Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates

Geophys Res Lett. 2017 Jun 28;44(12):6145-6153. doi: 10.1002/2017GL073904. Epub 2017 Jun 9.

Abstract

SMAP (Soil Moisture Active and Passive) radiometer observations at ~40 km resolution are routinely assimilated into the NASA Catchment Land Surface Model to generate the 9-km SMAP Level-4 Soil Moisture product. This study demonstrates that adding high-resolution radar observations from Sentinel-1 to the SMAP assimilation can increase the spatio-temporal accuracy of soil moisture estimates. Radar observations were assimilated either separately from or simultaneously with radiometer observations. Assimilation impact was assessed by comparing 3-hourly, 9-km surface and root-zone soil moisture simulations with in situ measurements from 9-km SMAP core validation sites and sparse networks, from May 2015 to December 2016. The Sentinel-1 assimilation consistently improved surface soil moisture, whereas root-zone impacts were mostly neutral. Relatively larger improvements were obtained from SMAP assimilation. The joint assimilation of SMAP and Sentinel-1 observations performed best, demonstrating the complementary value of radar and radiometer observations.