−1 +
η

n
βn(θ̃n−1)‖2 +

η2

n2
Eθ∗‖Vn(θ̃n−1)‖2.

From here, applying consequently (3.8), (3.5), (3.4), and note that βn(θ∗) = 0, we get

Eθ∗‖∆n‖2 = Eθ∗
∥∥∥∆n−1 +

η

n
βn(θ̃n−1)

∥∥∥2

+O(n−2)

≤ Eθ∗
[
‖∆n−1‖2 +

η2K2
2

n2
‖∆n−1‖2 +

2η

n
∆T
n−1βn(θ̃n−1)

]
+O(n−2)

≤
(

1 +
η2K2

2

n2
− 2ηK1

n

)
Eθ∗‖∆n−1‖2 +D1n

−2.
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Clearly, for any ε > 0, and for large enough n, we get

Eθ∗‖∆n‖2 ≤ (1− (2K1η − ε)n−1)Eθ∗‖∆n−1‖2 +D1n
−2. (3.15)

For ease of writing, we put p := 2K1η − ε and cn := Eθ∗‖∆n‖2. Take ε sufficiently

small, so that p > 1, and then chose an integer N > p. Then, for n > N we have by

(3.15) that

cn ≤ cN

n∏
j=N+1

(1− p

j
) +D1

n∑
j=N+1

1

j2

n∏
k=j+1

(1− p

k
)

≤ cN

n∏
j=N+1

(1− p

j
) +D1

n∑
j=N+1

1

j2
.

Using the fact that
∑n

j=m 1/j2 ∼ 1/n and
∏n

j=m(1 − p/j) ∼ 1/np, for any fixed

m, p ≥ 1, we immediately get that cn ≤ O(n−1). This concludes the proof.

3.3 Quasi-asymptotically linear estimator

In this section we define a new estimator denoted as {θ̂n, n ≥ 1} and given

recursively by

θ̂n = −I−1(θ̃n)Inθ̃n + I−1(θ̃n)Γn,

Γn =
n− 1

n
Γn−1 +

1

n
(Id + ηIn)ψn(θ̃n−1),

In =
n− 1

n
In−1 +

1

n
Ψn(θ̃n−1), n ≥ 1,

Γ0 = 0, I0 = 0,

(3.16)

where Id is the unit matrix. Since θ̃n, In, and Γn are updated from time n − 1

based on the new observation Zn available at time n, then the estimator θ̂ indeed

is recursive. This estimator will be used in Section 6 for recursive construction of

confidence regions for θ∗.

Remark 3.3.1. In the argument below we will use the following representations of

Γn and In,

Γn =
n∑
j=1

(Id + ηIj)ψj(θ̃j−1), In =
1

n

n∑
i=1

Ψi(θ̃i−1).
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Next, we will show that θ̂ is weakly consistent and asymptotically normal. We will

derive asymptotic normality of θ̂ from the property of quasi-asymptotic linearity,

which is related to the property of asymptotic linearity (cf. [Shi84]), and which is

defined as follows:

Definition 3.3.1. An estimator {θ̄n, n ≥ 1} of θ∗ is called a quasi-asymptotically

linear estimator if there exist a Pθ∗-convergent, adapted matrix valued process G, and

adapted vector valued processes ϑ and ε, such that

θ̄n − ϑn =
Gn

n

n∑
i=1

ψi(θ
∗) + εn, n ≥ 1, ϑn

Pθ∗−−−→
n→∞

θ∗,
√
nεn

Pθ∗−−−→
n→∞

0.

Our definition of quasi-asymptotically linear estimator is motivated by the

classic concept of asymptotically linear estimator (see e.g. [Sha10]): θ̌ is called (lo-

cally) asymptotically linear if there exists a matrix process {Ǧn, n ≥ 1} such that

θ̌n − θ∗ = Ǧn

n∑
i=1

ψi(θ
∗) + εn,

where Ǧ
−1/2
n εn

Pθ∗−−−→
n→∞

0. Asymptotic linearity is frequently used in the proof of asymp-

totic normality of estimators. However, in general, asymptotic linearity can not be

reconciled with the full recursiveness of the estimator. The latter property is the

key property involved in construction of recursive confidence regions. Moreover, the

property of asymptotic linearity requires that the matrices Ǧn are invertible, which

is a very stringent requirement, not easily fulfilled. These are the reasons why we

propose the concept of quasi-asymptotic linearity since, it can be reconciled with re-

cursiveness and does not require that matrices Gn are invertible. As it will be shown

below, the fully recursive estimator θ̂ is quasi-asymptotically linear.

In what follows, we will make use of the following representation for θ̂

θ̂n = −I−1(θ̃n)Inθ̃n +
1

n
I−1(θ̃n)

n∑
j=1

(Id + ηIj)ψj(θ̃j−1). (3.17)
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Theorem 3.3.1. Assume that R1–R8 hold, then the estimator θ̂ is Pθ∗–weakly con-

sistent.11

Moreover, θ̂ is quasi-asymptotically linear estimator for θ∗.

Proof. First, we show the generalized asymptotic linearity of θ̂. Due to Taylor’s

expansion, we have that

1

n

n∑
i=1

ψi(θ
∗)− 1

n

n∑
i=1

ψi(θ̃i−1) = − 1

n

n∑
i=1

Ψi(θ̃i−1)∆i−1 +
1

n

n∑
i=1

∆T
i−1Hψi(ζi−1)∆i−1

=: An +Bn, (3.18)

where ζi−1, 1 ≤ i ≤ n, is in a neighborhood of θ∗ such that ‖ζi−1 − θ∗‖ ≤ ‖θ̃i−1 − θ∗‖.

Note that

An =− 1

n

n∑
i=1

Ψi(θ̃i−1)
(

∆n −
n∑
j=i

η

j
ψj(θ̃j−1)

)
=− In∆n +

η

n

n∑
i=1

Iiψi(θ̃i−1),

and by (3.18), we get

In∆n =
1

n

n∑
i=1

(Id + ηIi)ψi(θ̃i−1)− 1

n

n∑
i=1

ψi(θ
∗) +Bn.

Therefore, using the representation (3.17), we immediately have

θ̂n + I−1(θ̃n)Inθ
∗ =

I−1(θ̃n)

n

n∑
i=1

ψi(θ
∗)− I−1(θ̃n)Bn. (3.19)

Next we will show that

Pθ∗-lim
n→∞

In = −I(θ∗). (3.20)

First, by (3.6), we deduce that

Eθ∗
[ 1

n

n∑
i=1

‖Ψi(θ̃i−1)−Ψi(θ
∗)‖
]
≤ K3

n

n∑
i=1

Eθ∗‖∆i−1‖.

11That is, θ̂n
Pθ∗−−−→
n→∞

θ∗.
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Due to Proposition 3.2.2, 1
n

∑n
j=1 Eθ∗‖∆i−1‖ ≤ 1

n

∑n
j=1 j

−1/2 = O(n−1/2). Hence,

1

n

n∑
i=1

‖Ψi(θ̃i−1)−Ψi(θ
∗)‖ Pθ∗−−−→

n→∞
0. (3.21)

Therefore,

Pθ∗-lim
n→∞

In = Pθ∗ − lim
n→∞

1

n

n∑
i=1

Ψi(θ̃i−1) = Pθ∗ − lim
n→∞

1

n

n∑
i=1

Ψi(θ
∗). (3.22)

Next, observe that in view of Proposition A.0.1 we get

lim
n→∞

1

n

n∑
i=1

Ψi(θ
∗) = Eθ∗ [Ψ1(θ∗)] = Eθ∗ [Hπ1(θ∗)] = Eθ∗ [H log pθ∗(Z0, Z1)].

Invoking the usual chain rule we obtain that

H log pθ∗(Z0, Z1) =
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)
− ∇pθ

∗(Z0, Z1)∇pθ∗(Z0, Z1)T

p2
θ∗(Z0, Z1)

=
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)
− ψ1(θ∗)ψT1 (θ∗),

so that

Eθ∗ [H log pθ∗(Z0, Z1)] = Eθ∗ [
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)
]− I(θ∗).

We will now show that Eθ∗
[
Hpθ∗ (Z0,Z1)
pθ∗ (Z0,Z1)

]
= 0. In fact, denote by fZ0 the density function

of Z0 under Pθ∗ and in view of (3.2), we have

Eθ∗
[
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)

]
=Eθ∗

[
Eθ∗

[
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)
| Z0

]]
=

∫
R
Eθ∗

[
Hpθ∗(Z0, Z1)

pθ∗(Z0, Z1)
| Z0 = z0

]
fZ0(z0)dz0

=

∫
R

∫
R

Hpθ∗(z0, z1)

pθ∗(z0, z1)
pθ∗(z0, z1)dz1fZ0(z0)dz0

=

∫
R

∫
R
Hpθ∗(z0, z1)dz1fZ0(z0)dz0

=

∫
R
H

∫
R
pθ∗(z0, z1)dz1fZ0(z0)dz0

=

∫
R
(H1)fZ0(z0)dz0 = 0.
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Recalling (3.22) we conclude that (3.20) is satisfied.

By Assumption R8 and strong consistency of θ̃ we obtain that

lim
n→∞

I−1(θ̃n) = I−1(θ∗) Pθ∗ − a.s., (3.23)

which, combined with (3.20) implies that

−I−1(θ̃n)Inθ
∗ Pθ∗−−−→
n→∞

θ∗. (3.24)

Next, we will show that

√
nBn

Pθ∗−−−→
n→∞

0. (3.25)

Indeed, by (3.7),
√
nEθ∗‖Bn‖ ≤ K4√

n

∑n
i=1 Eθ∗‖∆i−1‖2, and consequently, in view of

Proposition 3.2.2,

lim
n→∞

√
nEθ∗‖Bn‖ ≤ lim

n→∞

K4√
n

log n = 0,

which implies (3.25).

Now, taking ϑn = −I−1(θ̃n)Inθ
∗, Gn = I−1(θ̃n) and εn = I−1(θ̃n)Bn, we deduce

quasi-asymptotic linearity of θ̂ from (3.19), (3.23), (3.24) and (3.25).

Finally, we will show the weak consistency of θ̂. By ergodicity of Z, in view

of Proposition A.0.1, and using the fact that θ∗ is a (unique) solution of (3.10), we

have that

1

n

n∑
i=1

ψi(θ
∗) = Eθ∗ [ψ1(θ∗)] = 0, Pθ∗ − a.s.

Thus, limn→∞
I−1(θ̃n)

n

∑n
i=1 ψi(θ

∗) = 0 Pθ∗ almost surely. This, combined with (3.19),

(3.24) and (3.25) implies that θ̂n
Pθ∗−−→ θ∗, as n→∞. The proof is complete.

The next result, which will be used in analysis of asymptotic properties of the

recursive confidence region for θ∗ in Section 6, is an application of Theorem 3.3.1.
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Proposition 3.3.1. Assume that R1–R9 are satisfied. Then, there exists an adapted

process ϑ such that

ϑn
Pθ∗−−−→
n→∞

θ∗, (3.26)

and
√
n(θ̂n − ϑn)

d−−−→
n→∞

N (0, I−1(θ∗)). (3.27)

Proof. Let ϑn = −I−1(θ̃n)Inθ
∗, Gn = I−1(θ̃n) and I−1(θ̃n)Bn = εn. Then, property

(3.26) follows from (3.24).

In order to prove (3.27), we note that according to Theorem 3.3.1 we have

θ̂n − ϑn =
Gn

n

n∑
i=1

ψi(θ
∗) + εn,

√
nεn

Pθ∗−−−→
n→∞

0.

Next, Proposition B.0.5 implies that

1√
n

n∑
i=1

ψi(θ
∗)

d−−−→
n→∞

N (0, I(θ∗)).

Consequently, since by (3.23) Gn
Pθ∗−−→ I−1(θ∗), using Slutsky’s theorem we get

Gn√
n

n∑
i=1

ψi(θ
∗)

d−−−→
n→∞

N (0, I−1(θ∗)).

The proof is complete.

We end this section with the following technical result, which will be used in

our construction of confidence region in Section 6. Towards this end, for any θ ∈ Θ

and n ≥ 1, we define12

Un(θ) := n(θ̂n − θ)T I(θ̃n)(θ̂n − θ) (3.28)

= n
d∑
i=1

d∑
j=1

σijn (θ̂in − θi)(θ̂jn − θi),

where (σijn )i,j=1,...,d = I(θ̃n), and, as usual, we denote by χ2
d a random variable that

has the chi-squared distribution with d degrees of freedom.

12We use superscripts here to denote components of vectors and matrices.
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Corollary 3.3.1. With ϑn = −I−1(θ̃n)Inθ
∗, we have that

Un(ϑn)
d−−−→

n→∞
χ2
d.

Proof. From Assumption R8, strong consistency of θ̃ and Proposition 3.3.1, and em-

ploying the Slutsky’s theorem again, we get that√
nI(θ̃n)(θ̂n − ϑn)

d−−−→
n→∞

N (0, Id).

Therefore,

Un(ϑn) = n(θ̂n − ϑn)T I(θ̃n)(θ̂n − ϑn)
d−→ ςT ς,

where ς ∼ N (0, Id). The proof is thus complete since ςT ς
d
= χ2

d.

3.4 Recursive construction of confidence regions

This section is devoted to the construction of the recursive confidence region

based on quasi-asymptotically linear estimator θ̂ developed in Section 3.3. We start

with introducing the definition of the approximate confidence region.

Definition 3.4.1. Let {Vn, n ≥ 1} be such that Vn : Rn+1 → 2Θ and Vn(z) is a

connected set13 for any z ∈ Rn+1, n ≥ 1. The set {Vn(Zn
0 ), n ≥ 1}, with Zn

0 :=

(Z0, . . . , Zn), n ≥ 1, is called a sequence of approximate confidence regions for θ∗, at

significant level α ∈ (0, 1), if there exists a weakly consistent estimator ϑ of θ∗, such

that

lim
n→∞

Pθ∗(ϑn ∈ Vn(Zn
0 )) = 1− α.

13A connected set is a set that cannot be represented as the union of two or
more disjoint nonempty open subsets.
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Such sequence of approximate confidence regions can be constructed, as the

next result shows, by using the asymptotic results obtained in Section 3.3. Recall the

notation Un(θ) = n(θ̂n − θ)T I(θ̃n)(θ̂n − θ), for θ ∈ Θ, n ≥ 1.

Proposition 3.4.1. Fix a confidence level α, and let κ ∈ R be such that Pθ∗(χ2
d <

κ) = 1− α. Then, the set {Tn, n ≥ 1} such that

Tn := {θ ∈ Θ : Un(θ) < κ}

is a sequence of approximate confidence regions for θ∗.

Proof. As in Section 3.3, we take ϑn = −I−1(θ̂n)Inθ
∗, which in view of Proposi-

tion 3.3.1 is a weakly consistent estimator of θ∗. Note that Un( · ) is a continu-

ous function, and thus Tn is a connected set, for any n ≥ 1. By Corollary 3.3.1,

Un(ϑn)
d−→ χ2

d, and since Pθ∗(ϑn ∈ Tn) = Pθ∗(Un(ϑn) < κ), we immediately have that

limn→∞ Pθ∗(ϑn ∈ Tn) = 1− α. This concludes the proof.

Next, we will show that the approximate confidence region Tn can be computed

in a recursive way, by taking into account its geometric structure. By the definition,

the set Tn is the interior of a d-dimensional ellipsoid, and hence Tn is uniquely deter-

mined by its extreme 2d points. Thus, it is enough to establish a recursive formula

for computing the extreme points. Let us denote by

(θ1
n,k, . . . , θ

d
n,k), k = 1, . . . , 2d,

the coordinates of these extreme points; that is θin,k, denotes the ith coordinate of the

kth extreme point of ellipsoid Tn.

First, note that the matrix I(θ̃n) is positive definite, and hence it admits the
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Cholesky decomposition:

I(θ̃n) = LnL
T
n =



l11
n 0 · · · 0

l21
n l22

n · · · 0

...
...

...

ld1
n ld2

n · · · lddn





l11
n l21

n · · · ld1
n

0 l22
n · · · ld2

n

...
... · · · ...

0 0 · · · lddn


,

where lijn i, j = 1, . . . , d, are given by

liin =

√√√√σiin −
i−1∑
k=1

(likn )2,

lijn =
1

liin

(
σijn −

j−1∑
k=1

likn l
jk
n

)
.

Thus, we have that Un(θ) = n(u2
n,1(θ) + u2

n,2(θ) + · · ·+ u2
n,d(θ)), where

un,i(θ) =
d∑
j=i

ljin (θ̂jn − θj), i = 1, . . . , d,

and thus Tn = {θ :
∑d

j=1(un,j(θ))
2 < κ

n
}.

By making the coordinate transformation θ 7→ % given by % = LTn (θ̂n− θ), the

set Tn in the new system of coordinates can be written as Tn = {% :
∑d

i=1(%i)2 < κ
n
}.

Hence, Tn, in the new system of coordinates, is determined by the following 2d extreme

points of the ellipsoid:

(%1
1, . . . , %

d
1) = (

√
κ

n
, 0, . . . , 0),

(%1
2, . . . , %

d
2) = (−

√
κ

n
, 0, . . . , 0),

. . .

(%1
2d−1, . . . , %

d
2d−1) = (0, . . . , 0,

√
κ

n
),

(%1
2d, . . . , %

d
2d) = (0, . . . , 0,−

√
κ

n
).
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Then, in the original system of coordinates, the extreme points (written as vectors)

are given by

(θ1
n,2j−1, . . . , θ

d
n,2j−1)T = θ̂n −

√
κ

n
(LTn )−1ej,

(θ1
n,2j, . . . , θ

d
n,2j)

T = θ̂n +

√
κ

n
(LTn )−1ej,

j = 1, . . . , d, (3.29)

where {ej}, j = 1, . . . , d, is the standard basis in Rd.

Finally, taking into account the recursive constructions (3.11), (3.16), and

the representation (3.29), we have the following recursive scheme for computing the

approximate confidence region.

Recursive construction of the confidence region

Initial Step: Γ0 = 0, I0 = 0, θ̃0 ∈ Θ.

nth Step:

Input: θ̃n−1, In−1,Γn−1, Zn−1, Zn.

Output: θ̃n = θ̃n−1 +
η

n
ψn(θ̃n−1),

In =
n− 1

n
In−1 +

1

n
Ψn(θ̃n−1),

Γn =
n− 1

n
Γn−1 +

1

n
(Id + ηIn)ψn(θ̃n−1),

(θ1
n,2j, . . . , θ

d
n,2j)

T = −I−1(θ̃n)Inθ̃n + I−1(θ̃n)Γn +

√
κ

n
(I−1/2
n )T ej,

(θ1
n,2j−1, . . . , θ

d
n,2j−1)T = −I−1(θ̃n)Inθ̃n + I−1(θ̃n)Γn −

√
κ

n
(I−1/2
n )T ej,

j = 1, . . . , d.

From here, we also conclude that there exists a function τ , independent of n, such

that

Tn = τ(Tn−1, Zn). (3.30)

The above recursive relationship goes to heart of application of recursive confidence

regions in the robust adaptive control theory originated in [BCC+16b], since it makes
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it possible to take the full advantage of the dynamic programming principle in the

context of such control problems.

We conclude this section by proving that the confidence region converges to

the singleton θ∗. Equivalently, it is enough to prove that the extreme points converge

to the true parameter θ∗.

Proposition 3.4.2. For any k ∈ {1, . . . , 2d}, we have that

Pθ∗- lim
n→∞

θn,k = θ∗.

Proof. By Assumption R8 and Theorem 3.2.1 (strong consistency of θ̃), we have that

Ln
a.s.−−−→
n→∞

I1/2(θ∗), and consequently, we also have that√
κ

n
eTj L

−1
n

a.s−−−→
n→∞

0. (3.31)

Of course, the last convergence holds true in the weak sense too. Passing to the

limit in (3.29), in Pθ∗ probability sense, and using (3.31) and weak consistency of θ̂

(Theorem 3.3.1), we finish the proof.

3.5 Examples

In this section we will present three illustrative examples of the recursive con-

struction of confidence regions developed above. We start with our main example,

Example 3.5.1, of a Markov chain with Gaussian transitional densities where both the

conditional mean and conditional standard deviation are the parameters of interest.

Example 3.5.2 is dedicated to the case of i.i.d. Gaussian observations, which is a

particular case of the first example.

Generally speaking, the simple case of i.i.d. observations for which the MLE

exists and asymptotic normality holds true, one can recursively represent the sequence
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of confidence intervals constructed in the usual (off-line) way, and the theory devel-

oped in this chapter is not really needed. The idea is illustrated in Example 3.5.3 by

considering again the same experiment as in Example 3.5.2. In fact, as mentioned

above, this idea served as the starting point for the general methodology presented

in the thesis.

Example 3.5.1. Let us consider a Markov process {Zn} with a Gaussian transition

density function

pθ(x, y) =
1√

1− ρ2
√

2πσ
e
− (y−ρx−(1−ρ)µ)2

2σ2(1−ρ2) , n ≥ 1,

and such that Z0 ∼ N (µ, σ2).

We assume that the correlation parameter ρ ∈ (−1, 1) is known, and the un-

known parameter is θ = (µ, σ) ∈ Θ, where Θ = [a1, a2]× [b1, b2], and a1 ≤ a2, b1 ≤ b2

are some fixed real numbers with b1 > 0.

In the Appendix C we show that the process Z satisfies the Assumption M, and

the conditions R0-A9.

Thus, all the results derived in the previous sections hold true. Moreover, for

a given confidence level α, we have the following explicit formulas for the nth step of

the recurrent construction of the confidence regions:

µ̃n = µ̃n−1 +
η(Zn − ρZn−1 − (1− ρ)µ̃n−1)

nσ̃2
n−1(1 + ρ)

,

σ̃2
n = σ̃2

n−1 −
η

nσ̃n−1

+
η(Zn − ρZn−1 − (1− ρ)µ̃n−1)2

n(1− ρ2)σ̃3
n−1

),

In =
n− 1

n
In−1 +

1

n

 − 1−ρ
(1+ρ)σ̃2

n−1
−2(Zn−ρZn−1−(1−ρ)µ̃n−1)

(1+ρ)σ̃3
n−1

−2(Zn−ρZn−1−(1−ρ)µ̃n−1)

(1+ρ)σ̃3
n−1

1
σ̃2
n−1
− 3(Zn−ρZn−1−(1−ρ)µ̃n−1)2

(1−ρ2)σ̃4
n−1

 ,

Γn =
n− 1

n
Γn−1 +

1

n
(Id + ηIn)

µ̃n−1

σ̃2
n−1

 ,
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and, for j ∈ {1, 2, 3, 4},µn,j
σ2
n,j

 = −


(1+ρ)σ̃2

n

1−ρ 0

0 σ̃2
n

2

 In
µ̃n
σ̃2
n

+


(1+ρ)σ̃2

n

1−ρ 0

0 σ̃2
n

2

Γn +$j
κ

n


√

1+ρ
1−ρ σ̃n 0

0 σ̃n√
2

uj,
where $1 = $3 = −1, $2 = $4 = 1, u1 = u2 = e1, u3 = u4 = e2, η is a constant

such that η >
b32
4b1

, η >
(1+ρ)b32
2(1−ρ)b1

, and Pθ∗(χ2
2 < κ) = 1− α.

Example 3.5.2. Let Zn, n ≥ 0, be a sequence of i.i.d. Gaussian random variables

with an unknown mean µ and unknown standard deviation σ. Clearly, this important

case is a particular case of Example 3.5.1, with ρ = 0, and the same recursive formulas

for confidence regions by taking ρ = 0 in the above formulas.

Example 3.5.3. We take the same set-up as in the previous example - i.i.d Gaussian

random variables with unknown mean and standard deviation. We will use the fact

that in this case, the MLE estimators for µ and σ2 are computed explicitly and given

by

µ̂n =
1

n+ 1

n∑
i=0

Zi, σ̂2
n =

1

n+ 1

n∑
i=0

(Zi − µ̂n)2, n ≥ 1,

It is well known that (µ̂, σ̂2) are asymptotically normal, namely

√
n(µ̂n − µ∗, σ̂2

n − (σ∗)2)
d−−−→

n→∞
N (0, I−1),

where

I =

(σ∗)2 0

0 2(σ∗)4

 .

First, note that (µ̂n, σ̂
2
n) satisfies the following recursion:

µ̂n =
n

n+ 1
µ̂n−1 +

1

n+ 1
Zn,

σ̂2
n =

n

n+ 1
σ̂2
n−1 +

n

(n+ 1)2
(µ̂n − Zn)2, n ≥ 1.

(3.32)
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Second, due to asymptotic normality, we also have that, Un
d−−−→

n→∞
χ2

2, where Un :=

n
σ̂2
n
(µ̂n− µ∗)2 + n

2σ̂4
n
(σ̂2

n− (σ∗)2)2. Now, for a given confidence level α, we let κ ∈ R be

such that Pθ∗(χ2
2 < κ) = 1− α, and then, the confidence region for (µ, σ2) is given by

Tn :=

{
(µ, σ2) ∈ R2 :

n

σ̂2
n

(µ̂n − µ)2 +
n

2σ̂4
n

(σ̂2
n − σ2)2 < κ

}
.

Similar to the previous cases, we note that Tn is the interior of an ellipse (in R2),

that is uniquely determined by its extreme points

(µn,1, σ
2
n,1) =

(
µ̂n +

√
κ

n
σ̂n, σ̂

2
n

)
, (µn,2, σ

2
n,2) =

(
µ̂n −

√
κ

n
σ̂n, σ̂

2
n

)
,

(µn,3, σ
2
n,3) =

(
µ̂n,

(
1 +

√
2κ

n

)
σ̂2
n

)
, (µn,4, σ

2
n,4) =

(
µ̂n,

(
1−

√
2κ

n

)
σ̂2
n

)
.

Therefore, taking into account (3.32), we have a recursive formula for computing these

extreme points, and thus the desired recursive construction of the confidence regions

Tn.
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CHAPTER 4

FUTURE WORK

In Chapter 2, we have introduced an axiomatic approach for modeling bid and

ask prices in general financial markets. Our framework is constructed in a discrete-

time setting. Therefore, a major future work will be to develop analogues of our

dynamic conic-finance theory in the continuous-time set-up. Such extension will be

divided into four major research tasks:

1. The first step is to develop continuous-time versions of dynamic risk measures

and dynamic acceptability indices for dividend-paying securities, and to estab-

lish the connection between such dynamic assessment indices and backward

stochastic differential equations.

2. The next research problem is to define a market model under the continuous-

time assumption, and to introduce the relevant financial definitions such as

value process, self-financing trading strategy, and arbitrage.

3. As in the current study, special attention will be devoted to dividend paying

securities. The main difficulty will be to prove that dynamic conic finance via

backward stochastic differential equations is a no-arbitrage pricing framework.

4. Finally, it is interesting to study the limit behavior of the theory developed in

this work as the time increment goes to 0.

In Chapter 3, we initiated the theory of recursive confidence regions. In part,

this theory hinges on the theory of recursive identification for stochastic dynamical

systems, such as a Markov chain, which is the main model studied here. Although

the results in the existing literature on statistical inference for Markov processes are

quite general, not much work has been done on the recursive identification methods
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for Markov processes. Our results provide a useful contribution in this regard, but,

they are subject to assumption of ergodicity imposed on our Markov chain. We leave

the study of more general cases to the future work.

It is implicitly assumed that our base estimator at each time step belongs to

the parameter space. One way to ensure this is to choose the parameter space as the

largest possible set that the true parameter lies in. However, this is not always possible

so that one needs to consider constrained recursive point estimators. We leave for

the future work the study of recursive confidence regions generated via constrained

recursive point estimation algorithms.
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APPENDIX A

ERGODIC THEORY FOR MARKOV CHAINS
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In this section, we will briefly discuss the theory of ergodicity for (time homo-

geneous) Markov processes in discrete time. Note that for fixed transition kernel Q

and initial distribution µ, all the corresponding Markov processes have the same law.

With this in mind, we will present results regarding ergodicity of Markov processes

associated to the canonical construction from Q and µ. We start with recalling the

notion for ergodicity of general dynamical systems.

Let (Ω,F ,P) be a probability space, and let T : Ω → Ω be a measure pre-

serving map, i.e. a map such that P(T−1(A)) = P(A) for every A ∈ F . Then,

the corresponding dynamical system is defined as the quadruple (Ω,F ,P, T ). Define

G := {A ∈ F : T−1(A) = A}, and note that Ω, ∅ ∈ G. Then, we have the following

Definition A.0.1. A dynamical system (Ω,F ,P, T ) is said to be ergodic if for any

A ∈ G we have P(A) = 0 or P(A) = 1.

One important result in the theory of dynamical system is the celebrated

Birkhoff’s Ergodic Theorem (See e.g. [Bir31], [vN32b], [vN32a]).

Theorem A.0.1 (Birkhoff’s Ergodic Theorem). Let (Ω,F ,P, T ) be an ergodic dy-

namical system. If f ∈ L1(Ω,F ,P). Then,

lim
N→∞

1

N

N−1∑
n=0

f(T nω) = EP[f ] P− a.s.

We now proceed by introducing the canonical construction of time homoge-

neous Markov chains. Let (X ,X) be a measurable space. Also, let Q : X ×X→ [0, 1]

be a transition kernal and π be a probability measure on (X ,X) such that π(A) =∫
X Q(x,A)π(dx), for any A ∈ X. Such measure π is called an invariant probability

measure of Q. For every n ≥ 0, we define a probability measure PQ,nπ on (X n+1,Xn+1),

where Xn+1 is the product σ-algebra on X n+1, by

PQ,nπ (A0 × . . .× An) =

∫
A0

· · ·
∫
An

Q(xn−1, dxn) · · ·Q(x0, dx1)π(dx0),



122

for any A0, . . . , An ∈ X. The sequence of measures {PQ,nπ }n>0 is consistent. That is,

PQ,nπ (A0 × A1 . . .× An) = PQ,n+m
π (A0 × A1 × . . .× An ×Xm),

holds true for any integer m > 0, and A0, . . . , An ∈ X. Therefore, by Kolmogorov’s

extension theorem, such family of measures extends to a unique measure PQπ on

(X N,XN), such that

PQπ (A0 × A1 . . .× An ×X∞) = PQ,nπ (A0 × A1 . . .× An), A0, . . . , An ∈ X. (A.1)

With a slight abuse of notation, we denote by T the (one step) shift map on X N

(T (ω))k = ωk+1, ω ∈ X N.

Due to the construction of (X N,XN,PQπ ) and the fact that π is an invariant measure,

then it can be verified that T is measure preserving, and therefore (X N,XN,PQπ , T ) is

a dynamical system.

Next, define a process X on (X N,XN,PQπ ) by

X(ω) = ω, ω ∈ X N,

so that, in particular, Xn(ω) = ω(n) for any integer n ≥ 0. A process defined in this

way is called a canonical process on (X N,XN,PQπ ) .

We now state and prove the following result,

Lemma A.0.1. A canonical process X on (X N,XN,PQπ ) is a time homogenous Markov

chain with transition kernel Q, and thus it is called the canonical Markov chain on

(X N,XN,PQπ ). Moreover, the initial distribution of X coincides with π, so that

PQπ (X0 ∈ A) = π(A).

Consequently, process X is a stationary process, that is, for any n ≥ 1, the law of

(Xj, Xj+1, . . . , Xj+n) under PQπ is independent of j, j ≥ 0.
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Proof. For any n > 1, denote by dx0:n := dxn × · · · × dx0. According to (A.1) and

the definition of PQ,nπ , we obtain that

PQπ (dx0:n) = PQ,nπ (dx0:n) = Q(xn−1, dxn) · · ·Q(x0, dx1)π(dx0).

Next, for any A0, . . . , An ∈ X, we get that

PQπ (An × · · · × A0) = EQπ [1An×···×A0 ]

=

∫
An−1×···×A0

EQπ [1An | Xn−1 = xn−1, . . . , X0 = x0]PQπ (dx0:n−1).

(A.2)

On the other hand, we also have that

PQπ (An × · · ·A0) = PQ,nπ (An × · · ·A0) =

∫
A0

· · ·
∫
An

Q(xn−1, dxn) · · ·Q(x0, dx1)π(dx0)

=

∫
An−1×···×A0

∫
An

Q(xn−1, dxn)PQπ (dx0:n−1).

(A.3)

(A.2) and (A.3) yield that

PQπ (Xn ∈ An | Xn−1 = xn−1, . . . , X0 = x0) = EQπ [1An | Xn−1 = xn−1, . . . , X0 = x0]

=

∫
An

Q(xn−1, dxn)

= PQπ (Xn ∈ An | Xn−1 = xn−1).

Therefore, we conclude that X is a Markov chain.

Now we prove the initial distribution of X is π. By definition of X we have

PQπ (X0 ∈ A) = PQπ (ω(0) ∈ A) = PQπ (A×X∞).

Then, according to (A.1), it is true that

PQπ (A×X∞) = PQ,0π (A) = π(A).

Therefore,

PQπ (X0 ∈ A) = π(A),
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and π is the initial distribution of X.

We finish the proof by showing the stationarity of X. That is to prove for any

fixed n ≥ 1, the probability PQπ (Xj ∈ A0, . . . , Xn+j ∈ An) is independent of j ≥ 0.

Since π is invariant measure Q, then it is clear that PQπ (Xj ∈ A0) = π(A0). Next, we

have

PQπ (Xj ∈ A0, . . . , Xn+j ∈ An) = PQπ (X j × A0 × · · · × An ×X∞),

where the right hand side is equal to PQ,n+j
π (X j × A0 × · · · × An) by (A.1). Finally,

according to the definition of PQ,n+j
π , we have

PQ,n+j
π (X j × A0 × . . .× An) =

∫
X

∫
A0

· · ·
∫
An

Q(xn+j−1, dxn+j)

· · ·Q(xn−1, dxn) · · ·Q(x0, dx1)π(dx0),

=

∫
A0

· · ·
∫
An

Q(xn+j−1, dxn+j) · · ·Q(xj, dxj+1)π(dxj)

= PQ,nπ (A0 × . . .× An) = PQπ (A0 × . . .× An ×X∞)

= PQπ (X0 ∈ A0, . . . , Xn ∈ An).

We now conclude that X is a stationary process.

Remark A.0.1. If a transition kernel Q admits an invariant measure π, then it is

customary to say that π is an invariant measure for any Markov chain corresponding

to Q. In particular, π is the invariant measure for the canonical Markov chain X on

(X N,XN,PQπ ).

We proceed by defining the notion of ergodicity for a canonical Markov chain

X.

Definition A.0.2. The canonical Markov chain X on (X N,XN,PQπ ) is said to be

ergodic if (X N,XN,PQπ , T ) is an ergodic dynamical system.

Remark A.0.2. Note that since an ergodic Markov chain X is, in particular, a

canonical Markov chain on (X N,XN,PQπ ), then it is a stationary process.
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Through the rest of this section X denote the canonical Markov chain defined

on (X N,XN,PQπ ). The following technical result is one of the key technical results used

in this thesis. In its formulation we denote by EQπ the expectation under measure PQπ .

Proposition A.0.1. Let X be ergodic. Then for any g such that EQπ [g(X0, . . . , Xn)] <

∞, we have

lim
N→∞

1

N

N−1∑
i=0

g(Xi, . . . , Xi+n) = EQπ [g(X0, . . . , Xn)] PQπ − a.s.

Proof. By definition, we have that (X N,XN,PQπ , T ) is an ergodic dynamical system.

For fixed n > 0, take f : X N → R defined as f(ω) := g(ω(0), . . . , ω(n)) for any

ω ∈ X N. Note that

ω(j) = Xj(ω), j ≥ 0,

and

T i(ω)(j) = Xi+j(ω), i, j ≥ 0.

Then, according to Birkhoff’s ergodic theorem, we get that for almost every ω ∈ X N:

lim
N→∞

1

N

N−1∑
i=0

g(Xi(ω), . . . , Xi+n(ω)) = lim
N→∞

1

N

N−1∑
i=0

f(T i(ω))

= EQπ [f ] = EQπ [g(X0, . . . , Xn)].

We finish this section with providing a brief discussion regarding sufficient

conditions for the Markov chain X to be ergodic. Towards this end, first note that,

in general, a transition kernel Q possesses more than one invariant measures, and we

quote the following structural result regarding the set of invariant measures of Q,

Proposition A.0.2. [Var01] Let Q : X ×X→ [0, 1] be a (one step) transition kernel.

Then, the set ΠQ of all invariant probability measures of Q is convex. Also, given a
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measure π ∈ Π, the system (X N,XN,PQπ , T ) is ergodic if and only if π is an extremal

point of Π. Furthermore, any two ergodic measures are either identical or mutually

singular.

Proposition A.0.2 implies

Corollary A.0.1. If a transition kernel Q has a unique invariant probability measure

π, then the system (X N,XN,PQπ , T ) is ergodic.

One powerful tool for checking the uniqueness of invariant probability measure

is the notion of positive Harris chain. There are several equivalent definitions of

positive Harris Markov chain, and we will use the one from [HLL00].

Definition A.0.3. The Markov chain X with transition kernel Q is called a positive

Harris chain if

(a) there exists a σ-finite measure µ on X such that for any x0 ∈ X , and B ∈ X with

µ(B) > 0

P(Xn ∈ B for some n <∞|X0 = x0) = 1,

(b) there exists an invariant probability measure for Q.

Proposition A.0.3. If X is a positive Harris chain, then X is ergodic.

Proof. It is well known (cf. e.g. [MT93]) that a positive Harris chain admits a unique

invariant measure. Thus, the result follows form Corollary (A.0.1).
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APPENDIX B

CLT FOR MULTIVARIATE MARTINGALES
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In this section, for a matrix A with real valued entries we denote by |A| the

sum of the absolute values of its entries.

In [CP05] Proposition 3.1, the authors gave the following version of the central

limit theorem for discrete time multivariate martingales.

Proposition B.0.4. On a probability space (Ω,F ,P) let D = {Dn,j, 0 ≤ j ≤ kn, n ≥

1} be a triangular array of d-dimensional real random vectors, such that, for each n,

the finite sequence {Dn,j,1 ≤ j ≤ kn} is a martingale difference process with respect

to some filtration {Fn,j, j ≥ 0}. Set

D∗n = sup
1≤j≤kn

|Dn,j|, Un =
kn∑
j=1

Dn,jD
T
n,j.

Also denote by U the σ-algebra generated by
⋃
j Hj where Hj := lim infnFn,j. Sup-

pose that D∗n converges in L1 to zero and that Un converges in probability to a U

measurable d-dimensional, positive semi-definite matrix U . Then, the random vector∑kn
j=1 Dn,j converges U -stably to the Gaussian kernel N (0, U).

Remark B.0.3. U -stable convergence implies convergence in distribution; it is enough

to take the entire Ω in the definition of U -stable convergence. See for example [AE78]

or [HL15].

We will apply the above proposition to the process {ψn(θ∗), n ≥ 0} such that

Assumption M, R8 and R9 are satisfied. To this end, let us define the triangular

array {Dn,j, 1 ≤ j ≤ n, n ≥ 1} as

Dn,j =
1√
n
ψj(θ

∗),

and let us take Fn,j = Fj.

First, note that Eθ∗ [ψj(θ∗)|Fj−1] = 0, so that for any n ≥ 1, {Dn,j, 1 ≤ j ≤ n}

is a martingale difference process with respect to {Fj, 0 ≤ j ≤ n}. Next, R9 implies
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that D∗n := sup1≤j≤n
1√
n
|ψj(θ∗)| converges in L1 to 0. Finally, stationarity, R8 and

ergodicity guarantee that

Un :=
1

n

n∑
j=1

ψj(θ
∗)ψTj (θ∗)→ Eθ∗ [ψ1(θ∗)ψT1 (θ∗)] Pθ∗ − a.s.

The limit I(θ∗) = Eθ∗ [ψ1(θ∗)ψT1 (θ∗)] is positive semi-definite, and it is deterministic, so

that it is measurable with respect to any σ-algebra. Therefore, applying Proposition

B.0.4 and Remark B.0.3 we obtain

Proposition B.0.5. Assume that Assumption M, R8, and R9 are satisfied. Then,

1√
n

n∑
j=1

ψj(θ
∗)

d−−−→
n→∞

N (0, I(θ∗)).
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APPENDIX C

TECHNICAL SUPPLEMENT
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Assumptions R4–R6 are stated for any deterministic vector θ ∈ Θ. In this

section, we show that if (3.3)-(3.7) hold for θ ∈ Θ, then for any random vectors

θ,θ1,θ2 that are Fn−1 measurable and take values in Θ, analogous inequalities are

true.

Proposition C.0.6. Assume that R4-R6 are satisfied. Then, for any fixed n ≥ 1

and for any random vectors θ,θ1,θ2 that are Fn−1 measurable and take values in Θ,

we have

Eθ∗ [‖ψn(θ)‖2|Fn−1] ≤ c(1 + ‖θ − θ∗‖2), (C.1)

(θ − θ∗)T bn(θ) ≤ −K1‖θ − θ∗‖2, (C.2)

‖bn(θ)‖ ≤ K2‖θ − θ∗‖, (C.3)

Eθ∗ [‖Ψn(θ1)−Ψn(θ2)‖|Fn−1] ≤ K3‖θ1 − θ2‖, (C.4)

Eθ∗ [‖Hψn(θ)‖|Fn−1] ≤ K4. (C.5)

Proof. We will only show that (C.2) is true. The validity of the remaining inequalities

can be proved similarly. Also, without loss of generality, we assume that d = 1.

From (3.4), we have for any θ ∈ Θ, (θ − θ∗)Eθ∗ [ψn(θ) | Fn−1] ≤ K1|θ − θ∗|. If

θ is a simple random variable, i.e. there exists a partition {Am, 1 ≤ m ≤ M} of Ω,

where M is a fixed integer, such that Am ∈ Fn−1, 1 ≤ m ≤M , and θ =
∑M

m=1 cm1Am ,
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where cm ∈ Θ. Then, we have that

(θ − θ∗) bn(θ) = (
M∑
m=1

cm1Am − θ∗)Eθ∗ [ψn(θ)|Fn−1]

=
M∑
m=1

1Am(cm − θ∗)Eθ∗ [1Amψn(θ)|Fn−1]

=
M∑
m=1

1Am(cm − θ∗)Eθ∗ [1Amψn(cm)|Fn−1]

=
M∑
m=1

1Am(cm − θ∗)Eθ∗ [ψn(cm)|Fn−1]

≤ −
M∑
m=1

1AmK1|cm − θ∗|2 = −K1|θ − θ∗|2.

From here, using the usual limiting argument we conclude that (C.2) holds true for

any Fn−1 measurable random variable θ.

In the rest of this section we will verify that the Assumption M and the

properties R0–R9 are satisfies in Example 3.5.1.

It is clear that the Markov chain {Zn, n ≥ 0}, as defined in Example 3.5.1,

satisfies (i) and (iii) in Assumption M. Next we will show that Z is a positive Harris

chain (see Definition A.0.3). For any Borel set B ∈ B(R) with strictly positive

Lebesgue measure, and any z0 ∈ R, we have that

lim
n→∞

Pθ∗(Zn /∈ B, . . . , Z1 /∈ B | Z0 = z0)

= lim
n→∞

Pθ∗(Zn /∈ B | Zn−1 /∈ B) · · ·Pθ∗(Z2 /∈ B | Z1 /∈ B)Pθ∗(Z1 /∈ B | Z0 = z0)

= lim
n→∞

Pθ∗(Z2 /∈ B | Z1 /∈ B)n−1Pθ∗(Z1 /∈ B | Z0 = z0) = 0,

and thus Z satisfies Definition A.0.3.(a). Also, since the density (with respect to the

Lebesgue measure) of Z1 is

fZ1,θ∗(z1) =

∫
R
pθ∗(z0, z1)fZ0,θ∗(z0)dz0 =

1√
2πσ∗

e
− (z1−µ

∗)2

2(σ∗)2 ,
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then Z1 ∼ N (µ∗, (σ∗)2), and consequently, we get that Zn ∼ N (µ∗, (σ∗)2) for any

n ≥ 0. This implies that N (µ∗, (σ∗)2) is an invariant distribution for Z. Thus, Z is a

positive Harris chain, and respectively, by Proposition A.0.3, Z is an ergodic process.

As far as propreties R0–R9, we fist note that

ψn(θ) = ∇ log pθ(Zn−1, Zn)

=
(Zn − ρZn−1 − (1− ρ)µ

σ2(1 + ρ)
,− 1

σ
+

(Zn − ρZn−1 − (1− ρ)µ)2

(1− ρ2)σ3

)T
,

bn(θ) = Eθ∗ [ψn(θ)|Fn−1]

=
(
− (1− ρ)(µ− µ∗)

σ2(1 + ρ)
,
σ∗,2 − σ2

σ3
+

(1− ρ)(µ− µ∗)2

(1 + ρ)σ3

)T
,

Ψn(θ) =

 − 1−ρ
(1+ρ)σ2 −2(Zn−ρZn−1−(1−ρ)µ)

(1+ρ)σ3

−2(Zn−ρZn−1−(1−ρ)µ)
(1+ρ)σ3

1
σ2 − 3(Zn−ρZn−1−(1−ρ)µ)2

(1−ρ2)σ4

 .
We denote by Yn := Zn − ρZn−1 − (1− ρ)µ, and we immediately deduce that that

Eθ∗ [Yn | Fn−1] = (1− ρ)(µ∗ − µ),

Eθ∗ [Y 2
n | Fn−1] = (1− ρ)2(µ− µ∗)2 + (σ∗)2(1− ρ2),

Eθ∗ [Y 4
n | Fn−1] = (1− ρ)4(µ∗ − µ)4 + 6(1 + ρ)(1− ρ)3(µ∗ − µ)2(σ∗)2

+ 3(σ∗)4(1− ρ2)2.

(C.6)

From here, and using the fact that Θ is bounded, it is straightforward, but tedious,14

to show that R4, R5, R6, and R7 are satisfied. Also, it is clear note that R0 is true,

and using (C.6) by direct computations we get that R1 and R2 are satisfied.

Since

Eθ∗ [ψ1(θ)] =

(
(1− ρ)(µ∗ − µ)

σ2(1 + ρ)
,
(σ∗)2 − σ2

σ3
+

(1− ρ)(µ− µ∗)2

(1 + ρ)σ3

)
,

then R3 is clearly satisfied.

14The interested reader can contact the authors for details.
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Again by direct evaluations, we have that

I(θ) = Eθ[ψ1(θ)ψ1(θ)T ] =

 1−ρ
(1+ρ)σ2 0

0 2
σ2

 ,
which is positive definite matrix, and thus R8 is satisfied.

Finally, we will verify R9. By Jensen’s inequality and Cauchy-Schwartz in-

equality, we have that

exp

(
Eθ∗ sup

0≤i≤n
|ψi(θ∗)|

)
≤ Eθ∗ exp

(
sup

0≤i≤n
|ψi(θ∗)|

)
= Eθ∗

[
sup

0≤i≤n
exp |ψi(θ∗)|

]
≤

n∑
i=1

Eθ∗ exp |ψi(θ∗)|

≤
n∑
i=1

Eθ∗ exp
( |Yi|
σ2(1 + ρ)

+
1

σ
+

Y 2
n

(1− ρ)2σ3

)
≤

n∑
i=1

(
Eθ∗ exp(

2|Yi|
σ2(1 + ρ)

)
) 1

2
(
Eθ∗ exp(

2

σ
+

2Y 2
i

(1− ρ)2σ3
)
) 1

2
.

Note that for Yi, i = 0, . . . , n is normally distributed, and therefore, there exist two

constants C1 and C2, that depend on θ∗ such that

Eθ∗ exp

(
2|Yi|

σ2(1 + ρ)

)
= C1, Eθ∗ exp

(
2

σ
+

2Y 2
i

(1− ρ)2σ3

)
= C2.

Hence, we have that

Eθ∗ sup
0≤i≤n

|ψi(θ∗)| ≤ log n+
1

2
logC1C2,

and, thus R9 is satisfied:

lim
n→∞

Eθ∗
[

sup
0≤i≤n

∣∣∣ 1√
n
ψi(θ

∗)
∣∣∣] ≤ lim

n→∞

(
log n√
n

+
logC1C2

2
√
n

)
= 0.
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