Offline hand-drawn diagram recognition is concerned with digitizing diagrams sketched on paper or whiteboard to enable further editing. Some existing models can identify the individual objects like arrows and symbols, but they become involved in the dilemma of being unable to understand a diagram's structure. Such a shortage may be inconvenient to digitalization or reconstruction of a diagram from its hand-drawn version. Other methods can accomplish this goal, but they live on stroke temporary information and time-consuming post-processing, which somehow hinders the practicability of these methods. Recently, Convolutional Neural Networks (CNN) have been proved that they perform the state-of-the-art across many visual tasks. In this paper, we propose DrawnNet, a unified CNN-based keypoint-based detector, for recognizing individual symbols and understanding the structure of offline hand-drawn diagrams. DrawnNet is designed upon CornerNet with extensions of two novel keypoint pooling modules which serve to extract and aggregate geometric characteristics existing in polygonal contours such as rectangle, square, and diamond within hand-drawn diagrams, and an arrow orientation prediction branch which aims to predict which direction an arrow points to through predicting arrow keypoints. We conducted wide experiments on public diagram benchmarks to evaluate our proposed method. Results show that DrawnNet achieves 2.4%, 2.3%, and 1.7% recognition rate improvements compared with the state-of-the-art methods across benchmarks of FC-A, FC-B, and FA, respectively, outperforming existing diagram recognition systems on each metric. Ablation study reveals that our proposed method can effectively enable hand-drawn diagram recognition.
Keywords: diagram recognition; object detection; offline recognition.