Malignant mesothelioma (MM) is an aggressive tumor commonly caused by asbestos exposure after a long latency. Focal adhesion kinase (FAK) inhibitors inhibit the cell growth of Merlin-deficient MM cells; however, their clinical efficacy has not been clearly determined. The aim of this study was to evaluate the growth inhibitory effect of the FAK inhibitor VS-4718 on MM cell lines and identify biomarkers for its efficacy. Although most Merlin-deficient cell lines were sensitive to VS-4718 compared with control MeT-5A cells, a subset of these cell lines exhibited resistance to this drug. Microarray and qRT-PCR analyses using RNA isolated from Merlin-deficient MM cell lines revealed a significant correlation between E-cadherin mRNA levels and VS-4718 resistance. Merlin- and E-cadherin-negative Y-MESO-22 cells underwent apoptosis upon treatment with a low concentration of VS-4718, whereas Merlin-negative, E-cadherin-positive Y-MESO-9 cells did not undergo VS-4718-induced apoptosis. Furthermore, E-cadherin knockdown in Merlin-negative MM cells significantly sensitized cells to VS-4718 and induced apoptotic cell death upon VS-4718 treatment. Together, our results suggest that E-cadherin serves as a predictive biomarker for molecular target therapy with FAK inhibitors for patients with mesothelioma and that its expression endows MM cells with resistance to FAK inhibitors.