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Abstract

Most Lie group integrators can be expanded in series indexed by the
set of ordered rooted trees. To each tree one can associate two distinct
higher order derivation operators, which we call frozen and unfrozen
operators. Composition of frozen operators induces a concatenation
product on the trees, whereas composition of unfrozen operators in-
duces a somewhat more complicated product known as the Grossman–
Larson product. Both of these algebra structures can be supplemented
by the same coalgebra structure and an antipode, the result being two
distinct cocommutative graded Hopf algebras. We discuss the use of
these structures and characterize subsets of the Hopf algebras corre-
sponding to vector fields and mappings on manifolds. This is further
relevant for deriving order conditions for a general class of Lie group
integrators and for deriving the modified vector field in backward error
analysis for these integrators.

1 Introduction

The derivation of high order Runge–Kutta methods was revolutionized by
Butcher’s discovery of the beautiful connection between their series expan-
sion in terms of the stepsize and the set T of rooted trees [2]. Virtually
overnight, long and tedious calculations were replaced by elegant recursion
formulas expressed in terms of trees. Later on, in 1972 Butcher published a
paper [3] where he showed that Runge–Kutta methods form a group under
composition, and derived explicit expressions for the group operations as
induced on the trees. Hairer and Wanner named it the Butcher group and
contributed substantially to the theory in [10]. The group is defined on the
dual of the tree space by using a bialgebra structure on the space of rooted
trees.

More recently, Kreimer [13] used a Hopf algebra of rooted trees to deal
with the combinatorics of renormalization in quantum field theory, the con-
nection to the work of Butcher was nicely presented in [1].

In the last few years, new classes of integrators have been subjected to
order analysis by means of trees. In [19] order conditions for composition
methods are studied by means of so called ∞-trees, see also [8]. Another
class of novel schemes is the one based on Lie group actions on manifolds.
Such integrators, which generalize classical Runge–Kutta methods, are now
commonly referred to as Lie group integrators. Early contributors to this
class of schemes include Crouch and Grossman [6] as well as Lewis and Simo
[14, 15]. The Lie group schemes were later subjected to a more systematic
treatment by many authors, see the survey [12]. In [16] Munthe-Kaas showed
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how a certain subclass of the Lie group integrators could be expanded in a
series for the purpose of order analysis, but his approach was not pursued
any further at that time since he discovered in [17] that a suitable change of
variable would allow him to use the classical Butcher theory for deriving the
order conditions. But the schemes of Crouch and Grossman [6] did not fit
into this framework, and so Owren and Marthinsen [21] developed a slightly
different framework based on ordered rooted trees for deriving the general
order conditions for such schemes.

In this note, we will see how the algebraic structure introduced by
Butcher can be extended to the set of ordered rooted trees. In particu-
lar we will present two different Hopf algebras on rooted trees, the first one
was introduced by Grossman and Larson in [7] and the second is related
to the one presented by Reutenauer in the text [22]. We will discuss their
relevance to order conditions and backward error analysis for a general class
of Lie group integrators.

2 Lie group integrators

An ordinary differential equation on a manifold has various different formu-
lations,

y′ = F (y) = f(y) · y =
∑

i

f i(y)Ei(y). (1)

F is here a smooth vector field on M. The second equality tacitly refers
to a transitive action on M by a Lie group G, and f : M → V ⊂ g where
g is the Lie algebra of G, and V is a subspace of g. The notation v · p,
v ∈ g, p ∈ M signifies the derivative of the group action in the sense that

v · p =
d

dt

∣

∣

∣

∣

t=0

exp(tv) · p.

In the last equality of (1), we have used a set of frame vector fields E1, . . . , Ed

that may be defined as Ei(p) = ei · p for some basis e1, . . . , ed of g (or V).
The functions f i : M → k are then given such that f(y) =

∑

f i(y) ei · y.
To the end of this note, we shall always assume that the field k is either
R or C. Note that the action is usually not assumed to be free. For our
purposes, the language of actions and frames can be used interchangeably,
but for this present exposition we find it slightly advantageous to use frames.
By a minor abuse of notation, we shall therefore denote by V also the linear
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span of the frame vector fields

V = span{E1(y), . . . , Ed(y)}.

We will as usual interpret vector fields as derivations acting on functions
ψ : M → k, and denote this action by F [ψ] for any F ∈ X(M).

In order to develop numerical integrators, we approximate the vector
field by the freeze map Fr : M × X(M) → V, in which the vector fields Ei

are assumed to be simpler to integrate than F ,

(

p,
∑

i

f i(y)Ei(y)

)

7→
∑

i

f i(p)Ei(y). (2)

We propose a scheme for Lie group integrators which generalizes both
Crouch–Grossman (CG) type of schemes [6, 21], and the Runge–Kutta–
Munthe-Kaas (RKMK) type [16, 17]. The scheme uses the point p ∈ M
as input, together with a stepsize h ∈ R and produces as output a point
y1 ∈ M such that y1 ≈ exp(hF ) p.

gi = exp

(

∑

r

αr
i,JKr

)

· · · exp

(

∑

r

αr
i,1Kr

)

p (3)

K̄i = h Fr(gi, F ) = h
∑

`

f `(gi)E` (4)

Ki = Pi

(

K̄1, . . . , K̄s

)

(Lie polynomial) (5)

y1 = exp

(

∑

r

βr
JKr

)

· · · exp

(

∑

r

βr
1Kr

)

p (6)

In (3) to (5) the index i runs from 1 to s, where s is the number of stages
in the step.

This scheme belongs to the RKMK class if J = 1 in (3) and (6) (only
one exponential used for gi and y1). If αr

i,j = 0 when r 6= j in (3), βr
j = 0

when r 6= j in (6), and Ki = K̄i for all i, then this is a Crouch–Grossman
scheme. Requiring only K̄i = Ki for all i, one obtains a commutator-free
Lie group scheme [4].

The scheme is explicit if Pi in (5) depends only on K̄1, . . . , K̄i and αr
i,j = 0

when r ≥ i, 1 ≤ j ≤ J .
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3 Algebraic structures on trees

In this section we shall impose algebraic structures on the space of ordered
rooted trees. We will define two distinct associative products and a unit
element and thereby introduce two different algebra structures. We next
define a coassociative coproduct with counit to obtain one coalgebra which
can be used with each of the two algebras to form two distinct bialgebras.
Each of these can be equipped with an antipode, the result being two distinct
cocommutative graded Hopf algebras. A good reference for the theory of
Hopf algebras is Sweedler’s book [23], to which we will refer frequently.

The set of all ordered rooted trees is denoted TO, see e.g. [5] for a rigorous
treatment of such trees and their combinatorial properties. We shall work
recursively with trees, and our notation is based on the fact that a tree
t ∈ TO is either the one-node tree • ∈ TO (the identity tree), or obtained
by connecting the roots of an ordered set of subtrees t1, . . . , tµ to a new
common root, where each ti ∈ TO. We use the notation t = B+(t1, . . . , tµ)
for this operation. Conversely, B−(t) will denote the (ordered) set of subtrees
obtained by deleting the root of t. Let σ(t) be the underlying set of nodes
of t. The number of nodes in a tree t is denoted |t|, and we let the grading
be ν(t) = |t| − 1. So ν(•) = 0, and for any other tree t = B+(t1, . . . , tµ) one
has ν(t) = µ−1+

∑µ
i=1 ν(ti). It is well known, see e.g. [5], that the number

νr of trees such that ν(t) = r is given by the Catalan number

νr =
1

r + 1

(

2r

r

)

. (7)

The linear space kTO is obtained by forming finite linear combinations
of trees over the field k.

We shall later make use of the subset of TO consisting of trees with only
one subtree at the first level, we denote this subset by T 1

O, and let kT 1
O be

the corresponding subspace of kTO.

T 1
O =

{

t ∈ TO : t = B+(t′), t′ ∈ TO

}

.

3.1 Grossmann–Larson product on trees

An attachment map is a map which associates to any element of an ordered
finite subset S of TO a unique element of another set M , which will typically
be the nodes of a tree, σ(t). We write d : S −→ σ(t) for this map. By the
notation

v ↼d S (8)
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we mean an augmented tree w where each element s ∈ S has been attached
to the node d(s) of v by adding an edge from the root of s to d(s). Thus, s
becomes a subtree of the tree which is rooted at d(s). This subtree will be
ordered before any of the existing subtrees at d(s). Moreover, if d(s) = d(s ′)
where s < s′ then s will be ordered before s′ as subtrees of the new tree w.
By convention, we depict this ordering by grafting elements of S to the left
of the already existing subtrees in v. Sometimes we need to sum over all
possible attachment maps d from S to σ(v) in (8) in which case we simply
omit the subscript on ↼ and write

v ↼ S :=
∑

d

v ↼d S

Definition 3.1 (Grossman–Larson algebra). The identity element is
the one-node tree •, and the product of two trees is

µGL(v ⊗ w) = w ↼ B−(v), v, w ∈ TO

The unit in the algebra is u : k → kTO given by u(α) = α• for α ∈ k.

This product is non-commutative. An example is

µGL( •
? ◦ ⊗ •

•) = •
? ◦ • + •

? •
◦

+ •
•
? ◦

+ •
◦ •
?

= •
• • • + 2 •

• •
•

+ •
•
• •

(9)

where we have temporarily inserted a star and a circle for the grafted nodes
to explicitly show the order-preservation.

Grossmann and Larson prove in [7, Section 3] that this product is indeed
associative.

3.2 Concatenation algebra on trees

We continue to define a simpler product on the trees in TO.

Definition 3.2 (Concatenation algebra). The concatenation product of
two trees v and w results from joining all the subtrees of both v and w to a
new common root,

µM(v ⊗ w) = B+(B−(v) ∪B−(w)), v, w ∈ TO

such that the order is preserved. The identity is the one-node tree •.

Alternatively, if v = B+(v1, . . . , vµ) and w = B+(w1, . . . , wν), then
µM(v ⊗ w) = B+(v1, . . . vµ, w1, . . . wν).

Note that this product has a subset of the terms arising from the product
in the Grossman–Larson algebra. We may write µM (v⊗w) = w ↼d0

B−(v)
where d0 is the map that sends all elements of the set B−(v) to the root
r ∈ σ(w).
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3.3 Coalgebra on trees

The two Hopf algebras on trees we will present, share the same coproduct
∆ : kTO → kTO ⊗ kTO. We here follow the presentation in [7], but we refer
to [23] for the basic theory on algebras and coalgebras.

Definition 3.3 (Coalgebra). The coproduct on the trees in TO is given
by

∆(t) =
∑

X⊆B−(t)

B+(X ) ⊗B+(X c)

which extends linearly to kTO. The subsets X inherit the ordering from t
as do the complements X c. We include the empty set ∅ as well as B−(t)
in the sum, using the convention B+(∅) = •. The counit is the linear map
ε : kTO → k such that

ε(•) = 1 and ε(t) = 0, t ∈ TO, t 6= •.

We refer to [7] for a proof that the coproduct defined above is coassocia-
tive, meaning that (I ⊗ ∆) ◦ ∆ = (∆ ⊗ I) ◦ ∆.

A bialgebra has both an algebra structure and a coalgebra structure
which are compatible in the sense that the coproduct must be an algebra
homomorphism (or equivalently, the product is a coalgebra homomorphism).
That is

∆(µGL(v ⊗ w)) = µGL⊗GL(∆(v) ⊗ ∆(w)). (10)

We refer to Grossman and Larson [7, Section 3] for a proof of Equation (10).
Note that the product structure µGL⊗GL on kTO ⊗ kTO is naturally con-
structed using µGL⊗GL = (µGL ⊗ µGL) ◦ (I ⊗ T ⊗ I) where T : a⊗ b 7→ b⊗ a
is the twist map.

It is easier to prove that ∆ is an algebra homomorphism with respect to
the concatenation algebra.

Proposition 3.4. The coproduct ∆ given in Definition 3.3 is a concatena-

tion algebra homomorphism, that is

∆(µM(t1 ⊗ t2)) = µM⊗M(∆(t1) ⊗ ∆(t2))

Proof. From the left we have

∆(µM(t1 ⊗ t2)) = ∆(B+(B−(t1) ∪B−(t2))

=
∑

X⊆B−(t1)∪B−(t2)

B+(X ) ⊗B+(X c)
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and from the right, using µM⊗M = (µM ⊗ µM ) ◦ (I ◦ T ◦ I).

µM⊗M(∆(t1) ⊗ ∆(t2))= µM⊗M





∑

X1,X2

B+(X1) ⊗B+(X c
1 ) ⊗B+(X2) ⊗B+(X c

2 )





= (µM ⊗ µM)





∑

X1,X2

B+(X1) ⊗B+(X2) ⊗B+(X c
1 ) ⊗B+(X c

2 )





=
∑

X1,X2

B+(X1 ∪ X2) ⊗B+(X c
1 ∪ X c

2 )

which is a sum equivalent to the one above.

It is also apparent from the definition of the coproduct that the coalgebra
is cocommutative, that is ∆ = ∆ ◦ T .

3.4 Grossmann–Larson Hopf algebra

A mapping S : kTO → kTO in a bialgebra, is an antipode [23] if it satisfies

µ ◦ (S ⊗ Id) ◦ ∆ = u ◦ ε = µ ◦ (Id ⊗ S) ◦ ∆ (11)

Note that u ◦ ε is zero on all trees in TO except from •, one has u ◦ ε(•) = •.
One may apply (11) with µ replaced by µGL recursively to obtain SGL(t) for
any t ∈ TO, noting that one gets SGL(•) = • as well as identities of the form

SGL(t) = −t−
∑

µGL(SGL(ti1) ⊗ ti2), |ti1 | < |t|.

An explicit formula for SGL(t) seems hard to derive or use in general. But
there are some simple cases. For instance,

SGL(t) = −t, for t ∈ T 1
O. (12)

For trees with exactly two branches emanating from the root, one has

SGL(B+(t1, t2)) = B+(t2, t1) +B+(t1 ↼ t2 + t2 ↼ t1).

where B+ has been extended to a linear map.

Example 3.5 (Grossmann–Larson antipode).

SGL(•) = • SGL(•
•) = −•

•

SGL( •
• •) = •

• • + 2•
•
•

SGL( •
•
•
•) = •

• •
•

+ 2•
•
•
•

+ •
•
• •
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3.5 Concatenation Hopf algebra

We define the antipode for the concatenation algebra in the same way, but
the trivial product provides an easy factorization which facilitates a formula
for the antipode.

The antipode of a tree t = B+(t1, . . . tµ) in the concatenation algebra
takes the form

S(t) = (−1)µB+(tµ, . . . t1)

which follows from the fact that the antipode of a Hopf algebra is an anti-
automorphism [23, Proposition 4.0.1, page 74] and from Equation (12).

Because the coproduct for both Hopf algebras is cocommutative, the
antipodes have the property that S2 is the identity map on kTO [23, Propo-
sition 4.0.1, page 74].

3.6 Infinite series and their subsets

We may define formal series on TO as infinite sums

∑

t∈TO

St t

where St is the coefficient of the tree t in the series S. The set of all such
series is denoted k∞TO of which kTO is clearly a subspace. We can extend
the bialgebras to this space by setting the coefficients of the product of two
series S and T to

(µ(S ⊗ T ))t =
∑

µ(v⊗w)=t

SvTw (13)

the sum being finite since the homogeneous components of kTO are finite
dimensional. The coproduct ∆ is extended in a similar way. We may now
define the commutator between two series in either algebra as

[S, T ] = µ(S ⊗ T − T ⊗ S).

The primitive elements of the extended Hopf algebras are those which satisfy

∆(S) = S ⊗ • + • ⊗ S. (14)

The linear space of primitive elements is from now on denoted g, it is closed
under the commutator and thus forms a Lie algebra. Later, we shall see
that g plays an important role as its members represent formal expansions
of the vector fields used in the integration schemes. In particular, we observe
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from the definition of the coproduct that k∞T
1
O ⊂ g. Moreover, it follows

immediately from (14) and the general definition of the antipode that

S(S) = −S, S ∈ g.

The Milnor–Moore theorem ensures that the universal enveloping algebra
of g is isomorphic to k∞TO.

The series T ∈ k∞TO with 〈T, •〉 = 1 form a group under the prod-
uct in (13). Taking the formal exponential of all Lie series g, we obtain a
subgroup G = exp(g) with the property

∆(T ) = T ⊗ T. (15)

if T = exp(S) for S ∈ g. The proof is simple, and can be found in [22, Thm.
3.2].

The groupG is also invariant under the antipode, the antipode represents
the group inverse, as we get

µ(S(T ) ⊗ T ) = • (16)

from the defining equation (11) of the antipode. Later, we shall see that the
elements of G represent expansions of maps defined as part of the integration
schemes.

4 Elementary high order derivations

In this section we return to the Lie group integration schemes. Suppose
that a frame set (action) is given together with the vector field F in (1).
Letting vector fields be derivation operators acting on the functions on the
manifold, we shall recursively define high order derivation operators which
will feature in the expansions of the various quantities appearing in the Lie
group integrators. The algebra obtained by composing these operators will
be seen to coincide with the tree algebras of the previous section.

4.1 High order derivations

Definition 4.1 (Elementary High Order Derivation, EHOD). Let
F ∈ X(M) and E1, . . . , Ed ∈ X(M) be given. We define F to be the k-
linear map from k∞TO to the vector space of high order derivations on the
manifold such that for t ∈ TO

F(t) : ψ 7→ F(t)[ψ]
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where F(•) = Id and if t = B+(t1, . . . , tµ),

F(t) =
∑

i1,...,iµ

F(t1)[f
i1 ] · · ·F(tµ)[f iµ ]Ei1 · · ·Eiµ .

We now give some motivation for the above definition. Formally, one
has the expansion of the flow of F ∈ X(M) relative to the point p ∈ M,

ψ(exp(hF )p) = ψ(p) + F [ψ](p) +
1

2
F 2[ψ](p) + · · · = exp(hF )[ψ](p). (17)

The powers of F are obtained by repeated application of F as a derivation
operator. The expansion (17) is sometimes called a pullback series.

We may substitute Equation (1) (F = f iEi) into (17) and use Leibniz’
rule repeatedly to generate terms that are EHODs. We use the convention
that indices appearing more than once are summed over, and from [21] we
find

F 1 = F = f iEi = F(•
•)

F 2 = F [F ] = f iEi[f
jEj ] = f iEi[f

j]Ej + f if jEi[Ej ]

= F(•
•
•
) + F( •

• •)

F 3 = f if jfkEiEjEk + f ifkEi[f
j]EjEk + 2f if jEi[f

k]EjEk+

f if jEiEj [f
k]Ek + f iEi[f

j]Ej [f
k]Ek

= F( •
• • •) + F( •

•
• •

) + 2F( •
• •
•
) + F( •

•
•
•) + F(•

•
•
•

).

(18)

Proposition 4.2. The map F in Definition 4.1 is an algebra homomor-

phism from the Grossman–Larson algebra to the algebra of EHODs under

composition,

F(µGL(v ⊗ w)) = F(v) ◦ F(w).

We first prove the following lemma.

Lemma 4.3. Let v = B+(t) ∈ T 1
O, t ∈ TO and w ∈ TO. Then

F(v) ◦ F(w) = F(w ↼ t)

Proof. The proof is by induction on |w|. Suppose first that w = •, then
F(v) ◦F(•) = F(•↼d• {t}) = F(v). Next suppose that the lemma holds for
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each w such that |w| ≤ k where k ≥ 1. Any tree with k + 1 nodes is of the
form w = B+(w1, . . . , wω) where each |wi| ≤ k. We calculate

F(v) ◦ F(w) =
∑

i

F(t)[f i]Ei





∑

j

F(w1)[f
j1 ] · · ·F(wω)[f jω ]Ej1 · · ·Ejω





We use Leibniz’ rule and split the result in two parts, F(v)◦F(w) = T1 +T2

where
T1 = F(B+(t, w1, . . . , wω)) = F(w ↼dr

{t})

where r is the root of w. T1 is the part where Ei above acts as a derivation
on the part Ej1 · · ·Ejω . The second part is where Ei acts on the coefficient
functions,

T2 =
ω
∑

q=1

∑

i,j

F(t)[f i]Ei

[

F(wq)[f
jq ]
]

∏

k 6=q

F(wk)[f
jk ]Ej1 · · ·Ejω

=

ω
∑

q=1

∑

j

F(v) ◦ F(wq)[f
jq ]
∏

k 6=q

F(wk)[f
jk ]Ej1 · · ·Ejω

=
∑

j

ω
∑

q=1

∑

xq∈σ(wq)

F(wq ↼dxq
{t})[f jq ]

∏

k 6=q

F(wk)[f
jk ]Ej1 · · ·Ejω

=
∑

x∈σ(w)\{r}

F(w ↼dx
{t})

Proof of Proposition 4.2. If v is the unit tree •, the result is obvious. Sup-
pose that v = B+(v1, . . . , vν), each vi ∈ TO, and let y be the independent
variable for the EHODs. Then

F(v) ◦ F(w) =
∑

i

Fs(v1)[f
i1 ] · · ·Fs(v1)[f

iν ]

∣

∣

∣

∣

s=y

Ei1 · · ·Eiν [F(w)]

=
∑

i

(Fs(B+(v1))[f
i1 ]Ei1) · · · (Fs(B+(vν))[f

iν ]Eiν )[F(w)]

∣

∣

∣

∣

s=y

Each of the ν trees B+(vi) are of the form v = B+(t) required by Lemma 4.3.
The trees are all attached only to the nodes of w, there is no accumulation
since the coefficient functions of the attached subtrees do not depend on y.
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We get according to the lemma that

F(v) ◦ F(w) =
ν
∑

k=1

∑

x∈σ(w)

F(w ↼dx
{vk}) =

∑

d

F(w ↼d B−(v))

Example 4.4. We use the same trees as in the example in Equation (9)

F( •
• •) ◦ F(•

•) = F
(

•
• • • + 2 •

• •
•

+ •
•
• •
)

.

The corresponding EHODs composed with each other results in

f if jEiEj ◦ f
kEk = f if jEiEj [f

kEk]

= f if jEiEj [f
k]Ek + f if jEj [f

k]EiEk+

f if jEi[f
k]EjEk + f if jfkEiEjEk

which we see correspond to the correct trees as in Equation (18).

4.2 Frozen Elementary High Order Derivations

In (2) we introduced the freeze map which assigns to a pair (F, p) the vec-
tor field Fp ∈ span{E1, . . . , Ed} which coincides with F at p, F |p = Fp|p.
This amounts to freezing the coefficient functions f i at the point p in the
representation F = f iEi in terms of the frame.

Definition 4.5 (Frozen Elementary High Order Derivation, FE-
HOD). Let F ∈ X(M), p ∈ M and E1, . . . , Ed ∈ X(M) be given. We
define Fp to be the k-linear map from k∞TO to the vector space of high
order derivations on the manifold such that for t ∈ TO, one has: Fp(•) = Id,
and if t = B+(t1, . . . , tµ), then

Fp(t) =
∑

i1,...,iµ

F(t1)[f
i1 ](p) · · ·F(tµ)[f iµ ](p)Ei1 · · ·Eiµ

Proposition 4.6. The map Fp is an algebra homomorphism from the con-

catenation algebra to the algebra of FEHODs under composition,

Fp(µM(v ⊗ w)) = Fp(v) ◦ Fp(w).
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Proof. Let v = B+(t1, . . . , tµ) and w = B+(tµ+1, . . . , tν), then

Fp(v) ◦ Fp(w) =
∑

i1,...,iµ

F(t1)[f
i1 ](p) · · ·F(tµ)[f iµ ](p)Ei1 · · ·Eiµ◦





∑

iµ+1,...,iν

F(tµ+1)[f
iµ+1 ](p) · · ·F(tν)[f

iν ](p)Eiµ+1
· · ·Eiν





=
∑

i1,...,iν

F(t1)[f
i1 ](p) · · ·F(tν)[f

iν ](p)Ei1 · · ·Eiν

= Fp(µM(v ⊗ w))

as each of the F(tj)[f
ij ](p) is just a constant and thereby unaffected by the

Ei’s.

5 B-series

Let kT ∗
O be the algebraic dual of the space kTO. For any a ∈ kT ∗

O, p ∈ M
we associate a formal series of operators

Bp(a) =
∑

t∈TO

h|t|−1〈a, t〉 Fp(t) (19)

where 〈·, ·〉 is the duality pairing. We can think of (19) as a generalization
of the B-series discussed in [9]. Some authors include symmetry coefficients
σ(t), and then take 〈a′, t〉 = 〈a, t〉/σ(t) instead of 〈a, t〉 in the definition.

Keeping the algebra homomorphism Fp from Definition 4.5 in mind, we
employ the shorthand notation

∑

t∈TO

〈a, t〉t (20)

for the B-series (19) and this is now a series in k∞TO. This formula also
shows the natural identification of kT ∗

O with k∞TO.
Suppose that a map φa has a B-series expansion with coefficients from

a ∈ kT ∗
O and relative to the point p ∈ M. This means that formally

ψ(φa(y)) = Bp(a)[ψ](y) (21)

for any function ψ ∈ C∞(M, k) and y ∈ M. Suppose that we freeze the
vector field F at the point φa(p) ∈ M, we then compute the series of hFφa(p)
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using (21)

h
∑

i

f i(φa(p))Ei = h
∑

i

∑

t∈TO

h|t|−1〈a, t〉Fp(t)[f
i](p)Ei

= h
∑

t∈TO

h|t|−1〈a, t〉Fp(B+(t)) =
∑

t∈T 1
O

h|t|−1〈a, B−(t)〉Fp(t).

In other words, the B-series of a frozen vector field is associated to the
space k∞T

1
O. In Section 3.6 we defined the Lie algebra g ⊂ k∞TO, that

is, those S ∈ g which satisfy ∆(S) = S ⊗ • + • ⊗ S. This Lie algebra
contains k∞T

1
O. We may therefore conclude that the commuted vector fields

Ki = Pi(K̄1, . . . , K̄s) for each of the Lie polynomials Pi in (5) belongs to g.
Now, the quantities gi (3) and y1 (6) are, owing to the Baker–Campbell–
Hausdorff (BCH) formula, exponentials of elements in g and therefore belong
to the group G. Note that the BCH formula can also be used in a formal
way here so that no convergence criterion is needed.

The fact that series in g satisfy (14), imposes restrictions on the dual
elements a which represent such series. From [22, Theorem 3.1] we find that
〈a, v

∃

w〉 = 0 for all v, w ∈ TO where v

∃

w is the shuffle product denoting
the sum of all possible ordered insertions of w into v on the first subtree
level [22, p. 23-24].

Similarly, (15) can now be used to characterize the coefficient forms
in kT ∗

O of a series which belongs to G. Suppose that such a b ∈ kT ∗
O is

representing a series in G. We find that 〈b, •〉 = 1 and that 〈b, v

∃

w〉 =
〈b, v〉〈b, w〉, which is called a shuffle relation. These relations were derived
in a different way in [21], see also [24].

From [21] we find that the exact flow ψ(exp(hF )y) of the differential
equation ẏ = F (y) can be expressed in a B-series Bp(a) where 〈a, t〉 =
α(t)/(|t| − 1)! and where α(t) is defined recursively as

α(•) = 1 and α(B+(t1, . . . tµ)) =

µ
∏

`=1

(∑`
i=1 |ti| − 1

|t`| − 1

)

α(t`). (22)

The linear form a ∈ kT ∗
O obeys the shuffle relation (a, v

∃

w) = (a, v)(a, w).
As argued above, the numerical integration schemes presented in Sec-

tion 2 admit a B-series expansion as well. Thus, for each such scheme, there
exists a b ∈ kT ∗

O with which (19) holds formally. In [20] one can find the
details of how the B-series is obtained for commutator-free schemes.

Given two mappings on a manifold, say φa, φb : M → M with corre-
sponding B-series B(a) and B(b) in k∞TO. The composition φc = φb ◦ φa

14



also has a B-series, with coefficients from c. By applying (21) twice we get
that Bp(c) = Bp(a) ◦ Bp(b) (note the usual reversal of order, passing from
composition of mappings to composition of operators). The concatenation
product on k∞TO now yields

µM





∑

v∈TO

〈a, v〉 v ⊗
∑

w∈TO

〈b, w〉w



 =
∑

v,w∈TO

〈a, v〉 〈b, w〉µM(v ⊗w)

=
∑

t∈TO

∑

µM(v⊗w)=t

〈a, v〉 〈b, w〉 t =
∑

t∈TO

〈c, t〉 t

(23)

The resultingB-series has coefficients 〈c, •〉 = 1 and for t = B+(t1, . . . , tµ),

〈c, t〉 =

µ
∑

k=0

〈a, B+(t1, . . . , tk)〉 〈b, B+(tk+1, . . . , tµ)〉 (24)

In view of the identification of k∞TO with kT ∗
O, we can think of µM as a

product on kT ∗
O and simply write

c = µM(a ⊗ b).

Taking the adjoint operator ∆M := µ∗M : kTO → kTO ⊗kTO (using the usual
identification of (kT ∗

O ⊗ kT ∗
O)∗ with kTO ⊗ kTO) we obtain

∆M(B+(t1, . . . , tµ)) =

µ
∑

k=0

B+(t1, . . . , tk) ⊗B+(tk+1, . . . , tµ),

and 〈c, t〉 = 〈µM(a ⊗ b), t〉 = 〈a ⊗ b,∆M (t)〉 which is precisely what (24)
says.

The antipode in the concatenation algebra SM has an immediate appli-
cation to the B-series Bp(a) of maps φa on the manifold. The antipode of
a series T ∈ G = exp(g) is the corresponding series of the inverse map φ−1

a .
This is evident from Equation (16) and from the fact that the B-series for
the identity map on M has its coefficients from the counit ε ∈ kT ∗

O where
〈ε, •〉 = 1, 〈ε, t〉 = 0 for all other trees t 6= •.

6 Applications

6.1 Order conditions for integration schemes

The paper [20] presents the order conditions for a subclass of the schemes
introduced in Section 2. We will show here how one can use the algebra on
trees to count the order conditions for any order of the numerical method.
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The algebra kTO is graded by ν(t) = |t| − 1 as in the introduction to
Section 3. We can decompose the algebra kTO and the Lie algebra g of
primitive elements in kTO into their respective graded components

kTO =
∞
∑

k=0

Bk and g =
∞
∑

k=0

gk

The dimensions of each graded component in g up to grade q are added
to yield the number of order conditions for a q’th-order integration scheme.
From (7) we have that dimBk = Ck = 1

k+1

(2k
k

)

. It is well known [25,
Theorem 3.2.8] that

kTO = UEA(g)

where UEA(g) is the universal enveloping algebra of g. Comparing generat-
ing functions for the dimensions of kTO and UEA(g) we get

∞
∏

n=1

(1 − T n)− dim gn =
∞
∑

k=0

CkT
k

When solved for dim gk one obtains

dim gk =
1

2k

∑

d|k

µ(k)

(

2k/d

k/d

)

(25)

where µ(k) is the Möbius function defined for any positive integer as µ(1) =
1, µ(k) = (−1)p when k is the product of p distinct primes, and µ(k) = 0
otherwise. The sum is over all positive integers d which divide k, including
1 and k.

The number of order conditions of an integration scheme of order of
consistency q is then

Nq =

q
∑

k=1

dim gk.

and the first ten numbers are

1, 1, 3, 8, 25, 75, 245, 800, 2700, 9225.

The formula (25) is well-known in the literature. For example, it counts the
number of balanced Lyndon words [18] and also has an application to double
bracket flows [11].
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6.2 Backward error analysis

Suppose a numerical method applied to the differential equation

y′ = F (y) (26)

is the map φh,F : M → M. If there exists an h-dependent vector field F̃
such that

φh,F = exp(hF̃ ),

then the numerical method for Equation (26) solves the differential equation
y′ = F̃ (y) exactly. We call F̃ the modified vector field for φh,F .

One may follow for example Hairer, Lubich and Wanner [8] and formally
expand the modified vector field in powers of h

F̃ = F + hF2 + h2F3 + · · · . (27)

The numerical method φh,F as a mapping on the manifold has an ex-
pansion in a B-series, say B(a). Then we require that our modified vector
field F̃ must obey

ψ(φh,F (p)) = ψ(exp(hF̃ )p) = B(a)[ψ](p).

where B(a) is the series defined in (19).
We calculate exp(hF̃ ) according to the expansion in (27) and get

exp(hF̃ ) = I + hF + h2(F2 + 1
2F

2) + h3(F3 + 1
2 (FF2 + F2F ) + 1

6F
3) + · · ·

To calculate F2 we compare coefficients of h2 in the equation above and
in B(a). We get

a(•
•
•
)F(•

•
•
) + a( •

• •)F( •
• •) = F2 + 1

2F
2 = F2 + 1

2F(•
•)2

= F2 +
1

2

(

F(•
•
•
) + F( •

• •)

)

where we have used consistency of the method, F = F(•
•) and the Grossman–

Larson product of •
• and •

•. Consistency of the numerical method requires
a(•
•) = 1, and by a shuffle relation we also have that a( •

• •) = 1
2a(•

•)2 = 1
2 .

In the end we solve for F2 and get

F2 =

(

a(•
•
•
) −

1

2

)

F(•
•
•
) (28)
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The same approach will for the h3 coefficients lead to

F3 =

(

a( •
•
•
•) −

1

2
a(•
•
•
) +

1

12

)

F( •
•
•
•) +

(

a( •
• •
•
) −

1

2
a(•
•
•
) −

1

12

)

F( •
• •
•
)

+

(

a( •
•
• •

) −
1

2
a(•
•
•
) +

1

12

)

F( •
•
• •

) +



a(•
•
•
•

) − a(•
•
•
) +

1

3



F(•
•
•
•

)

(29)

Again, putting this in a more general perspective, let ε + a ∈ kT ∗
O rep-

resent the B-series of the numerical method, where ε is the counit in the
Grossman–Larson Hopf algebra, and 〈a, •〉 = 0. We now find that the mod-
ified vector field F̃ has a B-series in g associated to b ∈ kT ∗

O such that

b = logGL(ε+ a) = a−
1

2
µGL(a⊗ a) + · · ·

Here, µGL is induced on kT ∗
O from its identification with k∞TO.

The expression for the vector fields Fk are obtained by projecting b onto
the kth graded component of k∞TO. One obtains that the series associated
to b belongs to g.

7 Conclusion

We have discussed Hopf algebra structures on the space of ordered rooted
trees, and shown how these structures are related to the expansions of Lie
group integration schemes for ordinary differential equations on manifolds.
The theory presented here is fairly general, in the sense that it accounts for
most of the known Lie group integrators which are based on exponentials. It
also allows for the analysis of schemes that are hybrids between for instance
the RKMK methods [17] and the commutator-free schemes [4]. Although we
have emphasized the algebraic aspects of the theory, we believe that there
is a potential for using these aspects in developing integration schemes with
high accuracy and good long-time behaviour.
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