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Abstract. Artificial multi-cellular organisms develop from a single zygote to 
different structures and shapes, some simple, some complex. Such phenotypic 
structural complexity is the result of morphogenesis, where cells grow and dif-
ferentiate according to the information encoded in the genome. In this paper we 
investigate the structural complexity of artificial cellular organisms at pheno-
typic level, in order to understand if genome information could be used to pre-
dict the emergent structural complexity. Our measure of structural complexity is 
based on the theory of Kolmogorov complexity and approximations. We relate 
the Lambda parameter, with its ability to detect different behavioral regimes, to 
the calculated structural complexity. It is shown that the easily computable 
Lempel-Ziv complexity approximation has a good ability to discriminate emer-
gent structural complexity, thus providing a measurement that can be related to 
a genome parameter for estimation of the developed organism’s phenotypic 
complexity. The experimental model used herein is based on 1D, 2D and 3D 
Cellular Automata. 
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1 Introduction 
Artificial developmental systems take inspiration from biological development, where 
a unicellular organism, i.e. a zygote, develops to a multi-cellular organism by follow-
ing the instructions encoded in its genome. The genome contains the building instruc-
tions and not a description of what the organism will look like. Several artificial de-
velopmental systems take inspiration from cellular models [2-4], where the construct 
and constructor element is a cell. Thus, each cell in the system is a building block of 
the system and encapsulates the genome information that regulates the cellular ac-
tions, e.g. growth, differentiation, apoptosis. The emergent phenotype can result in a 
very simple or extremely complex structure. Our goal is to measure the complexity of 
the phenotypic structure and relate it to the genome information. The notion of struc-
tural complexity used is based on the theory of Komogorov complexity [5, 8]. As 
stated by the Incomputability Theorem (proof in [5]), Kolmogorov complexity is 
incomputable. Compression algorithms are often used as an approximation of the 
Kolmogorov complexity [11, 20]. In the experimental work herein, Lempel-Ziv algo-
rithm is used to estimate the phonotypic structural complexity. In the genotype space, 
genomes are characterized and described by the Lambda genome parameter [6]. Such 
parameter has shown interesting abilities to discriminate genotypes in different behav-



ioral classes, e.g. fixed, chaotic, random [7]. It is thus investigated if λ is useful to 
relate genotype composition to the structural complexity of the emergent phenotypes.  

The article is laid out as follows: Section 2 presents background and motivation. In 
Section 3 cellular automata are formally defined. Section 4 describes measures of 
structural complexity and the notion of Kolmogorov complexity and approximations. 
Section 5 introduces the developmental model and Lambda genome parameter. Sec-
tion 6 describes the experimental setup and results. Section 7 includes analysis and 
discussion and Section 8 concludes the work. 

2 Background and Motivation 
In the field of Artificial Embryogeny, the goal is often to exploit emergent complexity 
out of the parallel local interactions of a myriad of simple components. To evaluate 
such systems’ ability, a clear notion of complexity is necessary. Consider the notion 
of “edge of chaos” [6], a critical region of a parameter space where the system is be-
tween order and randomness. In ordered regimes there are only a few distinct possible 
configurations whether with total randomness the system exhibits the same statistical 
distribution of behaviors for any initial condition. Therefore, it is in the edge of chaos 
that systems exhibit high complexity to support advanced features favorable to per-
form computation. Such emergent complexity, if meaningfully measured, could be 
predicted using genome parameters. Langton [6] introduced the Lambda parameter to 
differentiate behavioral regimes where different levels of complexity could emerge. 

A developmental mapping may be represented by a function that maps elements in 
the genotype space with elements in the phenotype space. Such mapping may have 
regions where small distances between genotypes are preserved into small differences 
between resulting phenotypes, whether in some other regions distances are hardly 
preserved at all. In practice, small mutations can have a huge impact on the emergent 
phenotype. Therefore, a genome parameter predicting phenotypic behavior is useful 
as a guidance tool to keep resulting phenotypes within a complexity regime, reducing 
phenotypic difference as long as the genome parameter is kept within defined bounds.    

3 Cellular Automata 
Cellular automata (CA), originally studied by Ulam [18] and von Neumann [19] in 
the 1940s, are idealized versions of parallel and decentralized computing systems, 
based on a myriad of small and unreliable components called cells. Even if a single 
cell itself can do very little, the emergent behavior of the whole system is capable to 
obtain complex dynamics. In cellular computing each cell can only communicate with 
a few other cells, most or all of which are physically close (neighbors). One implica-
tion of this principle is that there is no central controller; no one cell has a global view 
of the entire system. The metaphor with biology can be exploited on cellular systems 
because the physical structure is similar to the biological multi-cellular organisms.  

Formally, a cellular automaton is a countable discrete array of cells i with a dis-
crete-time update rule Φ that executes in parallel on local neighborhoods of a speci-
fied radius r. In every time step the cells allow values in a finite alphabet A of sym-
bols: σi

t ∈  {0, 1, ..., k-1} ≡ A. The local update rule is σi
t + 1 = Φ(σi - r

t , …, σi + r
t). At 



time t, the state st of the cellular automaton is the configuration of the finite or infinite 
spatial array: st ∈ AN, where AN is the set of all possible cell value permutations on a 
lattice of size N. The CA global update rule Φ: AN → AN executes Φ in parallel to all 
sites in the lattice: st = Φ st - 1. For finite N, the boundary cells are usually dealt with 
by having the whole lattice wrap around into a torus, thus boundary cells are connect-
ed to “adjacent" cells on the opposite boundary. In this paper, 1D, 2D and 3D cellular 
automata with cyclic boundary conditions are considered. 

4 Measuring Structural Complexity 
Several complexity measures are proposed in literature, both to quantify genotype and 
phenotype complexity, e.g. [17]. For genotypes, size may not be an important factor. 
Even in nature, some unicellular eukaryotic organisms have much larger genomes 
than humans. Another possibility is to evaluate genotype complexity based on the 
number of activated genes. Such an activity measure may strongly relate on initial 
conditions, resulting in a non-precise complexity measure. However, emergent com-
plexity appears at the phenotype level. Important factors can be related to cell organi-
zation or functions that the organism is able to perform. Within such an approach 
Kolmogorov complexity complies well to be able to capture such features.   

4.1 Kolmogorov Complexity 

The notion of complexity is used differently in distinct fields of computer science. 
Kolmogorov complexity could be used for understanding emergent complexity in 
artificial developmental systems.  

Let us consider the following strings representing two different states of a 1 dimen-
sional cellular automaton of size 20 at time step t: 

 
a = “01010101010101010101”  b = “01234567894978253167” 

We can intuitively see that string b is more complex than string a. String a is just a 
repetition of “01” whether string b does not seem to show any repeating pattern, i.e. 
string a is less complex because we can represent it with a shorter description than for 
string b. Kolmogorov complexity represents the length of the shortest description of a 
string. In his work, Kolmogorov made use of a Universal Turing Machine to define 
complexity in an unambiguous way.  

 

Definition (Kolmogorov complexity): Fix a Turing Machine U. We define the 
Kolmogorov function, C(x) as the length of the smallest program generating x. This is 
shown in Equation (1). 
 C(x) = minp {|p| : U(p) = x} (1)           

It is proven by the Invariance Theorem [5] that the particular choice of the univer-
sal machine only affects C(x) by a constant additive factor and in particular, ∀ x, C(x) 
≤ |x| + c. Kolmogorov complexity is incomputable in theory and thus, some approxi-
mations are needed.  



4.2 Incomputability Theorem 

If the problem of computing the Kolmogorov complexity of a string x is to be han-
dled, the way to proceed is to run all the programs which compute x as output and 
then find the shortest among them, thus testing all the possible programs. Unfortu-
nately, there is no way of knowing if a program halts or not, hence the undecidability 
of the halting problem [9] implies the incomputability of Kolmogorov complexity. 
Fortunately, in practice we are not interested in the exact value of the Kolmogorov 
complexity. Data compression algorithms could be used, to some extent, to approxi-
mate it. In fact, strings that are hardly compressible have a presumably high Kolmo-
gorov complexity. Complexity is then proportional to the compression ratio. As stated 
earlier, the Kolmogorov complexity of a string x is always less than or equal to the 
length of the string x itself plus a small constant: C(x) ≤ |x| + O(1). Yet, as proven by 
the Incompressiblity Lemma [5], there are some strings that are not compressible, i.e. 
random strings. Formally, a string x is c-incompressible if C(x) ≥ |x| - c.  

4.3 Lempel-Ziv Compression Algorithm 
Compression algorithms have been widely used as approximations of Kolmogorov 
complexity. For example, Lehre, Hartmann and Haddow [10-11], successfully com-
puted approximations of Kolmogorov complexity as measures of genotype and phe-
notype complexity, using Lempel-Ziv compression algorithm. Zenil and Villareal-
Zapata [20] studied one-dimensional cellular automata rules’ behavior using approx-
imations of Kolmogorov Complexity. Compression algorithms tend to compress re-
peated patterns and structures, thus being able to detect structural features in pheno-
type states. In the experiments herein, we use Deflate [12] algorithm, which is a varia-
tion of LZ77 [13]. Deflate is a loseless data compression algorithm that combines 
LZ77 and Huffman coding [14]. This choice is based on the fact that Deflate is a 
computationally inexpensive operation and, as long as the state compression process 
is precisely defined, it is independent of the dimensionality of the state.  

If 1D cellular automaton is considered, the correspondent string representing the 
state of the system at a certain time step could be compressed directly. For a 2D cellu-
lar automaton of size 3 by 3, as an example, single rows are concatenated together to 
compose the state string r: 

 

0 1 0  
1 1 2 →  r = “010112100” 
1 0 0  

 

The same procedure is applied for a 3D cellular automaton, where all the rows are 
listed for all the depth levels. Such measure is dimensionality-independent, since it 
can be used for 1D, 2D or 3D cellular automata. The state string r can now be com-
pressed using the Deflate algorithm, which produces the compressed state string t.  

 

t = Deflate (r) 

The next step would be to calculate the length q of the compressed string t. 
 

q = Length (t) 



q can then be used to compare the approximate complexity of the states. However, 
the value has to be normalized in order to compare complexities for different dimen-
sionalities and grid sizes. It is necessary to find lower and upper bounds for the com-
pressed string length, in order to scale the value of q. To do that, it is possible to con-
sider the least and the most complex states. Again, for a 3 by 3 CA, the bounds are: 

 

rmin = ”000000000”  rmax = ”012345678” 

rmin yields the lowest compressed size qmin for states of the given dimension and 
size. Likewise, rmax which has no identical symbols, yields the highest compressed 
size qmax: 

qmin = Length(Deflate(rmin))  qmax = Length(Deflate(rmax)) 

The normalized structural complexity measure c of the state s is then: 
 

c = (q - qmin) / (qmax - qmin) 

One last remark on the structural complexity calculation is about position and ori-
entation of structures in a state. In fact, it may be better if such measure is transfor-
mation invariant. States that represent the same structure, only in a different orienta-
tion or position in the grid, should have equal structural complexity. Let us consider 
the following example: 

 
0 0 0  2 0 0 
0 0 0 → 1 0 0 
2 1 2 T 2 0 0 

 

In such case, it is evident that the state on the left has equivalent structure to the 
state on the right, since the transformation T rotates the state 90 degrees. Even though, 
the measured structural complexity of the row-concatenated-state is different. As 
such, the following measures are evaluated, as specified in Table 1: 

Table 1.  

1 Simple Deflate 
compression The CA state is represented as a concatenated string and directly compressed. 

2 Average of all 
rotations 

The CA state is rotated in all the possible orientations and the correspondent state 
strings are compressed. The average is computed. 

3 Average of all 
translations 

The CA state is shifted in all the possible positions and the correspondent state 
strings are compressed. The average is computed. 

4 Rotations + 
translations 

Both point 2 and 3. The CA state is rotated in all the possible orientations. Each of 
them is shifted in all the possible positions and the correspondent state strings are 
compressed. The overall average is computed. 

5 Cellular Developmental Model 
The developmental model used in this work is an embryomorphic system [1] based on 
cellular automata, where the goal is the self-assembly of cells from a single zygote 
which holds the complete genotype information. A CA can be considered as a devel-
oping organism, where the genome specification and the gene regulation information 
control the cells’ growth, differentiation and apoptosis. The global emergent behavior 



of the system is then represented by the emerging phenotype, which is subject to size, 
shape and structure modifications along the developmental process.  

The experimental work is conducted on cellular automata with different dimen-
sionalities, 1 – 3, and neighborhood configurations, 3 – 7. 

All CAs have cyclic boundary conditions. Each cell has 3 possible states (cell type 
0: empty/dead cell, cell type 1 and cell type 2). The grid is initialized with a cell of 
type 1 (zygote) in the middle of the grid and develops according to a genotype based 
on a cellular developmental table that fully specifies all the possible regulatory input 
combinations, i.e. all 3n neighborhood configurations are explicitly represented (n 
represents the neighborhood size). To ensure that cells will not materialize where 
there are no other cells around, a restriction has been set in the developmental table: if 
all the neighbors of an empty cell are empty, the cell will be empty also in the follow-
ing development step. A more detailed description of the developmental model is 
given in [15-16]. 

During the development process, a unicellular organism grows to a multi-cellular 
organism. Two different life phases are identified: the transient phase and the attrac-
tor. The transient phase begins with the initial state of the CA (zygote) and ends when 
the organism reaches its adult form and an attractor begins. Note that this definition is 
not biologically correct. The attractor represents the time lapse between two repeti-
tions of the same state, i.e. the same state is encountered twice. A complete trajectory 
is then defined as the sum of transient phase and attractor. 

The Lambda Genome Parameter obtained from the genome information can be 
used to estimate the dynamic behavior of the system and thus can be related to the 
emergent complexity of the phenotype. Langton [6] studied the parameter λ as a 
measure of the activity level of the system. λ has shown to be particularly well suited 
to discriminate genotypes that will develop phenotypes in different behavioral classes, 
e.g. fixed, chaotic, random [7]. Lambda is calculated out of the regulative outcome of 
the developmental table, i.e. the output at time t+1 based on a specific neighborhood 
configuration at time t. According to Langton’s definition, a quiescent state must be 
chosen. We choose the empty cell (type 0) as the quiescent state. λ is then calculated 
according to Equation 2, where n represents the number of transitions to the quiescent 
state, K is the number of cell types (three in our case) and N is the neighborhood size, 
as defined in Table 2. 

λ = !!!!
!!

                                   (2) 

Langton observed that the basic functions required for computation (transmission, 
storage and modification of information) are more likely to be achieved in the vicinity 
of phase transitions between ordered and disordered dynamics (edge of chaos). He 
hypothesized that it is easier to find genotypes capable of complex computation in a 
region where the value of λ is critical.  

In the experiments herein, genomes are generated in the whole Lambda spectrum, 
from 0 to 1, using a similar method to Langton’s random table method [6], i.e. for 
every entry in the developmental table, with probability (1-λ) the cell type at the next 
developmental step is quiescent (type 0); with probability (λ), the cell type at the next 



developmental step is generated by a uniform random distribution among the other 
cell types (type 1 or 2).   

Previous work [16] has shown that Lambda is able to discriminate genotypes that 
will end up with very long or extremely short trajectories and attractors. In this paper 
we investigate relationship between λ, as a genotype measurement, and emergent 
structural complexity of the corresponding phenotypes. 

6 Experimental Setup 
Two different sets of experiments are conducted. First, the four different complexity 
measures in Table 1 are tested. 100 developmental tables are generated for each λ 
value with granularity 0.01. The correspondent genotypes are developed starting from 
a single cell on different cellular architectures (1, 2 or 3D with 3, 5 or 7 neighbors), as 
specified in Table 2, experiment 1. The structural complexity is then measured for the 
whole trajectory and for the attractor. 

Plots from Figure 1.1 to 1.7 show the results for each configuration in Table 2 – 
experiment 1, where the four lines represent the complexity measures in Table 1. The 
x-axes plots the whole Lambda spectrum whether the y-axes is the measured structur-
al complexity. 

Table 2.  

Dimensionality Size Cells Neighborhood radius 
Experiment 1: 

1D 9 9 3 
1D 9 9 5 
1D 16 16 5 
1D 8 8 7 
2D 3x3 9 5 
2D 4x4 16 5 
3D 2x2x2 8 7 

Experiment  2: 
1D 25 25 3 
1D 27 27 3 
1D 25 25 5 
1D 27 27 7 
2D 5x5 25 5 
3D 3x3x3 27 7 

 
The results show that there is a clear relation between the genome parameter value 

and all the complexity measures, independently from the dimensionality, neighbor-
hood configuration and grid size. Moreover, it is clear that such complexity measures, 
in relation to λ, are able to characterize both trajectory structural complexity and at-
tractor structural complexity.  In  most  of  the  cases, the four lines are almost always 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Results for the first set of experiments defined in Table 2. Lambda on x and 
structural complexity on y. Lines 1, 2, 3 and 4 represent the measures in Table 1. 



overlapping, except for some trajectories with λ value between 0 and 0.4, which rep-
resents the ordered behavioral regime. In conclusion, it is not necessary to perform 
expensive rotation and translation before the actual compression. Thus, in the remain-
der of the paper, the term structural complexity refers to the approximation of Kol-
mogorov complexity using Deflate as an implementation of Lempel-Ziv. 

In the second set of experiments, more accurate tests are performed. 1000 devel-
opmental tables are generated for each λ value with granularity 0.01. The correspond-
ent genotypes are again developed starting from a zygote on different cellular archi-
tectures as shown in Table 2, experiment 2. The structural complexity for trajectory 
and attractor is measured in relation with Lambda and compared with the correspond-
ent trajectory and attractor length, measured as the number of development steps. 
Results are shown in Figure 2.1 to 2.6. 

7 Discussion 
The experiments presented show that the proposed measure of phenotypic structural 
complexity is able to capture emergent properties of artificial developmental systems. 
Figures 2.1(a) and 2.2(a) show consistent results with those obtained by Langton [6], 
where Lambda is not able to accurately describe the search space for 1D CA with 
rather small neighborhood radius and 3 cell types. Remarkably, the structural com-
plexity describes well the parameter space, with low complexity when Lambda is 
close to 0 and higher complexity where λ reaches the critical value around 0.66. This 
can be observed in Figure 2.1(b) and 2.2(b). If only the plots (b) are analyzed, from 
2.1(b) to 2.6(b), it is possible to spot that the structural complexity curve has the same 
shape for any configuration. 

For 1D CA with small neighborhood the curve is flattened whether for 1D with 
bigger neighborhoods, 2D and 3D is wider. Overall, the maximum structural com-
plexity that emerges is always slightly over 0.6, meaning that adding dimensions to 
the developing structure and keeping the total number of cells constant does not in-
crease the structural complexity of the developed organisms. In that sense, 1D, 2D 
and 3D organisms with same size have the same relative potential to show complex 
structures. This is an interesting result if one considers adding a new dimension to an 
EvoDevo system to achieve higher structural complexity. Again, it is possible to ob-
serve this result comparing Figure 2.3(b) and 2.5(b) where the developing structures 
are 1D and 2D respectively, both with 25 cells and 5 neighbors.  Same result for Fig-
ure 2.4(b) and 2.6(b), using 1D and 3D CA, both with 27 cells and 7 neighbors. 

Comparing Figure 2.4(b) and 2.5(b), it is possible to observe that moving from a 
1D CA to a 2D CA the parameter region with higher structural complexity is larger 
with a single dimension. In fact, the shape is more stretched and almost flat on the 
peak, whether with two dimensions becomes spikier. This seems to be an effect of the 
enlarged neighborhood. Looking carefully at plot in Figure 2.6(b), this effect caused 
by an increased neighborhood is still noticeable, even if mitigated by the addition of 
dimensions. The same behavior is not present in Figure 2.3(b), where development 
happens on a 1D automaton and structural complexity is analogous to 2D automaton 
with same neighborhood configuration and same number of cells, as represented in 
Figure 2.5(b). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Results for the second set of experiments defined in Table 2. 
 

Overall, it appears that extending the neighborhood setting results in a wider area 
where higher structural complexity is reachable. On the other hand, moving from a 
one-dimensional structure to a two or three-dimensional structure produces more 
sudden increases in structural complexity for parameter values between 0.3 and 0.5. 

8 Conclusion 
This paper investigated the emergent structural complexity of artificial cellular organ-
isms at the phenotype level, using approximations of Kolmogorov complexity. Since 



Kolmogorov complexity in not computable in theory, Deflate compression algorithm 
based on Lepmpel-Ziv has been used. Such complexity measure is well suited for 
understanding emergent properties of artificial developmental systems. In particular, 
it has been shown that structural complexity is strongly related to Lambda genome 
parameter and its ability to detect different behavioral regimes. This makes it possible 
to understand if genome information could be used to predict the emergent structural 
complexity of developing phenotypes. Moreover, the measurement we have used is 
dimensionality independent and has been experimented on 1D, 2D and 3D CA.  

Another observed result is that structural complexity has shown to be powerful 
enough to characterize the parameter space even when the dimensionality, number of 
states per cell and neighborhood size are rather small. In such cases, it would not be 
possible to obtain predictions about trajectory and attractor length at the genotype 
stage, thus being uncertain about the emergent behavioral regime of the system. As a 
future work, it may be possible to exploit the potential of Lambda genome parameter 
to guide evolution towards desirable levels of phenotypic structural complexity. 
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