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Quantum key distribution (QKD) and quantum communication enable the secure exchange of 
information between remote parties. Currently, the distributed-phase-reference (DPR) protocols, 
which are based on weak coherent pulses, are among the most practical solutions for long-range QKD. 
During the last 10 years, long-distance fiber-based DPR systems have been successfully demonstrated, 
although fundamental obstacles such as intrinsic channel losses limit their performance. Here, we 
introduce the first two-dimensional DPR-QKD protocol in which information is encoded in the time and 
phase of weak coherent pulses. The ability of extracting two bits of information per detection event, 
enables a higher secret key rate in specific realistic network scenarios. Moreover, despite the use of 
more dimensions, the proposed protocol remains simple, practical, and fully integrable.

Sharing sensitive information has always been a great challenge within our society. In particular, QKD, first intro-
duced by Bennett and Brassard, provides a unique procedure for exchanging a private key, based on the laws 
of quantum mechanics1. During the last decade, the effort from the scientific community has been focused on 
an enhancement of the quantum communication performances in terms of key rate, transmission distance and 
security aspects2–9. In later years this technology has matured enormously, but the lack of compact, efficient, inex-
pensive, and reliable systems, has restricted wide spreading of practical QKD systems.

The basic idea behind QKD systems, in the case of “prepare and measure” schemes, is based on quantum states 
prepared by Alice (the transmitter) and sent through a quantum channel towards Bob (the receiver). Depending 
on the quantum measurement, Bob can deduce which state was prepared by Alice. This way, after error reconcil-
iation and privacy amplification methods established in a classical channel, the two users share an identical bit 
sequence.

Ideally, QKD systems are secure with no chance for an eavesdropper to extract information on the key. 
However, in real implementations of the systems, due to the losses and imperfections of devices, the secret key 
rate defines a bound on how much information can be assumed secure10–12.

We here propose a new QKD protocol, which we refer to by the name: Differential phase time shifting (DPTS). 
In its essence, the protocol utilizes two degrees of freedom — time and phase — to encode information in a 
quaternary alphabet, i.e. {0, 1, 2, 3}13. The DPTS belongs to the family of distributed phase-reference (DPR) pro-
tocols, which rather than using the principle of random basis-choices between different mutually unbiased bases, 
encodes information in adjacent weak coherent pulses6,10,14–18. We study the performance of the DPTS protocol 
using infinite-key analysis in the case of collective attacks, and further show that the protocol holds great potential 
in intracity network scenarios.

Results
Principle of DPTS.  As in most practical implementations of QKD, the DPTS protocol, which is sketched in 
Fig. 1, uses a source of weak coherent pulses to establish a key of random numbers between two authenticated 
parties, Alice and Bob. To initiate the key distribution process, Alice randomly encodes information in the train 
of pulses in two dimensions, time and phase. The time encoding is performed using an intensity modulator (IM) 
as in the coherent-one way (COW) protocol15. For every pair of pulses (we refer to such a pair as a sub-block), 
one pulse is transmitted with mean photon number μ <​ 1 (|α〉​), and one is blocked completely (|vac〉​). Hence, 
within each sub-block, information is carried by the time-of-arrival of a non-empty pulse15,19. The phase encoding 
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is performed using a phase modulator (PM), where a random phase between sub-blocks is either {0, π}. By com-
bining the effect of the IM and the PM, Alice prepares states from the quaternary alphabet:

α α
α α

α α
α α

= ± ±
= ±
= ± ±
= ± .





0 vac vac ,
1 vac vac ,
2 vac vac ,
3 vac vac (1)

Bob may distinguish unambiguously between these states by employing an unbalanced interferometer which 
interferes pulses in adjacent sub-blocks separated by T =​ 2/ν, where ν is the laser repetition rate. Depending on 
the time of arrival (te or tl in Fig. 1) and on which detector fired (D1 or D2), Bob can decide which of the four states 
was prepared. We would like to point out that, due to the used interferometer delay, no interference occurs in the 
case of a transition sequence, such as |±​α〉​ |vac〉​ |vac〉​ |±​α〉​.

It is important to note that, analogous to the differential phase shift (DPS) protocol, each sub-block may 
participate in defining up to two states14. For instance, the sequence: |α〉​ |vac〉​ |−​α〉​ |vac〉​ |α〉​ |vac〉​ |vac〉​ |α〉​ 
|vac〉​ |−​α〉​ encodes the states: |1〉​ |1〉​ −​ |3〉​. Here, the ‘−​’ indicates a change of the temporal sequence over the 
sub-block separation, in which case Bob is not able to interfere the non-empty pulses in his interferometer (for a 
detailed example, see Supplementary information).

To minimize the number of transition sequences, Alice and Bob may benefit from repeating the temporal 
encoding over long pulse intervals (i.e. only preparing |0〉​ and |1〉​, or |2〉​ and |3〉​). However, doing so permits 
a potential eavesdropper, Eve, to gain partial information on a given state by measuring the time-of-arrival of 
pulses in adjacent sub-blocks. This effectively means that the time-of-arrival information is more vulnerable to 
eavesdropping. To counteract this potential attack, Alice introduces the concept of blocks. Each block consists of 
N pulses (counting both empty and non-empty), within which the temporal sequence is repeated independently 
from the previous block (the sequences |0〉​ |1〉​ |1〉​ and |3〉​ |2〉​ are examples of blocks with N =​ 8 and N =​ 6). The 
value of N is for each block chosen randomly from a uniform distribution: N ∈​ {4, 6, …​, Nmax}. In contrast, if 
the value of N was fixed at e.g. N =​ 6, then Eve would know exactly for which sequences of pulses the temporal 
encoding was repeated. The modification of random block lengths, means that both Bob and Eve are essentially 
unaware of the positions of the block separations. Whereas this is of no importance to Bob (see section ‘Protocol 
definition’), it is fundamental to Eve.

The security of DPTS relies on the same principle as other DPR protocols: the coherence between non-empty 
pulses20,21. In fact, the DPS aspect of the DPTS protocol makes it very robust against attacks such as the 
intercept-resend attack and the photon-number splitting attack21,22. Eve can not perform a measurement on any 
finite number of states without at some point breaking coherence between successive pulses. This is specifically 
true for the DPTS protocol as Eve is not able to predict the positions of the transition sequences. However, since 
coherence is distributed across sub-block separations whereas the temporal information lies within sub-blocks, a 
sophisticated Eve can address each sub-block separately trying to just learn the time-of-arrival information (i.e. is 
a state |0〉​, |1〉​ or is it |2〉​, |3〉​). Doing so, she only breaks coherence within sub-blocks, and thus Bob, who only 
checks coherence across sub-blocks, is not able to reveal her presence. To counter this attack, Alice introduces 
decoy sequences with probability 

p 1decoy , in which blocks consist of N non-empty pulses20. Interestingly, this 
decoy is just a DPS sequence in which the phase encoding is carried between every second pulse (as measured by 
Bob). Consequently, if Eve probes one or more sub-blocks containing two non-empty pulses, she inevitably dis-
turbs the phase relation between these pulses11. As a result, there are cases where Eve introduces phase errors into 
the communication.

Figure 1.  Basic scheme of the DPTS protocol exploiting phase and time domain. A train of weak coherent 
pulses (WCP) is emitted by a laser of repetition rate ν (2/T), and attenuated to the single photon level. A phase 
modulator (PM) encodes the first key bit in second-neighbor pulses with a period of T by choosing randomly 
either 0 or π. An intensity modulator (IM) is used to choose the position of the pulses to encode the second key 
bit. The number of pulses N, where the intensity modulator uses the same time instances, is defined as a block. 
In this way, Alice prepares a sequence of different states: |0〉​, |1〉​, |2〉​, |3〉​. Using a delay line interferometer with a 
delay of T between arms, Bob can simultaneously measure the phase and pulse position.
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Protocol definition.  We now describe in detail how Alice and Bob establish a common key using the DPTS 
protocol:

•	 Alice prepares states for transmission in the quantum channel using her phase- and intensity modulators. We 
assume that Alice chooses equally and randomly between the four different states {0, 1, 2, 3}. The temporal 
sequence is repeated within each block of random length, N ∈​ {4, 6, …​, Nmax}, whereas the phase difference 
between each sub-block is randomly chosen to either 0 or π.

•	 Once Bob has received a photon in one of the two detectors, he reveals over a public classical channel the sub-
time (the number of the sub-block) instances of his recorded detection events.

•	 Alice reports back by telling which of the events corresponded to an overlap between adjacent blocks with 
opposite temporal sequence (a block separation was present in that instance). Bob must discard these events.

•	 For each of the remaining detection events, Alice and Bob establish two bits of information for their key: Alice 
easily figures out the detection time from her sent temporal sequence, and infers from her phase encoding 
which detector clicked at Bob’s side.

•	 After estimating the quantum bit error rate (QBER), Alice and Bob perform standard error reconciliation and 
privacy amplification23–25. At the end of the process Alice and Bob share a secure identical key.

Secret key rate.  To further describe the proposed protocol, let us consider the maximum extractable secret 
key rate Rsk

11. For the DPTS protocol this quantity reads

= −R f R I I I[ min( , )], (2)sk B AB AE BE

where RB =​ R +​ 4pd(1 −​ R) is the total detection rate with R =​ [1 −​ exp(−​μtηd)]/2, μ is the mean photon number 
of non-empty pulses, t represents the quantum channel transmission coefficient, ηd is the (common) detector effi-
ciency, and pd is the dark count probability. The pre-factor f =​ (1 −​ pdecoy) (〈​N〉​ −​ 1)/〈​N〉​, where 〈​N〉​ =​ (Nmax +​ 4)/2 
is the average block length, takes into account the fraction of Bob’s detection events that is assigned to the key 
string. The unused fraction 1/〈​N〉​ is due to detections associated with adjacent sub-blocks of different temporal 
sequences. In these cases, the clicks are randomly distributed between the two detectors, and so the instances are 
discarded.

The mutual information between Alice and Bob, is expressed in terms of the Shannon entropy as 
IAB =​ H(A) −​ H(A|B)26. Alice has a total of four different states to choose from, and by assuming that she prepares 
each state with equal probability, one finds = −∑ ==H A( ) (1/4) log (1/4) 1i 1

4
4 . Note that we, for convenience, 

measure information using a base-4 logarithm rather than the common base 2 [in units of bits one acquires 
H(A) =​ 2]. Furthermore, the conditional entropy H(A|B) is expressed as
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where = − +V p p p p( )/( )D D D D1 2 1 2
 represents the visibility of the interferometer used by Bob and pD1

 p( )D2
 

represents the probability of detection in detector D1 (D2). Note that, in the definition of the error probabilities, 
the visibility appears in only two of the four terms, since an interferometer error does not alter the time of arrival. 
Thus, since the time-of-arrival information remains correct, the DPTS protocol suffers less from interferometer 
imperfections in comparison with the DPS protocol which solely relies on relative phase measurements. On the 
other hand, the higher dimensionality of the DPTS protocol renders it more vulnerable to detector dark counts: 
each dark-count occurrence results in two random bits rather than one. This effectively makes the DPTS protocol 
less useful at longer communication distances where the dark count rate becomes comparable with the signal rate.

In order to evaluate the achievable secret key rate for Alice and Bob, we next introduce an upper bound on the 
information that a potential eavesdropper might obtain by performing the most basic attack; the beam-splitting 
attack. In the family of collective attacks, Eve is assumed to be able to interact with the same strategy on a prede-
fined number of pulses. She can store the photons and try to extract the largest possible information after Alice 
and Bob has performed post-processing. A complete analysis would concentrate on IBE since Eve is clueless about 
detection events resulting from imperfections at Bob’s side (see equation (2)). However, as a first attempt to esti-
mate her information, we restrict ourselves to the more simple analysis of IAE.

Security analysis.  This section presents an analysis of security based on the collective beam-splitting attack 
(BSA) and follows the method used in ref. 27 for the DPS and COW protocols. In the BSA, Eve replaces the quan-
tum channel connecting Alice and Bob by a lossless line. Using a beam-splitter to simulate the losses of the 
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quantum channel, Eve acquires 1 −​ t of the signal without disturbing the state sent by Alice. Thus, the BSA belongs 
to the family of zero-error attacks, and is therefore undetectable by Alice and Bob28. The states prepared by Alice 
consist of sequences α⊗k k  with αk ∈​ {+​α, vac, −​α}, so by performing the BSA, Eve receives states of the form 
α⊗k k

E( ) , where α α α∈ + −{ , vac, }k
E

E E
( )  with α α= − t1E .

At this point we assume that Eve stores the states in her quantum memory for measurement after Bob reveals 
his detection events. Indeed, for such a collective attack, the maximum information she may extract is given by 
the Holevo quantity (which must be maximized with respect to the strategies available to Eve, though here we 
only consider the BSA)11,29

∑χ ρ ρ= − .S p S( ) ( )
(5)

AE E
j

j E j

Here, S(ρ) =​ −​Tr {ρ log4 (ρ)} is the von Neumann entropy, ρ ρ= ∑ pE j j E j is a density operator with pj being 
the probability of Alice preparing the four states j ∈​ {0, 1, 2, 3}, and ρE|j being Eve’s state conditioned on prepara-
tion of state j.

As mentioned earlier, we consider only the balanced situation where Alice prepares each state with a probabil-
ity pj =​ 1/4. In the current protocol each value in the quaternary alphabet is encoded in four consecutive pulses. It 
follows that Eve’s states conditioned on Alice’s preparation are
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where Px is the projection operator. To calculate the maximum accessible information for Eve, it is helpful to 
de f i ne  γ = α−e E

2
.  By  t h i s  convent ion  t he  over l aps  b e t we en  s t ate s  c an  b e  w r i t ten  as 

α α α α γ+ + − − =, vac, , vac , vac, , vacE E E E
4, and |〈​j|k〉​| =​ γ2 for j ≠​ k, where j, k ∈​ {0, 1, 2, 3}. By writing 

ρE and ρE|j in their respective eigenbasis, the von Neumann entropy takes the simple form λ λ= −∑S log ( )n n n4 , 
where λn are the eigenvalues. The resulting Holevo quantity is
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and presents an upper bound on the information Eve can obtain by trying to distinguish between the four differ-
ent states after Bob announces a detection event.

In the cases where Eve fails to get a conclusive measurement, she may instead try to establish partial informa-
tion about the state Alice and Bob agreed upon. She can do this by trying to measure the temporal position (i.e. is 
a state |0〉​, |1〉​ or |2〉​, |3〉​) of the pulse in a sub-block adjacent to the sub-block corresponding to Bob’s detection. 
In general for the considered block lengths, the probability of this measurement to be correct (if conclusive) 
exceeds 1/2 (for details, see Supplementary information), and thereby effectively provides Eve with information 
on the state. Since this additional attack by Eve is conditioned on her not getting a conclusive result in the primary 
measurement, the corrected Holevo quantity becomes

χ χ χ χ= + −(1 ) , (8)AE AE AE AE
(0) (0) (1)

where χAE
(1) is derived and given in the Supplementary information. Note however, that Eve is essentially ignorant 

about the position of block separations. Therefore, making conclusions based on this secondary attack will result 
in errors for Eve, effectively reducing the gained information.

Numerical results.  Combining the results of the previous sections (equations (2–8)) the secret key rate for DPTS 
reads χ= − −R f R H A B2 (1 ( ) )sk

DPTS
B AE

( ) , where the factor of two stems from the conversion from a quaternary to 
binary alphabet. This expression enables us to plot a first upper bound on the secret key rate under the assumption of 
collective attacks. Specifically, Fig. 2 shows Rsk versus communication distance at the optimized values of the mean 
photon number μ. To assess the performance of the DPTS protocol, we have included plots for both COW and DPS. 
The secret key rate for COW and DPS are obtained by: χ= + − − −R f R p R h Q( 2 (1 ))(1 ( ) )sk

COW
d d

COW
AE

COW( ) ( ) ( )   
and χ= + − − −R R p R h Q(2 2 (1 2 ))(1 ( ) )sk

DPS
d

DPS
AE

DPS( ) ( ) ( ) , where R is defined below equation (2), Q(COW) and 
Q(DPS) are the quantum bit error rate for COW and DPS respectively, fd represents the decoy state probability, h(Q) 
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is the binary entropy and the Holevo bounds χAE
COW( ) and χAE

DPS( ) are defined in Branciard et al.27. These equations 
are derived under the same assumptions as made for the DPTS protocol to allow for a fair comparison. As a result, 
the COW protocol does not exhibit any visibility dependence (see Fig. 2(b)).

In comparison, the DPTS protocol has a similar performance as the other protocols under the realistic con-
dition of non-ideal visibilities (as example we have used V =​ 0.9). Noteworthy, the DPTS protocol displays a less 
critical dependence on the visibility when compared to the DPS protocol.

In a more realistic situation, the comparison of the protocols must take into account the detector dead times. 
For example, considering the case of commercial InGaAs infrared single-photon detectors (the most used in fiber 
links and the most promising thanks to the non-cryogenic requirement), they generally exhibit a dead time in 
excess of 1 μs30,31. Thus, in any scenario where the detector dead time significantly influences the key generation 
rate, the ability to extract two bits of information per detection event grants the DPTS protocol an advantage. 
To illustrate this effect, Fig. 3 shows an example of the secret key rate in bits s−1, after inclusion of the dead-time 
dependency.

Discussion
The main figure of merit in a QKD system is the achievable secret key rate. Therefore, to assess the performance 
of DPTS, Fig. 2 displays this quantity for DPTS in comparison with the standard COW and DPS protocols. The 
comparison shows very similar behavior of the three DPR protocols. Considering more specifically the case of 
DPTS, the final key rate is influenced by the length of the blocks N prepared by Alice. Even though a higher value 
of N allows an increased sifted key rate, it is necessary to consider a trade-off between the length of blocks and 

Figure 2.  Secret key rate measured in bits per pulse. Performance versus (a) distance in the case of fixed 
visibility, V =​ 0.9, and (b) visibility at a channel length of L =​ 100 km. For each of the three protocols, an 
optimization was performed with respect to the mean photon number μ (see Supplementary Fig. S2). 
Parameters: ηd =​ 0.1, pd =​ 2 ×​ 10−8, αloss =​ 0.2 dB/km, and pdecoy =​ 0.02 for COW and DPTS.

Figure 3.  Secret key rate in real case scenario. Different secret key rates achievable in a medium-length link 
scenario, where the detector dead times play an important role. We use mean photon numbers for the different 
protocols of μDPTS =​ 0.23, μDPS =​ 0.19, and μCOW =​ 0.52, at repetition rate ν =​ 2 GHz, and average block length 
of 〈​N〉​ =​ 6. The detectors are specified by dark-count probability pd =​ 2 ×​ 10−8, a dead time of td =​ 2 μs, and 
efficiency ηd =​ 0.1. We assume V =​ 0.98, and a decoy-sequence probability of pdecoy =​ 0.02 for COW and DPTS.
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the information leakage to Eve. In the case of long-distance links (in excess of 100 km), the behavior of the three 
protocols is maintained, but as the DPTS protocol is more severely influenced by dark count events, it is generally 
limited to shorter distances. On the other hand, as seen from Fig. 2(b), the DPTS protocol is less dependent on the 
interferometer visibility. This fact permits the proposed protocol to achieve a more stable secret key generation 
rate in comparison with the DPS protocol.

In implementing a QKD protocol, it is necessary to consider the limitations set by the optical and electronic 
devices32–34. An important example is the single-photon detector dead time td, which sets an upper limit on the 
key generation rate. This parameter is important in a short- or medium-length link scenario, where the average 
wait time between detection events is of the same order of magnitude as td (which is typically on the order of 
microseconds). In Fig. 3, it is shown that DPTS may achieve a significant increase in the secure key rate at dis-
tances where the detector dead time is a limiting factor. This potential arises due to the ability of the DPTS proto-
col to extract two bits of information per detection event.

The use of multiple degrees of freedom in transmission of information, intuitively increases the complexity 
of the scheme in comparison with protocols dealing with each individual degree of freedom. Despite DPTS not 
being an exception to this rule of thumb, the complexity overhead in comparison to DPS or COW is not crucial. 
On the other hand, DPTS does exhibit two significant practical advantages. Firstly, the COW protocol requires a 
monitoring line to check for the presence of an eavesdropper. However, such a monitoring line is unnecessary for 
DPTS, as an interferometer is directly used in the data line, and hence implements the necessary coherence check. 
Thus, the decrease in rate related to monitoring of the data line in COW, is not a limitation for DPTS. Secondly, 
the stability of the interferometer over time, is a considerable challenge in implementations of the DPS protocol in 
non-stable environments. The performance of the DPTS protocol is inherently more resilient against fluctuating 
interferometer visibilities, because the temporal bit remains unaffected by such inefficiencies. This entails, that 
DPTS might be better suited in cases where it is difficult to maintain the interferometer visibility above a certain 
required operation threshold.

Finally, DPTS can potentially play an important role in QKD networks spanning from metropolitan to inter-
city distances35–39. Interestingly, the required measurement apparatus is identical to the one used in DPS, and in 
fact, the receiver does not need to know a priori whether the signals arise from a DPS or a DPTS encoding. This 
compatibility suggests that a versatile network encompassing the use of both the DPS and DPTS protocols is 
feasible.

In conclusion, we have proposed a novel kind of distributed-phase-reference protocol for quantum key distri-
bution. Utilizing both the time- and phase degrees of freedom, this protocol provides a significant step towards 
realization of fast, reliable, and practical quantum communication. Future directions include a finite-key analysis 
and a real-time field implementation.
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