Technological Resources and Problem-Solving Methods to Foster a Positive Attitude Toward Formative Research in Engineering Students
Abstract
:1. Introduction
2. Literature Review
2.1. Formative Reseach
2.2. Attitude Toward Formative Research
2.3. Problem-Solving Method for Formative Research
2.4. Technological Resources for Enhancing Formative Research
3. Materials and Methods
3.1. Research Approach and Participants
3.2. Development of Educational Activities to Foster a Positive Attitude Toward Formative Research
3.2.1. Research Topics and Technological Resources
3.2.2. Conducting Research Activities in the Classroom
- (a)
- Understanding the problem: In this phase, students engaged in various activities, including: researching information about the issue related to the proposed topic by consulting multiple scientific sources such as Scopus, Google Scholar, Scielo, and Redalyc; analyzing and synthesizing the collected information to create a detailed description of the problem; developing a visual organizer to represent the cause-and-effect relationship of the issue, which helped them achieve greater clarity and understanding of the problem. Figure 3 illustrates the cause-and-effect relationship for the research topic titled “Monitoring Water Temperature in the Ingenio Fish Farm”.
- (b)
- Planning of activities. In this phase, various tasks were conducted, including searching for information to review related works or precedents concerning the research topic. After collecting the relevant background, students analyzed and identified similar activities to propose a list of objectives. Below is the list of proposed activities for the research topic “Monitoring Water Temperature in the Ingenio Fish Farm”:
- -
- Formulate the problem related to trout farming based on water temperature.
- -
- Search for previous studies and models as a guide.
- -
- Develop the first prototype using the DS18B20 water temperature sensor and Arduino Uno board.
- -
- Create the initial design of the program using the mBlock application.
- -
- Review and refine the prototype using mBlock programming.
- -
- Review and correct the programming using the mBlock application.
- -
- Finalize and refine the prototype and programming in mBlock.
- -
- Construct a model inspired by the study topic.
- -
- Write a scientific article.
- (c)
- Execution of the plan. In this phase, students interacted with electronic devices to understand how sensors and actuator’s function. They also carried out the activities planned in the previous phase, developed a graphical interface using block-based programming, and represented the context of the problem. Additionally, they began drafting the article with information gathered up to this point. Figure 4 illustrates the use of technological resources (Arduino Uno board, DS18B20 water temperature sensor, and mBlock programming environment) during the execution of the research topic “Monitoring Water Temperature in the Ingenio Fish Farm”.
- (d)
- Solution review. In this phase, students verified the results of their research, including the functionality of components, such as sensors and graphical interfaces. They assessed the integration of project components into a prototype and simulated the physical scenario. Additionally, students optimized their results based on feedback from the instructor and finalized their research article incorporating the instructor’s comments. The completed article included the following sections: title, authors, abstract, introduction, methodology, results, discussion, conclusions, and references. Figure 5 illustrates the activities carried out during the solution review phase.
4. Results
4.1. Participation in Academic Events
4.2. Analysis of Descriptive Statistics for Dimensions of Attitude Toward Formative Research
4.3. Normality Test of Collected Data
4.4. General Hypothesis Test of Attitude Toward Formative Research
4.5. Students’ Attitude Toward Formative Research
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acuña, E.G. Strategies to promote research in engineering students in Latin American universities. New Trends Qual. Res. 2023, 17, e867. [Google Scholar] [CrossRef]
- Turpo-Gebera, O.; Quispe, P.M.; Paz, L.C.; Gonzales-Miñán, M. Formative research at the university: Meanings conferred by faculty at an Education Department. Educ. Pesqui. 2020, 46, e215876. [Google Scholar] [CrossRef]
- Yasar, O. Computational Thinking, Redefined. In Proceedings of the Society for Information Technology & Teacher Education International Conference, Washington, DC, USA, 26 March 2018; pp. 72–88. [Google Scholar]
- Spínola, H. Integrating STEM Education Approach in Enhancing Higher Order Thinking Skills. Int. J. Acad. Res. Bus. Soc. Sci. 2018, 8, 810–822. [Google Scholar] [CrossRef]
- Valls, A.; Canaleta, X.; Fonseca, D. Computational Thinking and Educational Robotics Integrated into Project-Based Learning. Sensors 2022, 22, 3746. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Baek, Y.; Ching, Y.H.; Swanson, S.; Chittoori, B.; Wang, S. Infusing Computational Thinking in an Integrated STEM Curriculum: User Reactions and Lessons Learned. Eur. J. STEM Educ. 2021, 6, 4. [Google Scholar] [CrossRef]
- Blankendaal-Tran, K.N.; Meulenbroeks, R.F.G.; van Joolingen, W.R. Digital Research Skills in Secondary Science Education: A Guiding Framework and University Teachers’ Perception. Eur. J. STEM Educ. 2023, 8, 3. [Google Scholar] [CrossRef]
- Vázquez-Villegas, P.; Mejía-Manzano, L.A.; Sánchez-Rangel, J.C.; Membrillo-Hernández, J. Scientific Method’s Application Contexts for the Development and Evaluation of Research Skills in Higher-Education Learners. Educ. Sci. 2023, 13, 62. [Google Scholar] [CrossRef]
- Yespolova, G.; Irodakhon, K.; Bekzod, B.; Rabiga, B.; Zhupat, A. The influence of learning technology on the formation of research skills in primary school students: Action research. J. Educ. e-Learn. Res. 2023, 10, 421–428. [Google Scholar] [CrossRef]
- Alberto, M.C.L.; Viviana, B.V.C.; Vladimir, B.E.C.; Fernanda, P.A.P. Innovative strategies to strengthen teaching-researching skills in chemistry and biology education: A systematic literature review. Front. Educ. 2024, 9, 1363132. [Google Scholar] [CrossRef]
- Molina, Á.; Adamuz, N.; Bracho, R. La resolución de problemas basada en el método de Polya usando el pensamiento computacional y Scratch con estudiantes de Educación Secundaria. Handb. Educ. Psychol. 2020, 49, 83–90. [Google Scholar] [CrossRef]
- Paucar-Curasma, R.; Villalba-Condori, K.O.; Mamani-Calcina, J.; Rondon, D.; Berrios-Espezúa, M.G.; Acra-Despradel, C. Use of Technological Resources for the Development of Computational Thinking Following the Steps of Solving Problems in Engineering Students Recently Entering College. Educ. Sci. 2023, 13, 279. [Google Scholar] [CrossRef]
- Paucar-Curasma, R.; Cerna-Ruiz, L.P.; Acra-Despradel, C.; Villalba-Condori, K.O.; Massa-Palacios, L.A.; Olivera-Chura, A.; Esteban-Robladillo, I. Development of Computational Thinking through STEM Activities for the Promotion of Gender Equality. Sustainability 2023, 15, 12335. [Google Scholar] [CrossRef]
- Restrepo Gómez, B. Conceptos y Aplicaciones de la Investigación Formativa, y Criterios para Evaluar la Investigación Científica en Sentido Estricto. Colombia. 2017. Available online: https://www.epn.edu.ec/wp-content/uploads/2017/03/Investigaci%C3%B3n-Formativa-Colombia.pdf (accessed on 14 May 2024).
- López, Y.; Andrea, N.; Zuluaga, T. The research seedlings. An innovative alternative in the Colombian education system. Rev. Univ. Ruta 2017, 19, 31–47. [Google Scholar]
- Guillermo, W. La Formación Investigativa y los Procesos de Investigación Científico-Tecnológica en la Universidad Católica de Colombia. 2010. Available online: https://repository.ucatolica.edu.co/server/api/core/bitstreams/c97fc4af-0956-4d47-97be-8f6ed52d5d05/content (accessed on 14 May 2024).
- Ching, Y.H.; Hsu, Y.C.; Baldwin, S. Developing Computational Thinking with Educational Technologies for Young Learners. TechTrends 2018, 62, 563–573. [Google Scholar] [CrossRef]
- Falloon, G. What’s the difference? Learning collaboratively using iPads in conventional classrooms. Comput. Educ. 2015, 84, 62–77. [Google Scholar] [CrossRef]
- Fidai, A.; Capraro, M.M.; Capraro, R.M. ‘Scratch’-ing computational thinking with Arduino: A meta-analysis. Think. Ski. Creat. 2020, 38, 100726. [Google Scholar] [CrossRef]
- Paucar, R.; Jara, N.; Paucar, H.; Cruz, V. Assessment of Computational Thinking in regular basic education: Case I.E.T.P. “josé Obrero”. In Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON, Lima, Peru, 12–14 August 2019. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, L. Computational thinking of the university computer course teaching system. J. Adv. Oxid. Technol. 2018, 21, 20–35. [Google Scholar] [CrossRef]
- Lapa-Asto, U.; Tirado-Mendoza, G.; Roman-Gonzalez, A. Impact of Formative Research on Engineering students. In Proceedings of the 2019 IEEE World Conference on Engineering Education (EDUNINE), Lima, Peru, 17–20 March 2019. [Google Scholar]
- Alvarado, F.; Villar-Mayuntupa, G.; Roman-Gonzalez, A. The formative research in the development of reading and writing skills and their impact on the development of indexed publications by engineering students. In Proceedings of the 2020 IEEE World Conference on Engineering Education (EDUNINE), Bogota, Colombia, 15–18 March 2020. [Google Scholar]
- Zúñiga-Cueva, J.; Vidal-Duarte, E.; Alvarez, A.P. Methodological Strategy for the Development of Research Skills in Engineering Students: A Proposal and its Results. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Sao Paulo, Brazil, 5–8 April 2021; pp. 2525–2536. [Google Scholar]
- Llulluy-Nuñez, D.; Neglia, F.V.L.; Vilchez-Sandoval, J.; Sotomayor-Beltrán, C.; Andrade-Arenas, L.; Meneses-Claudio, B. The impact of the work of junior researchers and research professors on the improvement of the research competences of Engineering students at a University in North Lima. In Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology, Latin American and Caribbean Consortium of Engineering Institutions, Virtual, 19–23 July 2021. [Google Scholar] [CrossRef]
- Espinoza, E.E. La investigación formativa. Una reflexión teórica. Rev. Conrado 2020, 16, 45–53. [Google Scholar]
- Sánchez Carlessi, H.H. La Investigación Formativa En La Actividad Curricular. Rev. Fac. Med. Humana 2017, 17, 3. [Google Scholar] [CrossRef]
- Paucar-Curasma, R.; Frango, I.; Rondon, D.; López, Z.; Porras-Ccancce, L. Analysis of the Teaching of Programming and Evaluation of Computational Thinking in Recently Admitted Students at a Public University in the Andean Region of Peru Ronald. In Proceedings of the International Congress of Trends in Educational Innovation, Arequipa, Peru, 8–10 November 2022; p. 10. [Google Scholar]
- Alania-Contreras, R.D.; Rafaele-De-La-Cruz, M.; Tello-Yance, F.; Ortega-Révolo, I.D.D.; Paredes-Pérez, A.M.J. Construcción de escalas de actitud hacia la investigación científica y disponibilidad para la investigación formativa. Rev. Ibérica Sist. Tecnol. Informação 2023, 58, 51–66. [Google Scholar]
- Barra, P.; Gabriel, S. Investigación Formativa y Actitud Hacia la Investigación Científica en Los Estudiantes de la Facultad de Ciencias de la Salud de la Universidad Nacional del Callao; Universidad Nacional del Callao: Callao, Perú, 2024. [Google Scholar]
- del Carmen Gálvez Díaz, N.; Gonzáles, Y.; Monsalve, M. Actitud hacia la investigación científica al final de la carrera de Enfermería en Perú. Gac. Med. Bol. 2019, 42, 32–37. [Google Scholar] [CrossRef]
- Chacón, L. Actitud Hacia la Investigación Formativa y SU Relación Con El Desarrollo de Habilidades Investigativas en Los Estudiantes Del IX y X Ciclo de la Carrera de Ingeniería de Sistemas de Una Universidad Privada de Lima; Universidad Tecnológica del Perú: Lima, Peru, 2020. [Google Scholar]
- Palacios, L.I. Una revisión sistemática: Actitud hacia la investigación en universidades de Latinoamérica. Comun. Rev. Investig. Comun. Y Desarro. 2021, 12, 195–205. [Google Scholar] [CrossRef]
- Tarrillo, J.J.C.; Zumaeta, G.M.P.; Chaves, Y.L. Actitud hacia la investigación: Un análisis afectivo, cognoscitivo y conductual en estudiantes universitarios. Iberoam. Tecnol. Educ. Educ. Tecnol. 2021, 29, e2. [Google Scholar] [CrossRef]
- Castro, S. Diseño y validación de un instrumento para evaluar la actitud hacia la investigación formativa en estudiantes universitarios. Actual. Pedagógicas 2018, 1, 165–182. [Google Scholar] [CrossRef]
- Mayoral, S.; Roca, M.; Timoneda, C.; Serra, M. Mejora de la capacidad cognitiva del alumnado de primer curso de Educación Secundaria Obligatoria. Aula Abierta 2015, 43, 9–17. [Google Scholar] [CrossRef]
- Gamboa, A.C. Apuntes Sobre Investigación Formativa, Versión 2. 2013. Available online: http://tutorcarlosgamboa.blogspot.com (accessed on 24 April 2022).
- Gómez, B. Investigación formativa e investigación productiva de conocimiento en la universidad. Nómadas 2003, 18, 195–202. [Google Scholar]
- Gómez, B. Aprendizaje basado en problemas (ABP): Una innovación didáctica para la enseñanza universitaria. Educ. Educ. 2005, 8, 9–20. [Google Scholar]
- Fernández, F.H.; Duarte, J.E. El aprendizaje basado en problemas como estrategia para el desarrollo de competencias específicas en estudiantes de ingeniería. Form. Univ. 2013, 6, 29–38. [Google Scholar] [CrossRef]
- Pinto, A.R.; Cortés, O.F. Qué piensan los estudiantes universitarios frente a la formación investigativa. Rev. Docencia Univ. 2017, 15, 57–76. [Google Scholar] [CrossRef]
- Medina-Rojas, F.; Nuñez-Santa, J.M.; Sánchez-Medina, I.I.; Cabrera-Medina, J.M. Implementación del ABP, PBL y método SCRUM en cursos académicos para desarrollar sistemas informáticos enfocados en fortalecer la región. Rev. Educ. Ing. 2017, 12, 52–57. [Google Scholar] [CrossRef]
- Bedregal-Alpaca, N.; Sharhorodska, O.; Tupacyupanqui-Jaen, D.; Corneko-Aparicio, V. Problem based learning with information and communications technology support: An experience in the teaching-learning of matrix algebra. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 315. [Google Scholar] [CrossRef]
- Kwon, K.; Ottenbreit-Leftwich, A.T.; Brush, T.A.; Jeon, M.; Yan, G. Integration of problem-based learning in elementary computer science education: Effects on computational thinking and attitudes. Educ. Technol. Res. Dev. 2021, 69, 2761–2787. [Google Scholar] [CrossRef]
- Iwata, M.; Laru, J.; Mäkitalo, K. Designing problem-based learning to develop computational thinking in the context of K-12 maker education. CEUR Workshop Proc. 2020, 2755, 103–106. [Google Scholar]
- Svarre, T.; Burri, S. Problem based learning: A facilitator of computational thinking. In Proceedings of the 18th European Conference on e-Learning, ECEL, Copenhagen, Denmark, 7–8 November 2019; pp. 260–267. [Google Scholar] [CrossRef]
- Iversen, O.S.; Smith, R.C.; Dindler, C. From Computational Thinking to Computational Empowerment: A 21st Century PD Agenda. In Proceedings of the 15th Participatory Design Conference, Hasselt, Belgium, 20–24 August 2018. [Google Scholar] [CrossRef]
- Neo, C.H.; Wong, J.K.; Chai, V.C.; Chua, Y.L.; Hoh, Y.H. Computational Thinking in Solving Engineering Problems—A Conceptual Model Definition of Computational Thinking. Asian J. Assess. Teach. Learn. 2021, 11, 24–31. [Google Scholar] [CrossRef]
- Willison, J.W. Research Skill Development spanning Higher Education: Curricula, critiques and connections. J. Univ. Teach. Learn. Pract. 2018, 15, 1. Available online: https://files.eric.ed.gov/fulltext/EJ1195982.pdf (accessed on 25 August 2024). [CrossRef]
- Polya, G. How to Solve It, 2nd ed.; Princeton University Press: New York, NY, USA, 1945. [Google Scholar]
- Paucar-Curasma, R.; Villalba-Condori, K.O.; Viterbo, S.C.F.; Nolan, J.J.; Florentino, U.T.R.; Rondon, D. Fomento del pensamiento computacional a través de la resolución de problemas en estudiantes de ingeniería de reciente ingreso en una universidad pública de la región andina del Perú. RISTI Rev. Ibérica Sist. Tecnol. Informação 2020, 48, 23–40. [Google Scholar] [CrossRef]
- Paucar-Curasma, R. Influencia del Pensamiento Computacional en Los Procesos de Resolución de Problemas en Los Estudiantes de Ingeniería de Reciente Ingreso a la Universidad. Chimbote. 2023. Available online: https://repositorio.uns.edu.pe/handle/20.500.14278/4199 (accessed on 2 September 2024).
- Chaparro, R.; Barbosa, J. Incidencia del Aprendizaje Basado en Proyectos, implementado con Tecnologías de Información y Comunicación, en la motivación académica de estudiantes de secundaria. Rev. Logos Cienc. Tecnol. 2018, 10, 162–176. [Google Scholar] [CrossRef]
- Solaz-Portolés, J.; Sanjosé, V.; Gómez, Á. Aprendizaje basado en problemas en la Educación Superior: Una metodología necesaria en la formación del profesorado. Didáctica Cienc. Exp. Soc. 2011, 25, 177–186. [Google Scholar]
- Kafai, Y.B.; Burke, Q. Connected Code: Why Children Need to Learn Programming; MIT Press: Cambridge, UK, 2014. [Google Scholar]
- Maenpaa, H.; Varjonen, S.; Hellas, A.; Tarkoma, S.; Mannisto, T. Assessing IOT projects in university education—A framework for problem-based learning. In Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track, ICSE-SEET, Buenos Aires, Argentina, 20–28 May 2017; pp. 37–46. [Google Scholar] [CrossRef]
- Mäenpää, H.; Tarkoma, S.; Varjonen, S.; Vihavainen, A. Blending problem- and project-based learning in internet of things education: Case greenhouse maintenance. In Proceedings of the 46th ACM Technical Symposium on Computer Science Education, Kansas City, MO, USA, 4–7 March 2015; pp. 398–403. [Google Scholar] [CrossRef]
- Kortuem, G.; Bandara, A.K.; Smith, N.; Richards, M.; Petre, M. Educating the internet-of-things generation. Computer 2013, 46, 53–61. [Google Scholar] [CrossRef]
- Devi, R. Implementing Project-based Learning in Civil Engineering—A Case Study. J. Eng. Educ. Transform. 2017, 30, 272–277. [Google Scholar]
- Chen, J.; Kolmos, A.; Du, X. Forms of implementation and challenges of PBL in engineering education: A review of literature. Eur. J. Eng. Educ. 2021, 46, 90–115. [Google Scholar] [CrossRef]
- Weese, J.L. Mixed methods for the assessment and incorporation of computational thinking in K-12 and higher education. In Proceedings of the 2016 ACM Conference on International Computing Education Research, Melbourne, Australia, 8–12 September 2016; pp. 279–280. [Google Scholar] [CrossRef]
- Makeblock My Blocks Category. Available online: https://mblock.cc (accessed on 3 April 2022).
- Romero, M.; Lepage, A.; Lille, B. Computational thinking development through creative programming in higher education. Int. J. Educ. Technol. High. Educ. 2017, 14, 42. [Google Scholar] [CrossRef]
- Harangus, K.; Kátai, Z. Computational Thinking in Secondary and Higher Education. Procedia Manuf. 2020, 46, 615–622. [Google Scholar] [CrossRef]
- Curasma, R.P.; Villalba-Condori, K.O.; Jara, N.J.; Llamoca, R.Q.; Chavez, J.C.C.; Ponce-Aranibar, M.D.P. Computational Thinking and Block-Based Programming for Beginning Engineering Students: Systematic Review of the Literature. In Proceedings of the 2021 XVI Latin American Conference on Learning Technologies (LACLO), Arequipa, Peru, 19–21 October 2021; pp. 530–533. [Google Scholar] [CrossRef]
- Paredes-Proaño, F.J.; Moreta-Herrera, R. Actitudes hacia la investigación y autorregulación del aprendizaje en los estudiantes universitarios. CienciAmérica 2020, 9, 11–26. [Google Scholar] [CrossRef]
- Rojas-Betancur, M.; Méndez-Villamizar, R. Cómo Enseñar a Investigar. In Un Reto Para la Pedagogía Universitaria; Universidad de La Sabana: Cundinamarca, Colombia, 2013. [Google Scholar]
- De la cruz Casaño, C. La realidad de la metodología de la investigación en Ingeniería. Ingenium 2016, 1, 2–3. [Google Scholar]
- Rojas, H.; Méndez, R.; Rodríguez, Á. Índice de actitud hacia la investigación en estudiantes de nivel de pregrado. Entramado 2012, 8, 216–229. [Google Scholar]
- Blanco, N.; Alvarado, M. Escala de actitud hacia el proceso de investigación científico social. Rev. Cienc. Soc. 2005, 11, 537–544. [Google Scholar] [CrossRef]
- Rubio, L. Nivel de Satisfacción de Uso en Tecnología Educativa Para la Apropiación de Conceptos Científicos en Educación Media; Universidad Cuauhtémoc Aguascalientes: Aguascalientes, Mexico, 2019. [Google Scholar]
- Acosta-Corporan, R.; Martín-García, A.V.; Hernández-Martín, A. Level of Satisfaction in High School Students With the Use of Computer-Supported Collaborative Learning in the Classroom. Rev. Electron. Educ. 2022, 26, 23–41. [Google Scholar] [CrossRef]
- Pluhár, Z.; Torma, H. Introduction to Computational Thinking for University Students; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Karmawan, P.; Djamilah, W. STEM: Its Potential in Developing Students’ Computational Thinking. KnE Soc. Sci. 2024, 9, 1074–1083. [Google Scholar] [CrossRef]
Dimensions of Attitude Toward Formative Research | Items | Cronbach’s Alpha |
---|---|---|
Satisfaction and enjoyment of research | 5 | 0.82 |
Conceptual appropriation | 4 | 0.83 |
Learning behaviors | 4 | 0.80 |
Systematic exploration | 5 | 0.71 |
Perceived skills | 7 | 0.71 |
ID | Research Topic | Description | Sensor | Picture |
---|---|---|---|---|
TI-1 | Monitoring Humidity and Temperature in the Computing Center of the Faculty of Systems Engineering | Students will use the DHT11 sensor to measure humidity and temperature in the university’s computing center, ensuring that laboratory conditions are suitable for experiments and research. | DHT11 sensor | |
TI-2 | Monitoring Air Quality in the Modelo Market Area of Huancayo | Students will monitor air quality in the Modelo Market area of Huancayo using the MQ2 gas sensor to measure and record air quality, which is essential for public health. | MQ2 gas sensor | |
TI-3 | Soil Moisture Control to Optimize Corn Cultivation in the Cochas District | Students will monitor soil moisture in corn fields using a capacitive soil moisture sensor, helping farmers manage soil moisture for optimal corn production. | Capacitive soil moisture sensor | |
TI-4 | Access Security Monitoring in a Company’s Library | Students will monitor access security in a company’s library, ensuring that only authorized personnel can enter. | RC522 RFID module | |
TI-5 | Monitoring Water Temperature in the Ingenio Fish Farm | Students will implement a water temperature monitoring system in the Ingenio fish farm using the DS18B20 temperature sensor to prevent stress in trout by ensuring water temperature remains within optimal ranges. | DS18B20 temperature sensor | |
TI-6 | Monitoring the Water Level in the Paca Lagoon, Jauja Province | Students will use an ultrasonic sensor to develop a system for monitoring the water level in the Paca Lagoon in Jauja Province. | Ultrasonic sensor HC-SR04 |
Dimensions | Mean | Median | Standard Deviation | |||
---|---|---|---|---|---|---|
Pre Test | Pos Test | Pre Test | Pos Test | Pre Test | Pos Test | |
Satisfaction and enjoyment of research | 3.53 | 3.82 | 3.00 | 4.00 | 0.788 | 0.716 |
Conceptual appropriation | 3.44 | 4.12 | 3.50 | 4.00 | 0.613 | 0.591 |
Learning behaviors | 4.00 | 4.06 | 4.00 | 4.00 | 0.603 | 0.489 |
Systematic exploration | 3.53 | 4.24 | 3.00 | 4.00 | 0.896 | 0.654 |
Perceived skills | 3.15 | 3.88 | 3.00 | 4.00 | 0.500 | 0.537 |
Pre Test | Pos Test | |
---|---|---|
N | 34 | 34 |
W of Shapiro–Wilk | 0.954 | 0.941 |
Value p of Shapiro–Wilk | 0.160 | 0.065 |
Hypotheses | ||
---|---|---|
H0: “The problem-solving method and technological resources DO NOT generate a positive attitude toward formative research in systems engineering students” | ||
H1: “The problem-solving method and technological resources generate a positive attitude toward formative research in systems engineering students” | ||
Significance Level: 5% Decision Rule: If p ≥ 5%, do not reject H0. If p < 5%, reject H0. | ||
Dimensions | Wilcoxon p-Value | Decision |
Satisfaction and Enjoyment of Research | 0.035 | Reject H0 |
Conceptual Appropriation | 0.001 | Reject H0 |
Learning Behavior | 0.001 | Reject H0 |
Systematic Exploration | 0.001 | Reject H0 |
Perceived Skills | 0.001 | Reject H0 |
Dimensions | High | Very High | ||||
---|---|---|---|---|---|---|
Pre | Pos | Diff | Pre | Pos | Diff | |
Satisfaction and Enjoyment of Research | 35% | 56% | +21% | 12% | 15% | +3% |
Conceptual Appropriation | 50% | 65% | +15% | 0 | 23% | +23% |
Learning Behavior | 68% | 76% | +8% | 14% | 15% | +1% |
Systematic Exploration | 74% | 53% | −21% | 26% | 35% | +9% |
Perceived Skills | 20% | 74% | +54% | 0 | 8% | +9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paucar-Curasma, R.; Villalba-Condori, K.O.; Gonzales-Agama, S.H.; Huayta-Meza, F.T.; Rondon, D.; Sapallanay-Gomez, N.N. Technological Resources and Problem-Solving Methods to Foster a Positive Attitude Toward Formative Research in Engineering Students. Educ. Sci. 2024, 14, 1397. https://doi.org/10.3390/educsci14121397
Paucar-Curasma R, Villalba-Condori KO, Gonzales-Agama SH, Huayta-Meza FT, Rondon D, Sapallanay-Gomez NN. Technological Resources and Problem-Solving Methods to Foster a Positive Attitude Toward Formative Research in Engineering Students. Education Sciences. 2024; 14(12):1397. https://doi.org/10.3390/educsci14121397
Chicago/Turabian StylePaucar-Curasma, Ronald, Klinge Orlando Villalba-Condori, Sara Hermelinda Gonzales-Agama, Freddy Toribio Huayta-Meza, David Rondon, and Ninna Nyberg Sapallanay-Gomez. 2024. "Technological Resources and Problem-Solving Methods to Foster a Positive Attitude Toward Formative Research in Engineering Students" Education Sciences 14, no. 12: 1397. https://doi.org/10.3390/educsci14121397
APA StylePaucar-Curasma, R., Villalba-Condori, K. O., Gonzales-Agama, S. H., Huayta-Meza, F. T., Rondon, D., & Sapallanay-Gomez, N. N. (2024). Technological Resources and Problem-Solving Methods to Foster a Positive Attitude Toward Formative Research in Engineering Students. Education Sciences, 14(12), 1397. https://doi.org/10.3390/educsci14121397