Smart Management Consumption in Renewable Energy Fed Ecosystems

Sensors (Basel). 2019 Jul 5;19(13):2967. doi: 10.3390/s19132967.

Abstract

Advances in embedded electronic systems, the development of new communication protocols, and the application of artificial intelligence paradigms have enabled the improvement of current automation systems of energy management. Embedded devices integrate different sensors with connectivity, computing resources, and reduced cost. Communication and cloud services increase their performance; however, there are limitations in the implementation of these technologies. If the cloud is used as the main source of services and resources, overload problems will occur. There are no models that facilitate the complete integration and interoperability in the facilities already created. This article proposes a model for the integration of smart energy management systems in new and already created facilities, using local embedded devices, Internet of Things communication protocols and services based on artificial intelligence paradigms. All services are distributed in the new smart grid network using edge and fog computing techniques. The model proposes an architecture both to be used as support for the development of smart services and for energy management control systems adapted to the installation: a group of buildings and/or houses that shares energy management and energy generation. Machine learning to predict consumption and energy generation, electric load classification, energy distribution control, and predictive maintenance are the main utilities integrated. As an experimental case, a facility that incorporates wind and solar generation is used for development and testing. Smart grid facilities, designed with artificial intelligence algorithms, implemented with Internet of Things protocols, and embedded control devices facilitate the development, cost reduction, and the integration of new services. In this work, a method to design, develop, and install smart services in self-consumption facilities is proposed. New smart services with reduced costs are installed and tested, confirming the advantages of the proposed model.

Keywords: Internet of Things; artificial intelligence paradigms; cloud services; embedded devices; smart grid.