In order to understand the dynamics of the India Asia collision zone, it is important to know the strain distribution in Central Asia, whose determination relies on the slip rates for active faults. Many previous slip-rate estimates of faults in Central Asia were based on the assumption that offset landforms are younger than the Last Glacial Maximum (approximately 20 kyr ago). In contrast, here we present surface exposure ages of 40 to 170 kyr, obtained using cosmogenic nuclide dating, for a series of terraces near a thrust at the northern margin of the Tibetan Plateau. Combined with the tectonic offset, the ages imply a long-term slip rate of only about 0.35 mm x yr(-1) for the active thrust, an order of magnitude lower than rates obtained from the assumption that the terraces formed after the Last Glacial Maximum. Our data demonstrate that the preservation potential of geomorphic features in Central Asia is higher than commonly assumed.