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AN ALGORITHM FOR DECIDING IF A POLYOMINO
TILES THE PLANE

Ian Gambini1 and Laurent Vuillon2

Abstract. For polyominoes coded by their boundary word, we de-
scribe a quadratic O(n2) algorithm in the boundary length n which
improves the naive O(n4) algorithm. Techniques used emanate from
algorithmics, discrete geometry and combinatorics on words.
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1. Introduction

During the DMCCG conference held at the Institut Henri Poincaré (IHP) in
July 2001, we discussed with Alberto del Lungo some problems about polyomi-
noes. One of his concerns was the design of a fast algorithm for computing the
number of polyominoes that tile the plane by translations. What he really had
in mind was probably their enumeration according to some convenient parameter.
The algorithmic approach, by providing computational evidence, is a convenient
way to get some insight about the algebricity or rationality of certain classes of
polyominoes. Let us recall some achievements along these lines.

Tilings, regular or not, have puzzled lots of people from ancient times up to
now; and even now, despite of the efforts of many mathematicians these objects
remain mysterious. Indeed these objects reveal an incredible amount of simple
to state problems that translate into very complex combinatorial ones [1, 4, 9],
like for example the squaring of a square [10]. Golomb [11] in his book presents
many aspects of polyominoes and in particular he searches how to tile a finite
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figure of the plane by polyominoes. The enumeration of general polyominoes
is a difficult problem and there is no closed formula to count them. However,
recent work, conducted mainly by the Bordeaux school and its satellites, allowed
to enumerate some very restrictive classes like the directed, parallelogram, convex
ones according to various parameters such as the half-perimeter, area, height,
width, and some other refinements [4,8,14,15]. More precisely closed formula are
known for parallelogram polyominoes [8], for symmetry classes of parallelogram
polyominoes [15], polyominoes with notion of convexity [3,5] and symmetry classes
of convex polyominoes in the square lattice [14].

Nevertheless, from the algorithmic point of view Nivat and Beauquier found a
characterization of polyominoes that tile the plane by translations [2]. We use this
characterization to build our algorithm for deciding if a given polyomino tiles the
plane by translation. The methods of this article use techniques from algorithmic,
discrete geometry and combinatorics on words.

2. Definitions and notation

A polyomino is a simply connected union of unit squares, that is a union of unit
squares without holes. Let P be a polyomino. A tiling by translations of P is a
partition of the whole plane by translated images of P . A polyomino that tiles the
plane by translation is called a tile.

Let Σ = {a, b, ā, b̄} be a four letter alphabet. A reduced word on Σ is a word
on the free group over Σ where all cancellations are done (namely each occurrence
of aā, āa, bb̄ and b̄b is replaced by ε the empty word). Let b(P ) be the boundary
word of P that is the reduced word in the free group on {a, b} where a represents
a right step, b an up step, ā a left step and b̄ a down step that codes the boundary
of the polyomino P in the following way. Starting from an origin on the boundary
of P , the boundary word b(P ) is the concatenation of labels of boundary unit
segments read in trigonometric order. The starting point is not meaningful. Thus
the boundary word b(P ) is a cyclic word.

We define the u operator on Σ+ by

(i) (α) = α if α ∈ Σ = {a, b, ā, b̄};
(ii) (u.v) = (v).(u);
(iii) a = a and b = b.

The following characterization of tiling polyominoes is due to Beauquier and
Nivat [2]:

Theorem 1 (Beauquier, Nivat). A polyomino P tiles the plane by translations
if and only if the boundary word b(P ) is equal up to a cyclic permutation of the
symbols to X · Y ·Z ·X · Y ·Z where one of the variables in the factorization may
be empty.

If the boundary word is equal to X · Y · Z · X · Y · Z (resp. X · Y ·X · Y ) such
a polyomino is called pseudo-hexagon (resp. pseudo-square).
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Figure 1. Polyominoes and factorizations.

Figure 2. Two regular tilings.

For example, the polyomino on the left in Figure 1 is a pseudo-hexagon and
the boundary word is equal to X · Y · Z · X · Y · Z = a · ab · āb · ā · b̄ā · b̄a (where
X = a, Y = ab, Z = āb).

In fact, a polyomino P may have many factorizations of its contour word. For
example, in Figure 1 the boundary word of the right polyomino has the factoriza-
tions b̄a · aba · b · āb · āb̄ā · b̄ and b̄a · a · bab · āb · ā · b̄āb̄.

A regular tiling is a tiling by translations of a polyomino P such that each tile in
the tiling has the same surrounding by translated copies of the tile P according to a
given factorization of its contour word (such tilings are also called in the literature
lattice tilings); see Figure 2 for two regular tilings from the two factorizations of
the contour word mentioned above. Each factorization leads to a regular tiling of
the plane by translations as follows. If P is a pseudo-hexagon, the factorization
b(P ) = X ·Y ·Z ·X ·Y ·Z defines 6 sides of the tile where the sides in correspondence
are identified by the pairings X, X, Y, Y , Z, Z. The translations corresponding to
these pairings allow then to tile the whole plane in a regular way. In the case of
pseudo squares the construction with 4 sides is similar. Observe that two distinct
factorizations of the boundary word of P give two distinct regular tilings of the
plane.
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3. Algorithm

Let n = |b(P )| be the length of the boundary word of P . In the following
algorithm the indices of the boundary word b(P ) (or b for simplicity from here
on when there are indices) are taken modulo n. For example, the letter b[−1] is
of course the letter b[n − 1].

PS=0; PH=0;
// Step 1: Searching correspondence between b[0] and b[i]
for i = 1 to n − 1

if b[0] = b[i] then
// Step 2: Propagation
// Searching the largest b[x1..y1] = b[x2..y2]
// b[x1..y1] containing 0 and b[x2..y2] containing i
x1 = 0; y1 = 1; x2 = i; y2 = i + 1;
while (b[x1 − 1] = b[y2]) {x1 = x1 − 1, y2 = y2 + 1}
while (b[y1] = b[x2 − 1]) {y1 = y1 + 1, x2 = x2 − 1}
// end of Step 2
U = b[y1 + 1..x2 − 1]; V = b[y2 + 1..x1 − 1];
if |U | = |V | then

if U = V then PS=PS+1 // Step 3: Pseudo-square
PH=PH+ KMP(U, V V ) // Step 4: Pseudo-hexagon

end if
end if

end for
The end of this section explains the algorithm step by step.

Instance: the boundary word b[0..n − 1] of length n of a polyomino P .
Answer: the number of factorizations in pseudo-squares and in pseudo-

hexagons tiling the plane by translation.

Step 1. For each position i from 1 to n− 1, we try to match with the comple-
mentary letter of value b[0].

Step 2. We make a propagation (scanning back and forth the boundary words)
in order to have two sides of maximal length in correspondence. In other words, for
each position of value b[0], by propagation we find two complementary words X

and X on the boundary word starting from X = b[0] and X = b[0] and extending
the pair of complementary words (X, X) in order to find the longest X. Then by
this method we find a factorization of b(P ) by X · U · X · V .

Step 3. We now check that the remaining sides U and V have same length.
And we answer that the polyomino is a pseudo-square if U = V that is if we have
found a factorization on X · Y · X · Y with Y = U .

Step 4. We check if the polyomino is a pseudo-hexagon by searching four
more sides in two-by-two correspondence, that is the factorizations U = Y · Z
and V = Y · Z. We use the following property: if such factorization exists, it
is provided by an occurrence of the word U = Z · Y in V V = Y · Z · Y · Z.
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This part can be done for instance by the KMP algorithm of Knuth et al. [13] or
by the algorithm of Boyer-Moore [6].

Answer
The variable PS (resp. PH) gives the number of factorizations of b(P ) (the

boundary word of P ) by pseudo-squares (resp. pseudo-hexagons). If PS=0 and
PH=0 then P does not tile the plane by translation.

3.1. Proof of the algorithm

By step 2 of the algorithm, we have the following property. For each position of
b[0], by propagation we find two complementary words X and X on the boundary
word starting from X = b[0] and b[i] = X = b[0] and extending the pair of
complementary words (X, X) in order to find the longest X . Then by this method
we find a factorization of b(P ) by X · U · X · V .

By this method, for each couple (b[0],b[i] = b[0]) the algorithm finds by prop-
agation a unique couple (X, X) with X of maximal length. Step 3 and Step 4 find
a factorization if it exists.

Thus given a boundary word of a polyomino P there are 3 cases to consider,
either there is factorization A) by pseudo-hexagon or B) a factorization by pseudo-
square or C) no factorization. And for each case we have to prove that the algo-
rithm finds it.

• P is a pseudo-hexagon.
In this case the boundary word can be factorized up to a cyclic permutation
of letters on X ·Y ·Z ·X ·Y ·Z and we may assume without loss of generality
that X contains the letter b[0] (otherwise we make a cyclic permutation
of letters). As the algorithm propagates to the left and to the right for
each position of b[0], let be � the �th element of X corresponding to b[0].
X� = b[0], so Xn−�+1 = b[0] where |X | = |X| = n. The Step 2 of
the algorithm finds at most a couple of complementary words X ′ and X ′
containing respectively the words X and X.

a) If X ′ = X then with the help of the KMP-algorithm Step 4 produces
the good factorization X · Y · Z · X · Y · Z.

b) When |X ′| > |X | there is a difficulty and we proceed by contradic-
tion. Assuming that the algorithm finds such pair of complementary words
(X ′, X ′) then X ′ = LXR and Y ′ does exist such that the factorization of P
is equal to X ·Y ·Z ·X ·Y ·Z = X ·RY ′·Z ′ R·X ·L Y ′·Z ′L. By this equality we
have Y = RY ′, Z = Z ′ R. Thus Y = Y ′·R, Z = R·Z ′. If we use this infor-
mation in the factorization X ·Y ·Z ·X ·Y ·Z we obtain X ·Y ·Z ·X ·Y ′ R·R Z ′.
We find a contradiction because all the letters of R · R cancel two by two
(R · R = rp · · · r2r1r1r2 · · · rp = rp · · · r2r2 · · · rp = · · · = ε). This means
in particular that the boundary word of P is not a reduced word and by
construction the boundary word of P is a reduced word.
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• P is a pseudo-square.
Here the boundary word can be factorized up to a cyclic permutation of
letters on X · Y · X · Y and we assume also that X contains the letter
b[0]. As in the previous case, the algorithm finds at most a couple of
complementary words X ′ and X ′ containing respectively the words X
and X .

a) If X ′ = X then by step 3 it finds the good factorization in X ·Y ·X ·Y .
b) When X ′ �= X then there is another difficulty. We proceed by

contradiction. Assume that the algorithm finds X ′ = LXR and then it
exists Y ′ such that X · Y ·X · Y = X ·RY ′R ·X ·L Y ′L. By this equality
we have Y = RY ′R. Thus Y = RY ′ R. If we use this information in the
factorization X ·Y ·X ·Y we obtain X ·RY ′R ·X ·RY ′ R. If we replace R
by r1r2 · · · rp where ri’s are letters then

X · Y · X · Y = Xr1r2 · · · rpY
′rp · · · r2r1 · X · r1r2 · · · rpY ′ rp · · · r2r1.

There are many factorizations in pseudo-square and we will work on the
following one Xr1 · Y ′′ · r1 Xr1 · Y ′′ · r1 where Y ′′ = r2 · · · rpY

′rp · · · r2,

Y ′′ = r2 · · · rpY ′ rp · · · r2 in order to show that the contour word is not
one of a polyomino.

We have Xr1Y
′′r1 Xr1Y ′′ r1 and we will now show by an argument of

discrete geometry that this is not a boundary word of a simply connected
union of unit squares (i.e. of a polyomino). In this decomposition r1 is
just a letter then for the reasoning we will take r1 = a (the reasoning is the
same with r1 = b, ā, b̄). We use tools from discrete geometry introduced
by Daurat and Nivat [7]. Since a polyomino is a simply connected union
of squares (the boundary word delimits squares inside the polyomino P
(noted I-squares) and squares outside the polyomino P (noted O-squares)).
A corner on the boundary of P is called salient if it is surrounded by
one I-square and three O-squares. A corner on the boundary of P is
called reentrant if it is surrounded by three I-squares and 1 O-square.
Daurat and Nivat proved in [7] that for any polyomino P the number S(P )
of its salient points and the number R(P ) of its reentrant points satisfy
S(P ) = R(P ) + 4, see Figure 3. For example, if P is a pseudo-square
with boundary word XY X Y the number of salient points associated
with X is equal to the number of reentrant points associated with X (by
this reasoning S(X) = R(X), S(Y ) = R(Y ), R(X) = S(X) and R(Y ) =
S(Y ). Thus by Daurat-Nivat theorem, it follows that the four points where
X, X̄, Y, Ȳ connect are salient.

In our case we have the factorization in XaY ′′a XaY ′′ a and on the
plane we have to place 4 segments associated with a, ā, a, ā according to the
factorization. In fact each segment determines two points on the bound-
ary. We find the same relation as in the previous example: S(X) =
R(X), S(Y ) = R(Y ), R(X) = S(X) and R(Y ) = S(Y ) and we just have
to consider the 8 remaining points. The factorization is XaY ′′a XaY ′′ a
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with X = x1 · · ·xm and Y ′′ = y1 · · · yn. Then we have to compute the dif-
ference between S(xma)+S(ay1)+S(yna)+S(a xm)+S(x1a))+S(ayn)+
S(y1 a) + S(ax1) and R(xma) + R(ay1) + R(yna) + R(a xm) + R(x1a)) +
R(ayn)+R(y1 a)+R(ax1). But if the point associated with two letters uv is
salient (resp. reentrant) then by construction the point associated with v u
is reentrant (resp. salient). If S(uv) = 1 then R(v u) = 1. By this property
S(xma)+S(ay1)+S(yna)+S(a xm)+S(x1a))+S(ayn)+S(y1 a)+S(ax1) =
R(xma)+R(ay1)+R(yna)+R(a xm)+R(x1a))+R(ayn)+R(y1 a)+R(ax1).
And globally for the polyomino P associated with the boundary word
XaY ′′a XaY ′′ a we have S(P ) = R(P ). This is in contradiction with the
result on salient and reentrant points. Thus P is not simply connected
and cannot be a polyomino.

• P does not tile the plane.
In this case by the characterization of Beauquier and Nivat there is no
factorization on X · Y ·X · Y nor X · Y ·Z ·X · Y ·Z. Then the algorithm
fails in steps 3 and 4 to find a characterization and answer that P does
not tile the plane by translation.

3.2. Complexity of the algorithm

Let n be the length of the boundary word associated with P .
In the first step, the algorithm tries to find all the positions of value b[0] in the

boundary word with complexity O(n).
In step 2, the propagation give complexity O(n). Thus the total complexity for

steps 1 and 2 is O(n × n).
In step 3, we try to find a factorization by checking if U = V and the complexity

of this verification is O(n). Remark also that step 3 makes just the continuation of
step 2 and thus the complexities are added. Thus the total complexity for steps 1,
2 and 3 remains O(n × (n + n)).

In step 4, we try to find a factorization by using the KMP algorithm and
according to the complexity of KMP algorithm this step is on O(m + k) where m
is the length of V V and k the length of U . Remark that step 4 just make the
continuation of step 2 and step 3 and then we add the complexity of both parts.
Thus the computation of the total complexity of the algorithm gives an algorithm
on O(n × (n + n + (n + n))) = O(n2).
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4. Enumeration of polyominoes by computer

We can use our algorithm to compute the number of polyominoes with only
pseudo-square factorizations (only PS), with only pseudo-hexagon factorizations
(only PH) and with both factorizations in pseudo-square and pseudo-hexagon.
The last column is the number of polyominoes of length n that tile the plane by
translations. In fact, factorizations exist only for even-length perimeter and of
course there is no factorization for odd-length perimeter. In literature, authors
use the half-perimeter in order to enumerate the polyominoes that is the length of
the boundary word divided by 2. The enumeration of polyominoes in this table
is just the sequence A002931 of the On-line Encyclopedia of integer sequences by
Sloane.

We present the result for half-perimeters being between 2 and 18.

Half-perimeter polyominoes only PS only PH both tiles
2 1 1 0 0 1
3 2 0 0 2 2
4 7 0 4 3 7
5 28 0 20 8 28
6 124 1 82 17 100
7 588 8 298 46 352
8 2938 40 1007 103 1150
9 15268 170 3326 220 3716
10 81826 523 10394 513 11430
11 449572 1624 31918 1126 34668
12 2521270 4729 95767 2529 103025
13 14385376 13448 282816 5688 301952
14 83290424 37180 824720 12989 874889
15 488384528 102074 2383628 29630 2515332
16 2895432660 276668 6828850 68569 7174087
17 17332874364 745724 19452798 159064 20357586
18 104653427012 1999420 55084940 371115 57455475

In the spirit of the works of Leroux et al. [14, 15], we will complete this study
by investigating symmetry classes of pseudo-hexagons and pseudo-squares. These
results help to understand better the combinatorics of the polyominoes that tile
the plane by translations and may be useful for deriving a closed formula or a
recurrence relation for the number of pseudo-squares or pseudo-hexagons or regu-
lar tilings. In this direction Alberto del Lungo and co-authors obtained by using
the so-called ECO method the enumeration of parallelogram polyominoes (poly-
ominoes with two non-crossing paths from an origin to an end with only right
and up steps) and convex polyominoes [1, 8]. The counting of pseudo-square and
pseudo-hexagon parallelogram polyominoes begs therefore for a closed formula and
Alberto asked us this question in July 2001, but still now we don’t have the method
to enumerate such classes of polyominoes.
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