
PLC-Statecharts: An Approach to Integrate UML-Statecharts in Open-Loop Control

Engineering – Aspects on Behavioral Semantics and Model-Checking

Daniel Witsch*, Birgit Vogel-Heuser*
�

*Technische Universität München, Mechanical Engineering

Department, Automation and Information Systems, 85748 Garching bei

München, Germany (Tel. +49-89-289-16400; e-mail: witsch@tum.de,
vogel-heuser@ais.mw.tum.de)

Abstract: This paper presents the core concepts for PLC-statecharts - an adaptation of UML-statecharts -

which can be used as a visual programming language for PLCs. They combine the advantages of UML-

statecharts with a strict formal basis and can be transparently used in the context of IEC 61131-3

(3rd Edition). The defined formal behavioral semantics sets the basis for an automatic transformation of

PLC-statecharts into timed automata which can be analyzed by the model-checker UPPAAL.

�

sä�����������������������������

This work constitutes one aspect of larger works (Witsch and

Vogel-Heuser 2009, Witsch et. al 2010) which aim to

integrate a subset of the diagrams defined in the Unified

Modeling Language (UML) (OMG 2009) and IEC 61131-3

(IEC 2010) in order to facilitate software-engineering for

PLCs. This work is motivated by the fact that software

development in the context of automation systems gets

increasingly complex and moves towards model-based

development methods or at least towards programming

concepts which offer a higher level of abstraction. However it

will be necessary to integrate today’s IEC 61131-3 legacy

code in a transparent way. Considering the human factor,

technicians well trained in IEC 61131-3 also need to be able

to program PLCs the conventional way (thus offering a

complete new programming approach is not a solution). On

the other hand, the next generation of PLC programmers are

used to modeling languages like UML. As these groups have

to cooperate on the same projects, we propose the integration

of concepts like statecharts into classical IEC 61131-3

environments.

Surrounding works deal with the bidirectional mapping of

UML-classdiagrams and the IEC 61131-3, 3rd edition which

is likely to come with object oriented extensions. Further

UML-activity diagrams, which impose petri-net like

semantics in UML (OMG 2009, p. 324) are part of the larger

works and stand next to the PLC-statecharts partly described

in this paper. As we also implement a petri-net like behavior

with activity diagrams we constrain our consideration

regarding existing approaches in this paper to state machines

and do not look at petri-nets like considered by Frey (Frey

2002).

As PLC applications generally make high demands on

software quality (i.e. correctness, robustness) we consider

formal specification and analysis techniques in this work.

These techniques allow for example to formally prove critical

properties. To shortly summarize, this paper presents

x an adaption of UML state-charts dedicated for the

integration in IEC 61131-3 (PLC-statecharts) with a

formal syntax,

x a formally defined behavioral semantics by mapping

PLC-statechart elements to equivalent timed automata

constructs for the model-checker UPPAAL.

x By this the application of PLC-statecharts can easily

support code-synthesis, but also formal methods like

model-checking.

Subsequently we give a short introduction to model-checking

and discuss existing works regarding statecharts in the

context of PLCs.

1.1 Model-Checking

Model-checking is a formal, exhaustive model-analysis

technique that can provide unambiguous results. This

technique requires defining the specification of the system

and the properties to be checked. The model-checker returns

whether the system fulfills those properties in all possible

cases or not. If the system violates the properties defined, the

model-checker returns an error trace. Due to the so-called

state space-explosion problem model-checking is strongly

restricted regarding the model’s complexity. However several

works like Hendriks and Larsen, Giese et. al, Witsch et. al

show how to design complex models which can be computed

efficiently, so that model-checking can be applied

successfully in relevant models. Without loss of generality

we will use model-checking models created in the UPPAAL

toolset to define an executable, behavioral formal semantics

of PLC-statecharts in this work. UPPAAL is an integrated

toolset for modeling, simulation and verification of timed

systems. It belongs to the class of timed, symbolic model-

checkers and uses timed automata (Alur and Dill, 1990) for

modeling purposes. In order to increase readability of this

paper, a short introduction to UPPAAL automata will be

given subsequently. A detailed introduction to UPPAAL is

given by Behrmann, et al.. UPPAAL automata consist of

locations (circles) and edges, each connecting two of them.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

Copyright by the
International Federation of Automatic Control (IFAC)

7866

Each location can own a name and a boolean invariant

condition. Each edge can own a guard condition, a

synchronization variable and an effect. A location can only

be active as long as the invariant condition holds. Locations

can be marked as initial (double outlined) or committed (“C”

inside). If a committed location is the active one, time in the

whole model cannot proceed. Thus there always have to be

enabled edges outgoing from committed locations. If a non-

committed location is active time can generally proceed.

Outgoing edges from such a location fire in non-

deterministically (if no restrictions are specified). However

determinism can be assured by defining strict location

invariants and guard conditions. This is done for every edge

in this work, so that non-deterministic behavior is avoided.

UPPAAL models consist of several different automata

evolving generally independently. However they are

synchronized by channel variables. Two edges of different

automata which share the same channel variable (one with

“!” and the other with “?” as a postfix) fire synchronously if

both guards are enabled and their source locations are active.

1.2 Statecharts for PLC-programming

Many different variants of automata models exist. Beginning

with early works of Harel (Harel 1987) a huge set of different

automata variants were defined for specific applications.

Approaches which were dedicated for the use in the context

of polling real-time systems such as PLCs are not so

common. Von der Beeck (von der Beeck 2002) formally

specifies semantics for UML-Statecharts but not dedicated

for PLCs. Dierks developed PLC-Automata on a formal basis

(Dierks 2000/2004). This approach enables the further use of

formal methods such as model-checking in order to verify the

correctness of the modeled and by this programmed

controller. As stated by Krzysztof (Krzysztof 2007) neither

PLC-Automata defined nor time triggered automata as

defined by Krcal et. al. (Krcal et.al. 2004) nor I/O-automata

(Kaynar et. al. 2006) are designed to deal with hierarchical

state models like defined in UML. Finite State Time

Machines introduced by Krzysztof (Krzysztof 2007) focus on

a time based control programming which implies a general

change of programming paradigm. To our best knowledge,

there is no approach in which UML-statecharts are formally

specified regarding their structural and behavioral semantics

in the context of the cyclic execution of PLCs and IEC

61131-3. As PLCs are necessarily highly deterministic

systems, programming languages for PLCs also have to be

deterministic in a way that no ambiguity can occur about the

execution of a specified PLC-statechart. Therefore PLC-

statecharts introduce additional concepts compared to UML-

statecharts like user-defined priorities on transitions. A main

difference between UML-statecharts and PLC-statecharts lies

in the fact, that PLC programs according to IEC 61131-3 do

not support event mechanisms in contrast to IEC 61499 (IEC

2000). Therefore PLC-statecharts are also not based on event

logic but on signal logic. As a consequence no event-queues

can be defined and the PLC-statechart is exposed to cyclic

calls. In this context it is necessary to define very clearly how

the PLC-statechart interacts with the cyclic execution of the

PLC and at which moment actions initiated by the PLC-

statechart effect the output-signals to the real-world.

tä����	���������	�������������xssusæu��������������

We assume that the PLC-statechart will be executed in an

environment which works according to the pattern of real-

time polling systems (cyclic systems). Such systems repeat

these three steps

1) reading the current value of all inputs (I),

2) executing the program logic and by this calculating the

new value of the output (X) and

3) writing the updated values to all outputs (O)

continuously. This sequence is called PLC-cycle

subsequently. This implies the following time-model. The

time t is assumed to progress in discrete (equidistant –

depending on the PLC cycle period) slices �Ùá å á ��. We

further assume that the duration for reading the inputs of a

PLC (I) and writing its outputs (O) is constant. By this we

can define the duration between two subsequent points

��á å á ��>Ú in our time model to be equivalent to the PLC’s

or the tasks cycle-time respectively.

Fig. 1 Time model of the cyclic PLC behavior

2.1 UPPAAL Model for cyclic PLC behaviour

Starting from the formal definitions of the PLC-environment

a formal model in timed automata language for the model-

checking toolset UPPAAL will be derived in the following.

The model is minimalistic regarding the detail of the PLC

behavior. However it can be easily refined for example by

introducing uncertainties of time, non-deterministic change of

I/O-variable values or failures etc. The PLC-model given is

sufficient to execute the UPPAAL model of the PLC-

statechart which is detailed regarding the internal transitions

and the PLC-cycle switching behavior. Therefore the

UPPAAL declarations necessary to gain an executable model

are given in the appendix. Fig. 2 shows the PLC-behavior in

an UPPAAL timed automata formalism. This UPPAAL

automaton defines the behavior sketched in Fig. 1. We use

this model to define the relation between a control program

(the PLC-statechart) and the PLC itself. The automaton in

Fig. 2 has to be seen together with the automata given in Fig.

3, Fig. 8, Fig. 9 and Fig. 11. These automata are connected by

channel variables.

2.2 Formal model of IEC 61131-3 environment

Taking the CoDeSys V3 PLC programming environment

(Werner 2009) as example for an possible implementation of

IEC 61131-3, we can (simplified) denote a project as a set of

program organization units (POU) a set of globally

accessible variables (GV) and data types (®) (basic data

types as defined by the standard, user defined basic types e.g.

structures, enumerations and function blocks).

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

7867

write_output

Wait_Idle

(Cycle_Timer <= Cycle_Time)

Process_Control_Program

Read_input

Outputs_Updated?

Update_Outputs!

Inputs_Updated?Update_Inputs!

(Cycle_Timer < Cycle_Time)
Cycle_Timer := Cycle_Time

(Cycle_Timer == Cycle_Time)
Cycle_Timer:=0

PLC_Cycle_Finished?
Cycle_Timer:=
 Duration_Read_Inputs +
 Duration_PLC_Program

Call!

�

Fig. 2 Time model of the cyclic PLC behavior in timed

automata formalism (UPPAAL), see Fig. 1.

POUs are concretely represented by programs, function

blocks and functions. As implied by the IEC 61131-3

programming language sequential function chart (SFC) the

programming entities Action (ACT) and Transition

(TRANS) are available in CoDeSys as subelements of POUs.

Driven by the object oriented extensions in the current draft

of IEC 61131-3 (3rd Edition) methods (METH) and

Properties (PROP) with get- and set-accessors (getter/setter)

can be attached to function blocks.

|~{vqo� L <|{�Úá å á|{��ás�áN=�
|{� Ð <|~{s~myár�zo�u{z4nx{owár�zo�u{z=�
|~{s~my� L :���4����á���4����á|~s4��n;��
|~s4��n L <mo�á�~mz�=�
r�zo�u{z4nx{ow L :��4����á��4����árn4��n;�
rn4��n L <mo�á�~mz�á|~{|áyq�t=�
r�zo�u{z� L :���4����á���4����;�
mo� L :���4����;�
�~mz� L :�����4����;
|~{|� L <sq��q~á�q��q~á����4����=
sq��q~� L � :������4����á������4����;�
�q��q~� L � :������4����á ������4����;�
yq�t� L :����4����á����4����;

Programming entities can contain declaration parts (decl) and

implementation parts (impl). The declaration parts together

with global variables (GV) define the set of variables

� L <�Úá å á��=�, with �� L :�á{á�; where �� Ð z�is an

unique identifier (in the considered scope) for the variable,

{� Ð ®� denotes the type and ���� Ð~:{; its value at a

certain point in time ��. The initial value of a variable is

defined by ��Ù.

a) The value of a variable declared in the declaration part of

a function, action, transition, get-/set-accessor or

method at a certain point in time is always equivalent to

its initial value: ��� L ��Ù

v

\ ��4

v

\ ��4å
v

\ ��4.

b) The value of variables declared globally (GV) or in

declaration parts of a program or function block

(prg_decl, fb_decl) at a certain point in time evolves

from its initial value and the subsequent execution of the

implementation parts modifying this variable:

��� L ��Ù

�
\ ��Ú

�
\ ��Ûå

�
\ ���.

These two different variable types correspond (a-a, b-b) to a

categorization of programming languages of IEC 61131-3:

a) In-cycle implementation languages: Languages which

are designed to be completely executed within one PLC-

cycle (such as function block diagram, instruction list,

ladder diagram, structured text).

b) Multi-cycle implementation languages: Automata-like

programming languages which are designed to evolve

continuously “across” PLC-cycles (such as sequential

function chart). Only the implementation parts of

programs and function blocks can be implemented by

multi-cycle implementation languages.

Even though the IEC 61131-3 programming languages can be

grouped as stated before, practically most programming in-

cycle programming languages are also used in the sense of

multi-cycle programming languages when state-machines are

implemented manually (e.g. by using a chain of RS-flip-flops

in FBD or counter-variables to realize a state-machine like

behavior). However using an in-cycle programming language

for multi-cycle behavior requires the implementation of

additional control structures.

As we consider a system with a set of multi-cycle :mÛ;�and

in-cycle�:m; implementation parts, the execution of an

implementation � Ð <ï ë mÛ= modifies the values of

variables:�=ãô7 8�SEPD�ô Ð tÏ�=J@�RÜ L :�Ü á{Ü á�; \
:�Ü á{Ü á�ñ;.
Furthermore the considered system offers a set of functions n

with a boolean result: �ãÖ7 :Û�SEPD�Ö Ð Û
�. These

functions do not affect the value of variables in 8 and

correspond to transition elements (TRANS) and get-accessors

(GETTER) of properties.

uä����	���������	����æ������������

In this system the tuple ¢ L :�á~á�á|á�¢; constitutes a

PLC-statechart with a non-empty set of states � L
�[�Úá å á ���_, a set of orthogonal regions�� L [�Úá å á ���_, a

non-empty set of transitions�� L [�Úá å á ���_� and a non-

empty set of pseudo-states�| L D�Úá å á���E. PLC-statecharts

can appear in two different types

}¢ L <����������á �������=. The type is defined by the

variable �¢ Ð }¢. If �¢ L ��������holds, the following

equation has to be satisfied Ê�� Ð �ã��:��; M����������.

A state �� Ð � is defined as �� L :¾�á¾�á¾�á��á��á���á��;
with an optional entry-action ¾�ãm \ ��, where �� C m,

Ù Q ���� Q Ú, an optional do-activity ¾�ãm
Û \ �� with

�� C mÛ und Ù Q ���� Q Ú and an optional entry-action

¾�ãm \ �� with �� C m, Ù Q ���� Q Ú.

Moreover��� Ð 3
>
�NALNAOAJPO the maximal number of

state-calls without PLC-cycle switch, ��� Ð 3Ù defines the

number of outgoing transitions and ��� Ð 3Ù the number of

assigned orthogonal regions.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

7868

The type ��� of the state s is element of

}� L <����������á �������á�����á ���������á�����=.
A pseudo-state is defined as �� L k���á��o with ��� Ð

3Ù�the number of outgoing transitions and a type information

�� Ð }� L <����á����t������á �������t������á
����á ��������á ������á ����|����=.
By � L :��á¾�á¼�á��á»áÓ; a transition is defined where

�� �Ð 3
>ã�� Q ���k�»:�;o stands for the transition priority

and ¾�ãm \ �� with �� C m, Ù Q ���� Q Ú describes an

optional transition effect. Depending on �� the variable

¼�ãn \ �� with �� C n and Ù Q ���� Q Ú represents an

optional guard condition.

�������������»ã <� ë |= \ �» Ð <� ë |= maps a source state

or pseudo-state to the transition. Accordingly the function�

Óã <� ë |= \ �Ó Ð <� ë |= references a target state or

pseudo-state. The type of the transition is given by �� Ð }� L
<�������á���������á ���������=.��
As we intend to enable the full use of PLC-statecharts also in

the context of object oriented extensions of IEC 61131-3 (e.g.

interface-implementations) we have to extend the available

programming entities by a new element called “ACTIVITY”

which is similar to a METHOD but exposes multi-cycle

behavior (in contrast to the method which only supports in-

cycle implementation languages):

mo�u�u��� L :��������4����á��������4����;,
rn4��n" L rn4��n ë <�mo�u�u��=.�

Considering this extension the following relation between a

PLC-statechart � and the IEC 61131-3 implementation parts

can be defined:

¤ L ���4���� \ ���¤ L����������á�

¤ L ��4���� \ ���¤ L����������á�

¤ L ���4���� \ ���¤ L �������á�

¤ L ���4���� \ ���¤ L �������á�

¤ L �����4���� \ ���¤ L �������á�

¤ L ������4���� \ ���¤ L �������á�

¤ L ������4���� \ ���¤ L �������á�

¤ L����4���� \ ���¤ L �������á�

¤ L ��������4���� \ ���¤ L����������ä�

The UPPAAL models given in Fig. 3 show the characteristics

of actions (act_impl) and activities (activity_impl). In both

models the location “Wait_for_call” represents the state

where the action/activity is idle and awaits its call. The

locations “state_1” to “state_n” represent arbitrary internal

states of the action/activity. The internal state of an

action/activity is determined by the current values of the

variables in its scope and the current position of the

instruction pointer within the action/activity. While actions

traverse all their internal states every time there are being

called in the same order (beginning from the initial state to

the last state), activities can remain in a state between two

calls. This behavior is modeled by non-deterministic

transitions from the state “Wait_for_call” to “state_x” in the

activity automaton.

Fig. 3 UPPAAL model for actions (left) and activities (right).

Due to spatial limitations of this paper the algebraic

definition of PLC-statechart excludes the following aspects:

x functions which determine the interconnections (e.g.

states and transitions) and containment relations (e.g.

states in orthogonal or composite states) between

statechart elements,

x context rules for the exact definition of syntax,

x algebraic definitions and functions regarding the

dynamics of the statechart (e.g. firing rules),

x visual representation of elements (corresponds to the

current UML specification).

vä��	������������	������æ������������������æ

������������

To enhance readability of the UPPAAL models (given in Fig.

6 and Fig. 7) we add the prefixes “Action”, “Guard” to the

UPPAAL automata and introduce the abbreviation shown in

Fig. 4. These three locations with two edges and

synchronization variables will be represented by a single

dashed location. From a semantic point of view this construct

is equivalent to a RETURN statement in structured text (ST)

in the main routine of an IEC 61131-3 program.

Consequently such a dashed location forces the PLC-

automaton to execute a PLC-cycle switch.

�

�

�

Using this abbreviation the equivalent UPPAAL automata for

multi-cycle and in-cycle states is given in Fig. 6 and Fig. 7

respectively. In this section we define a formal, executable

behavioral semantic for the following PLC-statechart

S_yWait for next PLC CycleS_x

Call?PLC_Cycle_Finished!

external state

Fig. 4 Abbreviation of UPPAAL construct leading to a PLC-

cycle switch

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

7869

elements: Initial-states, multi-cycle-states, In-cycle-states,

final-states, guarded-transitions, exception-transitions.

Fig. 5 shows two partial PLC-statecharts. On the left side a

multi-cycle state and on the right side an in-cycle state is

given, each with four outgoing transitions (each with a

priority, a guard condition “Cx” and a transition effect

“TAx”). The transition with priority “3” is an exception

transition (red-dashed).

�

Fig. 5 Representation of multicycle (left) and incycle-state
(right) with entry-/exit-action, do-activity and outgoing

guarded transitions and exception transition (red-dashed).

In Fig. 6/Fig. 7 the equivalent (partial) UPPPAL model for

the multi-cycle/in-cycle state with its actions/activities and

outgoing transitions is given. When a multi-cycle state is

entered its entry-action will be executed, directly followed by

the first execution of the do-activity. Afterwards the guard

conditions of all outgoing transitions are evaluated in the

order of their priority numbers. The first edge with an

enabled guard will be taken. In case no guard is enabled

(“Not C4”) a PLC-cycle switch is inserted and the next do-

cycle will be initiated. If for example the guard condition

“C2” would be enabled after the first do-activity-execution,

the sequence would be:

m4��
����1Û.m4�� z���oÚ1ÛÛÛ.Î z���oÛ1ÛÛÛ.Î z���oÜ1ÛÛÛ.Î z���oÝ1ÛÛÛ.ê ����1Û.m4��

z���oÚ1ÛÛÛ.Î oÛ1.ê ����1Û.m4�� ����1Û.�mÛ ����1Û.ä�

�

Fig. 6 Equivalent UPPAAL automaton to multi-cycle state
given in Fig. 5, left.

Noticeable is that firing the exception transition (priority 3)

would not lead to a PLC-cycle switch. Compared to multi-

cycle states, in-cycle states only insert PLC-cycle switches to

prevent from deadlocks which would force the PLC to crash.

Hence the general sequence of evaluating guard conditions

and execution of actions or activities is identical to multi-

cycle states except that no external states are inserted.

Additionally in-cycle states count the number of do-cycles

executed (“Calls”). The user has to define how often the do-

activity can be executed without PLC-cycle switch

(“MaxDoCalls”). If this number is exceeded a PLC-cycle

switch is initiated, the counter is set to zero and an error-flag

is set for the PLC-statechart.

�

Fig. 7 Equivalent UPPAAL automaton to in-cycle state given
in Fig. 5, right.

According to the mapping rules defined above Fig. 10 and

Fig. 11 exemplarily show how whole PLC-statecharts can be

transformed into an equivalent UPPAAL automata system. In

this context also the mapping rules for initial states and final

states are given. In Witsch et. al. 2010 we formally specify

transformation rules which allow mapping junction-points,

choice-points and composite-states (and by this complex

hierarchical structures) to the elements defined in this paper

(multi-cycle-, in-cycle-, initial-, final-states and exception-

/guarded-transitions). Following the transformation rules

these elements can also be transferred into an equivalent

UPPAAL model.

wä�������������������������

This paper presented the core concepts of PLC-statecharts as

an adaptation of UML-statechart dedicated for integrative use

with IEC 61131-3 (3rd Ed.). PLC-statecharts are fully

deterministic through priorities on transitions and allow

taking advantage of powerful modeling concepts. PLC-

statecharts were formally derived which facilitates the

implementation of code-generation algorithms and allows the

application of further formal techniques such as model-

checking. As technical evaluation this approach was realized

as plugin for an industrial IEC 61131-3 programming

environment (CoDeSys V3) including full code synthesis,

syntax checking, online debugging etc. comparable with

available commercial products like Mathworks Stateflow®.

However, in this context PLC-statecharts can be used

transparently with other IEC 61131-3 languages. According

to this implementation of PLC ongoing works deal with

formal specification for the following element: deep/shallow-

history, fork, exit-Points, unguarded transitions and

orthogonal states/regions.

In order to take advantage of the formal basis of PLC-

statecharts the integration of model-checking techniques into

PLC-programming will be an area of work as well as

empirical evaluation of their general usability.

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

7870

��	��������

Alur, R., D.L. Dill (1990). Automata for modeling real-time

systems. In: Proc. of Int. Colloquium on Algorithms,

Languages, and Programming, volume 443 of LNCS,

pages 322–335.

Behrmann, G., A. David and K.G. Larsen (2004). A Tutorial

on Uppaal, Department of Computer Science, Aalborg

University, Denmark.

Bengtsson, J. and W. Yi (2004) Timed Automata: Semantics,

Algorithms and Tools, in Lecture Notes on Concurrency

and Petri Nets, W. Reisig, G. Rozenberg (ED),

vol. 3098, pp. 87-124, Springer, Heidelberg/Berlin.

Dierks, H. (2000) Specification and verification of polling

real-time systems, PHd-Thesis University of

Oldenbourg, Germany.

Dierks, H. (2004). Comparing Model-Checking and logical

reasoning for real-time systems”, in Formal Aspects of
Computing, vol. 2, issue 2, pp. 104-12, Springer,

London.

Frey, G. (2002). Design and formal Analysis of Petri Net

based Logic Control Algorithms, Dissertation University

of Kaiserslautern, Germany.

Giese, H., Tichy, M., Burmester, S., Schäfer, W. Flake,S

Towards the Compositional Verification of Real-Time

UML Designs. In Proceedings of ESEC/FSE’03,

September 1–5, 2003, Helsinki, Finland, ACM Press,

New York, NY, USA, 2003.

Harel, D. (1987). Statechart: A visual formalism for complex

systems, in Science of Computer Programming, vol. 8,

pp. 231-274.

Hendriks, M.; Larsen, K.G.: Exact acceleration of real-time

model checking. In Theory and Practice of Timed

Systems, volume 65 of Electronic Notes in Theoretical

Computer Science. Elsevier Science Publishers, Oxford,

England, 2002

IEC - International Electrical Commission (2000). IEC 61499

– Function blocks for industrial-process measurement

and control systems.

IEC - International Electrical Commission (2010). IEC 61131

Programmable Controllers (3rd Edition) – Part 3:

Programming Languages.

Kaynar, D.K., Lynch, N.A., Segala, R., and F.W. Vaandrager

(2006). The Theory of Timed I/O Automata”, in

Synthesis Lecture on Computer Science.

Krcal, P., Mokrushin, L., Thiagarajan, P.S. and W. Yi (2004).

Timed vs. Time Triggered Automata, in Gardner, P and

Yoshida, N. (eds.) CONCUR 2004, LNCS, vol. 3170,

pp. 340-354, Springer, Heidelberg/Berlin.

Krzysztof, S. (2007). Translatable Finite State Time

Machine”, in SDL 2007: Design for Dependable

Systems, vol. 4745, pp. 117-132, Springer

Heidelberg/Berlin.

OMG - Object Management Group (2009). Unified Modeling

Language (UML), Superstructure, V2.2,

http://www.omg.org/docs/formal/09-02-02.pdf.

von der Beeck, M. (2002). A structured operational semantics

for UML-statecharts, in Software and Systems Modeling,

vol. 1, no. 2, pp. 130-141, Springer, Heidelberg/Berlin.

Werner, B (2009). Object-oriented extensions for

iec 61131-3, in IEEE Industrial Electronics Magazine,

vol. 3 , no. 4, pp. 36 – 39.

Witsch, D. and B. Vogel-Heuser (2009). Close integration

between UML and IEC 61131-3: New possibilities

through object-oriented extensions, in Proc. of ETFA

2009 - 14th IEEE International Conference on Emerging
Technologies and Factory Automation, Palma de

Mallorca, Spain, 21.-26.09.

Witsch, D., Ricken, M., Kormann, B. and B. Vogel-Heuser

(2010) PLC-Statecharts: An Approach to Integrate UML

Statecharts in Open-Loop Control Engineering. In Proc.

of INDIN 2010 Conference, Osaka, Japan, July 13-16.

Witsch, D., B. Vogel-Heuser, J.-M. Faure, G. Marsal:

Performance Analysis of Industrial Ethernet Networks

by means of Timed Model-Checking. In Proc. 12th IFAC

Symposium on Information Control Problems in

Manufacturing (INCOM'06), Saint-Etienne, France,

April 2006.

���������

�

Fig. 8 UPPAAL model of output writing behaviour.

�

Fig. 9 UPPAAL model of input reading behaviour.

Cycle_Timer<=
Duration_Write_Outputs+
Duration_Read_Inputs+
Duration_PLC_Program

Wait

Cycle_Timer<Duration_Write_Outputs+
Duration_Read_Inputs+
Duration_PLC_Program

Cycle_Timer:=Duration_Write_Outputs+
Duration_Read_Inputs+
Duration_PLC_Program

Cycle_Timer==Duration_Write_Outputs+
Duration_Read_Inputs+
Duration_PLC_Program

Outputs_Updated!

V_Out_1:=Vj_1,
V_Out_2:=Vj_2,

V_Out_k:=Vk

Update_Outputs?

Cycle_Timer<=
Duration_Read_Inputs

Wait

Cycle_Timer<Duration_Read_Inputs
Cycle_Timer:=Duration_Read_Inputs

Cycle_Timer==Duration_Read_Inputs

Inputs_Updated!

V1:=V_In_1,
V2:=V_In_2,

Vi:=V_In_i

Update_Inputs?

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

7871

// UPPAAL GLOBAL DECLARATIONS
urgent chan hurry;
chan PLC_Cycle_Finished, Call, Activity_Call;
chan Action_Call, Activity_finished,
Action_finished;
chan Update_Inputs, Update_Outputs,
Inputs_Updated, Outputs_Updated;
clock Cycle_Timer;
const int Duration_Read_Inputs = 1; //1 ms
const int Duration_Write_Outputs = 1; // 1ms
const int Cycle_Time = 10; // 10ms
const int Duration_PLC_Program = 5; // 5ms
const int MaxDOs=3;
int DOs;
bool Guard_s1_s3, Guard_s1_s2, Guard_s2_s1;
bool Guard_s3_f, Guard_s3_s1, ReInit;

�

Fig. 10 Example PLC-Statechart – the equivalent UPPAAL
automaton is given in Fig. 11

�

InFinal Transition_s3_f

RETURN7 _Exit_State3Check_Guards_s3_s1

Transition_s3_s1

Transition_s2_s1

Exit_State3

Exit_State2

RETURN8

RETURN4

RETURN6Check_Guards_s3_f

Check_Guards_s2_s1

Do_State3Entry_State3

Do_State2Entry_State2

Startstate

RETURN3

RETURN2

RETURN1

Transitionn_s1_s3

_Exit_State1

Transition_s1_s2

Exit_State1

Check_Guards_s1_s2

Check_Guards_s1_s3Do_State1Entry_State1

DOs<MaxDOs
DOs++

not(Guard_s2_s1==true)

ReInit==true PLC_Cycle_Finished!

PLC_Cycle_Finished!

ReInit==false
PLC_Cycle_Finished!

Call?Guard_s3_s1==true
PLC_Cycle_Finished!

not (Guard_s3_s1==true)
PLC_Cycle_Finished!

ReInit==true
Call?

ReInit==false
Call?

Activity_Call!

Action_Call!

Activity_Call!

Call?

Call?

Call?

not(Guard_s3_f==true)

DOs>=MaxDOs
PLC_Cycle_Finished!

DOs:=0

Guard_s3_f==true
PLC_Cycle_Finished!

Activity_finished?Activity_Call!

Guard_s2_s1==trueAction_finished?Action_Call!

Call?

Call?

Call?

Call?

not (Guard_s1_s2==true)
PLC_Cycle_Finished!

Guard_s1_s2==true
PLC_Cycle_Finished!

not (Guard_s1_s3==true)

Guard_s1_s3==true
PLC_Cycle_Finished!

Activity_finished?
Activity_Call!

�

Fig. 11 Equivalent UPPAAL automaton to Fig. 10. Italic written words are comments referring the corresponding state names
or the corresponding elements (initial-/final-state) compared to Fig. 10

�

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

7872

