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Abstract

We present new theoretical convergence results on the Cross-Entropy method for
discrete optimization. Our primary contribution is to show that a popular imple-
mentation of the Cross-Entropy method converges, and finds the optimal solution
with probability arbitrarily close to 1. We also give necessary conditions and suf-
ficient conditions under which the optimal solution is generated eventually with
probability 1.
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1 Introduction

The Cross-Entropy (CE) method was originally developed as an adaptive im-
portance sampling scheme for estimating rare event probabilities via simula-
tion. However, it was soon realised that the CE method could also be applied
to a variety of optimization problems. The reader is referred to Rubinstein
and Kroese [1] for a comprehensive overview and history of the CE method.
In this paper, we focus on its application to discrete optimization problems,
in which some objective function is maximized. In particular, we assume that
the optimal solution is unique. We consider the deterministic setting, where
exact objective function values are available, and where stochastic effects are
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introduced exclusively in the generation of candidate solutions, as follows. The
CE method involves an iterative procedure consisting of two steps, Step 1: A
random sample of candidate solutions is generated according to a parameter-
ized probability distribution, and Step 2: the candidate solutions generated in
Step 1 are evaluated using the objective function, and the parameters of the
sampling distribution are updated in a manner which increases the probability
that the best solutions found at the current iteration will occur in the next
iteration.

Existing results on the convergence of the CE method for discrete optimization
appear in [1,2], for a special case known as the “elite sample” version, whereby
the sampling distribution is forced to favour the best solution obtained over
all previous iterations, up to and including the current iteration. This differs
from the more general and commonly-used version of the CE method [1],
which we study in this paper, whereby only the best solutions found at the
current iteration are reinforced. As a result of this important difference, our
convergence analysis requires a different technique to that employed in [1,2].
Furthermore, although the elite sample version possesses desirable limiting
convergence properties [1,2], it has been found to exhibit poor performance in
practice (that is, within a typical realistic number of iterations), as compared
with the standard CE method [1]. Therefore, the convergence results presented
in this paper are of significant interest to practitioners and theoreticians of the
CE method.

Our main contribution concerns the typical scenario where a constant “smooth-
ing” parameter is used to update the sampling distribution; we show that in
this case the CE method converges to the optimal solution, in the sense that
the sampling distribution converges with probability 1 to a unit mass, and that
the probability that the optimal solution is found can be made arbitrarily close
to 1 (at the expense of the rate of convergence of the sampling distribution).
We note that the convergence properties of the CE method with a constant
smoothing parameter have not been considered in any previous study. We also
extend the methods of [1,2] to derive more general and easily-checkable neces-
sary conditions and sufficient conditions under which the optimal solution is
generated eventually with probability 1, a property that can only be achieved
by using a sequence of decreasing (as opposed to constant) smoothing param-
eters. We note that our methods of proof are independent of the objective
function; as such, our results are quite general, but on the other hand, they
do not yield explicit information regarding the sequence of objective function
values that are generated by the algorithm.

The CE method can be placed within a broad group of stochastic search meth-
ods that includes the well-known simulated annealing (Aarts and Lenstra [3]),
genetic algorithms (Holland [4]), the method of Andradóttir [5] and many oth-
ers (see Pham and Karaboga [6] and Spall [7] for recent surveys). In particular,
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a key feature of the CE method is that it is model-based, due to the fact that
the algorithm revolves around the updating of a parameterized sampling dis-
tribution, which carries information about the best candidate solutions from
one iteration to the next. In this respect, the CE method is most similar to
estimation of distribution [8] and Ant Colony Optimisation [9] algorithms,
which are also model-based. In contrast, population-based methods such as
simulated annealing and genetic algorithms operate directly on a population
of candidate solutions. It is not our aim to perform a comparative study of
the CE method with alternative stochastic optimization techniques, nor is it
our claim that the CE method is necessarily superior. Instead, our aim is to
establish new theoretical results concerning its limiting properties. The reader
is directed to [1] for extensive numerical experiments using the CE method.

The paper is structured as follows. In Section 2, we set up a discrete opti-
mization framework, and present a generic CE algorithm. Our main results
are presented in Section 3. Discussion and conclusions follow in Section 4.

2 A CE algorithm for discrete optimization

Suppose we wish to maximize some performance function S(x) over all candi-
date solutions x belonging to a discrete finite set X . In other words, we seek
an optimal solution x∗ satisfying S(x∗) ≥ S(x) for all x ∈ X . Here, we shall
assume that the optimal solution is unique. While the CE method is able to
identify multiple global optima (see [1] for numerical examples), the dynamics
of the CE method in this case are more difficult to characterise theoretically,
and we do not address this here. We study the convergence properties of a gen-
eral implementation of the CE method for discrete optimization, given below
in Algorithm 1.

In order to implement the algorithm, we require a system for representing,
or “encoding”, candidate solutions, and also a random mechanism for gener-
ating candidate solutions. The analysis presented in this paper is based on
the following general approach. Candidate solutions are represented by a bi-
nary vector of length n, such that every x ∈ X has a unique representation
x = (x1, x2, . . . , xn), where xi ∈ {0, 1}. In particular, the optimal solution
has the representation x∗ = (x∗

1, x
∗
2, . . . , x

∗
n). In principle, any discrete opti-

mization problem can be encoded in this manner [10]. A canonical example is
the “max-cut” problem [1], where the vertices of a graph with weighted edges
must be partitioned into two sets V1 and V2 such that the resulting “cut”
has maximum weight. Here, xi = 1 implies that vertex i belongs to V1, and
xi = 0 implies that i belongs to V2. The reader is referred to [1] for a detailed
description of this and other problems, and their associated binary encodings.
In order to generate candidate solutions, the CE algorithm maintains and up-
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dates a set of reference parameters pt,i ∈ [0, 1], i = 1, . . . , n, where t ∈ N is an
iteration index. For each t, these are collected into a reference vector, pt. A
natural way to generate candidate solutions is to generate random vectors of
the form X = (X1, X2, . . . , Xn), where the Xi, i = 1, . . . , n, are independent
Bernoulli random variables with parameters pt,i, respectively. Thus, the vector
pt parameterizes a probability mass function f(x;pt) : X → [0, 1]. The sim-
plest way to handle constraints on the components xi, i = 1, . . . , n is to select
components independently as described above, and then perform acceptance-
rejection of the samples [1]. The analysis in this paper addresses this scenario.
For example, for the basic “max-cut” problem on a fully-connected graph, we
require at least one component to be different to the others to ensure that
V1 and V2 are non-empty. Thus, the vectors (1, . . . , 1) and (0, . . . , 0) would be
rejected, but all others would be accepted. We note that it is not necessary
to select each component of a candidate solution independently of the others;
indeed, for some applications, such as the travelling salesman problem, it is
more efficient to perform “conditional sampling”, as described in [1]. We do
not consider this here.

Algorithm 1 takes as its input the following parameters: an initial reference
vector p0, which is chosen so that f(x;p0) is the uniform distribution (this is
a natural choice, in the absence of prior information regarding the identity of
the optimal solution), a positive integer N , specifying the number of candidate
solutions that are generated at each iteration of the algorithm, a positive
integer T , specifying the total number of iterations to be performed, a real
number ρ ∈ (0, 1), which determines the number Nb of candidate solutions
at each iteration that are classed as the “best-performing”, and a sequence of
smoothing parameters {αt}

∞
t=1, with αt ∈ (0, 1] for all t.

Algorithm 1 (Cross-entropy algorithm)

(1) Initialize p0, N, T, ρ and {αt}
∞
t=1. Set t = 1 (iteration counter).

(2) Generate a set of candidate solutions X
(k)
t , k = 1, . . . N , from the distribu-

tion f(·;pt−1), and calculate the performances S(X
(k)
t ) for all k, ordering

them from smallest to largest: S(1) ≤ S(2) ≤ . . . ≤ S(N) (ties are broken
arbitrarily). Compute the sample (1 − ρ)-quantile of the performances,
given by γ̂t = S(⌈(1−ρ)N⌉), and let Bt denote the set of indices k for which

S(X
(k)
t ) ≥ γ̂t. Let Nb = |Bt| (note that this is independent of t, and

depends only on ρ).

(3) For each i = 1, . . . , n, calculate wt,i =

∑

k∈Bt
X

(k)
t,i

Nb
where X

(k)
t,i represents

the ith component of X
(k)
t . Update the parameter vector according to

pt,i = (1 − αt)pt−1,i + αtwt,i, i = 1, . . . , n. (1)

(4) If t = T , then stop, otherwise set t = t + 1 and reiterate from Step 2.
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The candidate solutions X
(k)
t , k = 1, . . .N, t ≥ 1, are random variables, and

as such, the CE algorithm is a stochastic process. We emphasize the fact that
pt, t ≥ 1, are also random variables. In particular, they comprise a time-
inhomogeneous Markov chain, since the probabilities governing the transition
from pt to pt+1 depend only on pt.

3 Convergence results

Algorithm 1 can be viewed as a stochastic process defined on a probability
space (Ω,F , P), where Ω is the set of all possible sample paths of the algo-
rithm, F = {Ft, t ∈ N}, where Ft is the σ-algebra generated by {X(k)

m , k =
1, . . . N, m = 1, . . . , t}, and P is a probability measure on (Ω,F). We present
convergence results for the CE algorithm in two parts. First we give conditions
under which X

(k)
t = x∗ for at least one pair (k, t). We then present our main

result, which establishes limiting properties of the algorithm when a constant
smoothing parameter is used, as is most common in practice [1].

3.1 Generating the optimal solution

By construction, the candidate solutions X
(k)
t generated at iteration t are con-

ditionally independent given Ft−1, and are identically distributed with distri-
bution f(·;pt−1). We therefore write φt = P(X = x∗ | Ft−1) for the conditional
probability that an arbitrary candidate generated at iteration t is equal to the
optimal solution, and we note that φt is a Ft−1-measurable random variable.
We now establish a relationship between φt and the reference vector pt−1.

Let 1{·} denote the indicator function. Define the random variables φt,i =
pt−1,i1{x

∗
i = 1} + (1 − pt−1,i)1{x

∗
i = 0}, for all i = 1, . . . , n, and t ≥ 1. Then

with probability 1, φt =
∏n

i=1 φt,i. For a given p0, N, ρ, {αt}
∞
t=1, and a given i

and t, the range of pt,i is a finite set. Let pmin
t,i and pmax

t,i be the minimum and
maximum values in this set, respectively. These values (derived below) will
form the basis for bounds used in the theorem proofs. The ranges of φt,i and
φt are therefore also finite sets, which we denote Rt,i and Rt, respectively. Let
φmin

t,i be the minimum value in Rt,i, and let φmin
t be the minimum value in Rt.

Observe that φmin
t,i = pmin

t−1,i1{x
∗
i = 1} + (1 − pmax

t−1,i)1{x
∗
i = 0}. From (1), we

obtain

pmin
t,i = p0,i

t
∏

m=1

(1 − αm) (2)

for all t ≥ 0, where henceforth we employ the convention
∏0

m=1(1 − αm) = 1.
From Algorithm 1, we observe that pt,i = pmin

t,i when the event {wm,i = 0, m =
1, . . . , t} occurs. Using (1), given an initial value p0,i ∈ (0, 1), it can be shown
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by induction that pmax
t,i =

∏t
m=1(1−αm)p0,i +

∑t
j=1 αj

∏t
m=j+1(1−αm). Writing

αj = 1 − (1 − αj), we obtain

pmax
t,i =

t
∏

m=1

(1 − αm)p0,i +
t
∑

j=1





t
∏

m=j+1

(1 − αm) −
t
∏

m=j

(1 − αm)





= 1 − (1 − p0,i)
t
∏

m=1

(1 − αm). (3)

In particular, pt,i = pmax
t,i when {wm,i = 1, m = 1, . . . , t}. It follows that

φmin
t,i = φ1,i

∏t−1
m=1(1 − αm) for t ≥ 1, and thus φt ≥ φmin

t =
∏n

i=1 φmin
t,i =

φ1
∏t−1

m=1(1 − αm)n with probability 1.

Theorem 1 (Necessary condition) The optimal solution is generated even-
tually by the CE algorithm with probability 1 only if the smoothing sequence
{αt}

∞
t=1 satisfies the condition

∑∞
t=1

∏t
m=1(1 − αm) = ∞.

Proof: Let Bt = {X
(k)
m,1 6= x∗

1, k = 1, . . .N, m = 1, . . . , t}, that is, the event
that at every iteration up to and including iteration t, none of the candidate so-
lutions contain the correct first component, x∗

1. Let P(Xt,1 = x∗
1 |Bt−1) denote

the probability that an arbitrary candidate generated at iteration t contains
the correct first component, x∗

1, as it appears in the optimal solution x∗, con-
ditional on the event Bt−1. Since Bt−1 implies {φt,1 = φmin

t,1 }, we have P(Xt,1 =

x∗
1 |Bt−1) = P(Xt,1 = x∗

1 |φt,1 = φmin
t,1 ) = φmin

t,1 = φ1,1
∏t−1

m=1(1 − αm), where we
have used the fact that P(Xt,1 = x∗

1 |φt,1 = r) = r. Since the candidate solu-
tions generated by the algorithm at a given iteration are independent and iden-

tically distributed, it follows that P(Bt |Bt−1) =
(

1 − φ1,1
∏t−1

m=1(1 − αm)
)N

.

Expanding P(BT ) as a product of conditional probabilities, we have

P(BT ) = P(B1)
T
∏

t=2

P(Bt |Bt−1) =

(

T
∏

t=1

(

1 − φ1,1

t−1
∏

m=1

(1 − αm)

))N

,

where we have used the fact that P(B1) = (1 − φ1,1)
N . Define Et = {X(k)

m 6=
x∗, k = 1, . . .N, m = 1, . . . , t}. Since BT ⊂ ET , and thus P(ET ) ≥ P(BT ), it
follows that limT→∞ P(ET ) = 0 only if

lim
T→∞

(

T
∏

t=1

(

1 − φ1,1

t−1
∏

m=1

(1 − αm)

))N

= 0. (4)

Using standard results for infinite products [11], the product on the left-hand
side of (4) diverges to zero only if the condition of Theorem 1 is satisfied
(assuming, as is standard practice, that the algorithm is initialized so that
φ1,1 > 0). 2
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Theorem 2 (Sufficient condition) The optimal solution is generated eventu-
ally by the CE algorithm with probability 1 if the smoothing sequence {αt}

∞
t=1

satisfies the condition
∑∞

t=1

∏t
m=1(1 − αm)n = ∞.

Proof: We retain the notation of Theorem 1. For t ≥ 2, let P(Xt = x∗ |Et−1)
denote the probability that an arbitrary candidate generated at iteration t is
equal to the optimal solution, conditional on Et−1. Then

P(Xt = x∗ |Et−1) =
∑

r∈Rt

P(Xt = x∗ |φt = r, Et−1)P(φt = r |Et−1)

≥min
r∈Rt

r, (5)

using the fact that, by construction of the CE algorithm, P(Xt = x∗ |φt =
r, Et−1) = r. In particular, the minimum in (5) is attained when φt = φmin

t ,
so that P(Xt = x∗ |Et−1) ≥ φ1

∏t−1
m=1(1 − αm)n, and P(Xt 6= x∗|Et−1) ≤

1 − φ1
∏t−1

m=1(1 − αm)n. Now, expanding P(ET ) as a product of conditional
probabilities, we obtain P(ET ) = P(E1)

∏T
t=2 P(Et |Et−1). Since the candidate

solutions generated by the algorithm at a given iteration are independent and
identically distributed, it follows that

P(Et |Et−1) = [P(Xt 6= x∗ |Et−1)]
N ≤

[

1 − φ1

t−1
∏

m=1

(1 − αm)n

]N

. (6)

Combining these results, we obtain

P(ET ) ≤ P(E1)
T
∏

t=2

[

1 − φ1

t−1
∏

m=1

(1 − αm)n

]N

. (7)

Then limT→∞ P(ET ) = 0 if the infinite product
∏∞

t=2

[

1 − φ1
∏t−1

m=1(1 − αm)n
]

diverges to zero, which in turn occurs if the condition of Theorem 2 is satis-
fied. 2

Remark 1 The sufficient condition of Theorem 2 holds if
∑∞

t=1 αt < ∞.

Remark 2 For a given set of parameters N , {αt}
∞
t=1, T and p0, expression (7)

provides a lower bound on the probability that the optimal solution is generated
at least once in T iterations. Alternatively, this expression can be used to
determine a combination of parameter values which yield a desired minimum
probability of generating the optimal solution.
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3.2 Constant smoothing parameter

We now present our main result, which establishes a limiting property of the
CE method for the case of a constant smoothing parameter. Indeed, this is
how the CE method is most commonly implemented in practice [1].

Theorem 3 If the smoothing sequence is a constant, with αt = α, α ∈ (0, 1],
and p0,i ∈ (0, 1) for all i, then the sequence of probability mass functions
f(x;pt), t ≥ 1, converges with probability 1 to a unit mass located at some
(random) candidate x ∈ X . Furthermore, the probability that the optimal so-
lution is generated can be made arbitrarily close to 1 by selecting a sufficiently
small value of α.

Proof: Define Zt,i = pt,i − pt−1,i, for t = 1, 2, . . ., and let τk,i be the (random)
iteration number at which Zt,i changes sign for the kth time. Note that those
iterations t for which Zt,i = 0 are not included in this collection. We establish
that each pt,i converges by showing that Zt,i changes sign a finite number of
times with probability 1. We then show that {0, 1} are the only feasible limits
for the pt,i, which implies that f(x;pt) converges to a unit mass located at
some (random) candidate x ∈ X . To simplify the exposition of the proof, we
fix the component i, and suppress it by writing pt, wt, Zt and τk. The following
analysis applies independently for each i, and therefore applies to the entire
vector pt. The change times have the following important properties: for all
k,

(i) τk = ∞ =⇒ τk+1 = ∞,
(ii) Zτk

< 0 =⇒ pτk
< 1 − α

Nb
< 1,

(iii) Zτk
> 0 =⇒ pτk

> α
Nb

> 0.

For fixed N ≥ 1, define the function gα(u) =
∏∞

t=0 (1 − (1 − u)(1 − α)t)
N

.

Note that gα(0) = 0, gα(1) = 1, and that gα(u) is non-decreasing and strictly
positive on (0, 1], since

∑∞
t=0(1 − α)t < ∞. Observe that P(wt = 1 | Ft−1) ≥

pN
t−1. Using (3), it follows that for each iteration l, and each t > l,

P(wt = 1 |wm = 1, l ≤ m ≤ t − 1,Fl−1) ≥
(

1 − (1 − pl−1)(1 − α)t−l
)N

so that

P(wt = 1, t ≥ l | Fl−1) ≥
∞
∏

t=l

(

1 − (1 − pl−1)(1 − α)t−l
)N

= gα(pl−1). (8)

Similarly, P(wt = 0 | Ft−1) ≥ (1 − pt−1)
N , and using (2) we obtain

P(wt = 0, t ≥ l | Fl−1) ≥
∞
∏

t=l

(

1 − pl−1(1 − α)t−l
)N

= gα(1 − pl−1). (9)
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Now, {wt = 0, t ≥ 1} ∪ {wt = 1, t ≥ 1} =⇒ {τ1 = ∞}, so P(τ1 = ∞|p0) ≥
gα(p0) + gα(1 − p0) = aα, where aα is a constant that depends on p0 and α,
and which is strictly positive under the assumptions of the theorem. Thus
P(τ1 < ∞|p0) ≤ 1 − aα. For k ≥ 2, observe that {wt = 0, t ≥ τk−1 + 1} =⇒
{τk = ∞}. Therefore, setting l = τk−1 + 1 in (9) and using property (ii) yields

P(τk = ∞|τk−1 < ∞, Zτk−1
< 0) ≥ gα

(

α

Nb

)

= dα, (10)

where dα is a strictly positive constant that depends on α (and Nb). Similarly,
{wt = 1, t ≥ τk−1 + 1} =⇒ {τk = ∞}. Setting l = τk−1 + 1 in (8) and using
property (iii) yields

P(τk = ∞|τk−1 < ∞, Zτk−1
> 0) ≥ gα

(

α

Nb

)

= dα. (11)

Now observe that

P(τk = ∞|τk−1 < ∞) = P(τk = ∞|τk−1 < ∞, Zτk−1
< 0)P(Zτk−1

< 0|τk−1 < ∞) +

P(τk = ∞|τk−1 < ∞, Zτk−1
> 0)P(Zτk−1

> 0|τk−1 < ∞)

≥ dα

(

P(Zτk−1
< 0|τk−1 < ∞) + P(Zτk−1

> 0|τk−1 < ∞)
)

= dα.

It follows that P(τk < ∞|τk−1 < ∞) ≤ 1 − dα for all k. Thus, the probability
that Zt changes sign infinitely often is given by

P(∩∞
k=1τk < ∞) = P(τ1 < ∞|p0)

∞
∏

k=2

P(τk < ∞|τj < ∞, j = 1, . . . , k − 1)

= P(τ1 < ∞|p0)
∞
∏

k=2

P(τk < ∞|τk−1 < ∞)

≤ (1 − aα)
∞
∏

k=2

(1 − dα) = 0, (12)

where we have used the fact that pt (and hence Zt) is a Markov chain, and
the fact that dα > 0. It follows from (12) that P(∪∞

k=1τk = ∞) = 1, that
is, Zt changes sign a finite number of times with probability 1. This implies
that pt is eventually monotonic and thus converges to a limit p∗. From (1),
and the fact that wt ∈ {0, 1

Nb
, 2

Nb
, . . . , 1}, we must have p∗ = j

Nb
for some j ∈

{0, 1, 2, . . . , Nb}, and wt = p∗ for all t ≥ t0, for some t0. However, for p∗ 6= 0, 1,
we have P({wt = 0, t ≥ t0} ∪ {wt = 1, t ≥ t0}) ≥ gα(p∗) + gα(1 − p∗) > 0, so
we must have p∗ = 0 or 1. Thus, we have established that f(x;pt) converges
with probability 1 to a unit mass located at some (random) candidate x ∈ X .
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To conclude the proof, we set αm = α for all m in (7), so that P(ET ) ≤

P(E1)
∏T

t=2

(

1 − φ1(1 − α)(t−1)n
)N

. Using the fact that (1 − u)N ≤ e−Nu,

for 0 ≤ u ≤ 1 and N ≥ 0, we obtain P(ET ) ≤ P(E1)
∏T

t=2 exp(−Nφ1(1 −
α)(t−1)n) = P(E1) exp(−Nφ1

∑T−1
t=1 (1 − α)tn). Thus

lim
T→∞

P(ET ) ≤ P(E1) exp(−Nφ1h(α)),

where h(α) = 1
1−(1−α)n − 1. Since h(α) → ∞ as α → 0, limT→∞ P(ET ) can be

made arbitrarily close to zero by selecting a sufficiently small value of α. 2

We conclude this section with a simple but informative necessary condition
for the convergence of the sequence f(x;pt) to a unit mass.

Corollary 1 (Necessary condition) The sequence of probability mass func-
tions f(x;pt), t ≥ 1, converges with probability 1 to a unit mass located at
some candidate x ∈ X only if

∑∞
t=1 αt = ∞.

Proof: f(x;pt) converges to a unit mass located at some x ∈ X only if
eventually pt,i → 0 or 1 for each i, which, given (2) and (3), occurs only if
∏∞

m=1(1 − αm) = 0, which implies the result. 2

4 Discussion and conclusion

The CE algorithm is most-commonly implemented using a constant smoothing
parameter [1], that is, αt = α for all t, where α ∈ (0, 1]. In general, this yields
a significantly faster rate of convergence of the sampling distribution f(x;pt)
compared with decreasing smoothing schemes, which is the main reason for its
popularity. For this special but important case, our main result (Theorem 3)
shows that the sampling distribution always converges to a unit mass located
at a random candidate x ∈ X , and that the limiting probability of generating
the optimal solution can be made arbitrarily close to 1 by selecting a suffi-
ciently small value of α. We note that using a smaller value of α effectively
reduces the rate of convergence of f(x;pt) from the initial uniform distribu-
tion to a unit mass. Therefore, when using a constant smoothing parameter,
there exists a tension between achieving the optimal solution with high prob-
ability, and achieving a fast rate of convergence of the sampling distribution.
To illustrate the former, Figure 1 shows empirical estimates of P(ET ) for a

range of values of α and T , where ET is the event that X
(k)
t = x∗ for at least

one pair (k, t), k = 1, . . . , N, t = 1, . . . , T . We see that the limiting probability
of obtaining the optimal solution can be made arbitrarily close to 1. These
results were generated by performing 100 independent replications of Algo-
rithm 1 for each fixed α and T , using an illustrative instance of the “max-cut”
problem [1] with n = 8 vertices.
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Fig. 1. Illustrative empirical results. The main figure shows transient behaviour of
Algorithm 1. The inset shows limiting results for α = 1 and αt = 1

nt
with associated

95% confidence intervals (dotted lines) which are omitted from the main figure for
clarity.

Examples of smoothing sequences which eventually generate the optimal so-
lution with probability 1 (that is, which satisfy the sufficient condition of
Theorem 2) include αt = 1

(t+1)β and αt = 1
(t+1) log(t+1)β , when β > 1, as well as

αt = 1
nt

where n is the “problem size” parameter introduced in Section 2. Fig-
ure 1 illustrates that the sequence αt = 1

nt
yields similar transient behaviour

of P(ET ) to the case of constant α = 0.1. We have found this behaviour to be
typical for such decreasing sequences, and for a range of different optimisation
problems and problem sizes. The necessary condition of Corollary 1 is useful
as it shows that the first two of the above decreasing sequences cannot also
yield convergence of the sampling distribution to a unit mass, since for these
cases αt decreases too rapidly (in fact, the limiting distribution, if it exists,
has a strictly positive mass on every candidate x ∈ X ).

It remains an open theoretical problem to establish whether there exists a
smoothing sequence which yields convergence to a unit mass that is located at
the optimal solution with probability 1. For example, the smoothing sequence
αt = 1

nt
satisfies both the sufficient condition of Theorem 2 and the necessary

condition of Corollary 1, and might thus appear to be a likely candidate.
However, our experience with the CE method suggest that this is not the case
for Algorithm 1, and that the two properties (a) convergence to a unit mass
with probability 1, and (b) eventually generating the optimal solution with
probability 1, are in fact mutually exclusive. This conjecture is supported
by the fact that the conditions in Remark 1 and Corollary 1 are mutually
exclusive, and remains a topic for further investigation. If true, this would
constitute a significant difference compared with the elite sample version of
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the CE method analysed in [1,2], where a sufficient condition for both (a) and
(b) is given.

Finally, we note that the results presented in this paper pertain to the algo-
rithm’s limiting properties, whereas results concerning the transient properties
of the CE algorithm would be extremely useful from a practical point of view.
For instance, although the influence of the smoothing parameter dominates
that of the other parameters in the limit T → ∞, the practitioner may wish
to know how to jointly set all of the parameters ρ, N and {αt}

∞
t=1, so as to

maximize the probability that the optimal solution is obtained in the short
term, that is, in the first few iterations before the limiting regime is reached.
Our results make a first step towards such a result (see Remark 2), but there
is much scope for further research on transient behaviour of the CE method.
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