The Hoffmann reflex (H-reflex) test has been extensively used to investigate the responsiveness of Ia afferent spinal loop in animal and human studies. The H-reflex response is influenced by multiple neural pathways and the assessment of H-reflex variation is a useful tool in understanding the neural mechanisms in control of movement. Recently, several studies have examined the relationship between the H-reflex modulation and postural stability. For example, it has been reported that the amplitude of soleus (SOL) H-reflex is depressed in relation to increased body sway during upright standing on a soft surface compared to that on a solid surface. It has been suggested that the SOL H-reflex modulation under such condition is predominately affected by the presynaptic inhibitory mechanisms for avoiding oversaturation of the spinal motoneurons. It has also been reported that after balance training, the SOL H-reflex amplitude is down-modulated in parallel with improvement in balance control, suggesting a functional adaptation at the supraspinal levels. The aim of this review is to examine the current literature on the relationship between H-reflex modulation and postural control for a better understanding of the physiological mechanisms involved in control of posture in humans.
Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.