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Nonlinear Multiresolution Signal Decomposition
Schemes—Part I: Morphological Pyramids

John Goutsias, Senior Member, IEEE,and Henk J. A. M. Heijmans, Member, IEEE

Abstract—Interest in multiresolution techniques for signal pro-
cessing and analysis is increasing steadily. An important instance
of such a technique is the so-called pyramid decomposition scheme.
This paper presents a general theory for constructing linear as well
as nonlinear pyramid decomposition schemes for signal analysis
and synthesis. The proposed theory is based on the following in-
gredients: 1) the pyramid consists of a (finite or infinite) number
of levels such that the information content decreases toward higher
levels and 2) each step toward a higher level is implemented by
an (information-reducing) analysis operator, whereas each step to-
ward a lower level is implemented by an (information-preserving)
synthesis operator. One basic assumption is necessary: synthesis
followed by analysis yields the identity operator, meaning that no
information is lost by these two consecutive steps.

Several examples of pyramid decomposition schemes are shown
to be instances of the proposed theory: a particular class of linear
pyramids, morphological skeleton decompositions, the morpholog-
ical Haar pyramid, median pyramids, etc. Furthermore, the paper
makes a distinction between single-scale and multiscale decompo-
sition schemes, i.e., schemes without or with sample reduction. Fi-
nally, the proposed theory provides the foundation of a general ap-
proach to constructing nonlinear wavelet decomposition schemes
and filter banks, which will be discussed in a forthcoming paper.

Index Terms—Mathematical morphology, morphological
adjunction pyramids, morphological operators, multiresolution
signal decomposition, pyramid transform.

I. INTRODUCTION

FROM the very early days of signal and image processing, it
has been recognized that multiresolution signal decompo-

sition schemes provide convenient and effective ways to process
information. Pyramids [1], wavelets [2], multirate filter banks
[3], granulometries [4], [5], and skeletons [4], [6] are among the
most common tools for constructing multiresolution signal de-
composition schemes. Although these tools seem to be built on
different paradigms, it is starting to be recognized that they are
different instances of the same theory. For example, Rioul estab-
lished in [7] a clear link between linear pyramids, wavelets, and
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multirate filter banks for discrete-time signals, by employing a
time-domain basis decomposition approach.

A popular way to obtain a multiresolution signal decom-
position scheme is to smooth a given signal, by means of a
linear lowpass filter, in order to remove high frequencies, and
subsample the result in order to obtain a reduced-scale version
of the original signal (e.g., see [1] and [3]). By repeating this
process, a collection of signals at decreasing scale is thus
produced. These signals, stacked on top of each other, form
a basic signal decomposition scheme, known as amultireso-
lution (signal) pyramid. A collection of detail signals is also
constructed by subtracting from each level of the pyramid an
interpolated version of the next coarser level. From a frequency
point of view, the resulting detail signals form a signal decom-
position in terms of highpass-filtered copies of the original
signal. It is not difficult to show that the original signal can be
uniquely reconstructed from the detail signals (and the scaled
signal residing at the top level). Therefore, the detail signals
provide a multiresolution signal representation that guarantees
perfect reconstruction. The best-known example of such a
scheme is theLaplacian pyramidof Burt and Adelson [1].

A linear filtering approach to multiresolution signal decom-
position may not be theoretically justified. In particular, the op-
erators used for generating the various levels in a pyramid must
crucially depend on the application. The point stressed here is
that, scaling an image by means of linear operators may not be
compatible with a natural scaling of some image attribute of in-
terest (shape of object, for example), and hence use of linear
procedures may be inconsistent in such applications. To ad-
dress this issue, a number of authors have proposed nonlinear
multiresolution signal decomposition schemes based on mor-
phological operators (e.g., [4], [6], and [8]–[26]), median fil-
ters (e.g., [14], [27], and [28]), and order statistic filters (e.g.,
[29] and [30]). These approaches have produced a number of
useful nonlinear image processing and analysis tools, such as
morphological skeletons [4], [6], morphological subband de-
compositions and filter banks [13], [16], [20], [25], median and
order statistic based subband decompositions and filter banks
[29], [30], morphological pyramids [8]–[10], [12], [15], [17],
[19], median and order statistic pyramids [28], and, more re-
cently, morphological wavelet decompositions [21], [24]–[26],
[31], [32].

A number of interesting questions arise at this point:

1) Are the previous nonlinear multiresolution techniques
fundamentally different, or are they all instances of a
common theory?

2) What is the foundation of such a theory and how can it be
constructed?
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3) If such a theory exists, does it include the linear multires-
olution techniques as a special case?

It is the main purpose of our work, presented in this (and a forth-
coming) paper, to lay-down the foundations of such a theory, by
employing an axiomatic approach. It will soon become apparent
that a general framework can be constructed that allows one to
treat linear and nonlinear pyramids, filter banks and wavelets,
as well as morphological pyramids, from a unified standpoint.

Toward this goal, we present a general multiresolution
scheme which represents a signal, or image, on a pyramid,
using a sequence of successively reduced volume signals
obtained by applying fixed rules that map one level to the next.
In such a scheme, a level isuniquelydetermined by the level
below it. Our approach contains the following three ingredients:

1) No assumptions are made on the underlying signal/image
space. It may be a linear space (Laplacian pyramid, linear
wavelets), it may be a complete lattice (morphological
pyramids and wavelets), or any other set.

2) The proposed scheme is constituted by operators between
different spaces (the levels of the pyramid). These op-
erators are decomposed intoanalysis operators, repre-
senting an upward step reducing the information content
of a signal, andsynthesis operators, representing a down-
ward step which does not (further) reduce the information
content.1

3) The analysis and synthesis operators are only required
to satisfy an elementary condition: synthesis followed by
analysis is the identity operator. This condition, to be re-
ferred to as the “pyramid condition,” plays an important
role in the sequel. In fact, pyramidal schemes, based on
analysis and synthesis operators that satisfy the pyramid
condition, enjoy an intuitive property: repeated applica-
tion of the analysis/synthesis steps does not modify the
decomposition. Moreover, if the pyramid condition is sat-
isfied, and if denotes the space of all signals obtained
by applying analysis steps followed bysynthesis steps
on signals , then , for .
This is a basic requirement for a multiresolution signal
decomposition scheme [2] that agrees with our intuition
that the space , which contains the approximations
of signals at level 0 of the pyramid, obtained by means
of analysis steps followed bysynthesis steps, contains
the approximations of signals at level 0 of the pyramid,
obtained by means of analysis steps followed by

synthesis steps. However, it is worthwhile men-
tioning here that, in the literature associated with mul-
tiresolution pyramids, this condition is often overlooked.
Many proposed linear and nonlinear pyramidal decompo-
sition schemes do not satisfy such a condition.

In our work, we are distinguishing among two types of mul-
tiresolution decompositions:

1) Pyramid Scheme:Every analysis operator that brings a
signal from level to the next coarser level
reduces information. This information can be stored in a
detail signal (at level ) which is the difference between

and the approximation obtained by applying the

1We say that an operator “reduces information” if it is not injective, in other
words, if the original signal cannot be recovered from the transformed signal;
an operator which is injective is said to “preserve information.”

synthesis operator to . In general, a representation
obtained by means of a pyramid (coarsest signal along
with detail signals at all levels) is redundant (in the sense
that the decomposition produces more data samples than
the original signal). This type of decomposition will be
the main subject of this paper.

2) Wavelet Scheme:Here, the detail signal resides at level
itself, and is obtained from a second family of anal-

ysis operators. In this case, the analysis and synthesis op-
erators need to satisfy a condition that is very similar in
nature to the pyramid condition, discussed in this paper,
and the biorthogonality condition known from the theory
of wavelets (note, however, that this condition is formu-
lated in operator terms only, and does not require any sort
of linearity assumption or inner product). This type of de-
composition will be the main subject of a forthcoming
paper [33].

This paper is organized as follows. In Section II, we recall
some concepts and notations of mathematical morphology. Sec-
tion III introduces the main results of our theoretical framework
in terms of analysis and synthesis operators and their compo-
sitions. Here, we introduce our key assumption, thepyramid
condition, which plays a major role in our exposition. The re-
mainder of the paper is devoted to examples and applications of
our general scheme. Section IV illustrates the fact that a par-
ticular class of linear pyramids is a special case of our gen-
eral framework. This is done by means of an example, which
is a nonseparable two-dimensional (2-D) extension of the Burt-
Adelson pyramid [1]. Section V is concerned with a class of
morphological pyramids based on adjunctions. These pyramids
satisfy an interesting property: the detail signals are always non-
negative! In Section V, we also show that a particular type of
morphological skeletons fits perfectly within our general frame-
work. An attempt to put Lantuéjoul’s skeleton decomposition
algorithm [4] into our framework, may lead to an improvement.
In Section VI, we discuss more general morphological pyramid
decomposition schemes, such as median pyramids and morpho-
logical pyramids with quantization. Finally, in Section VII, we
end with our conclusions.

The present paper is an extract of our report [22], where one
can find some additional results on linear pyramids, multiscale
morphological operators, and granulometries.

II. M ATHEMATICAL PRELIMINARIES

In this section, we provide an overview of basic concepts,
notations, and results from mathematical morphology which we
need in the sequel. A comprehensive discussion can be found in
[5].

A set with a partial ordering is called acomplete lattice
if every subset of has asupremum(least upper bound)
and aninfimum(greatest lower bound) . We say that is
a complete chainif it is a complete lattice such that or

, for every pair . A simple example of a complete
chain is the set with the usual ordering.

Let and be two complete lattices, and let:
and : be two operators. We say that constitutes
anadjunctionbetween and if
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If forms an adjunction betweenand , then has the
property

(1)

for any family of signals. Operator has the
dual property

(2)

for any family of signals. This, in particular,
implies that and are increasing (i.e., monotone) operators.
An operator that satisfies (1) is called anerosion, whereas an
operator that satisfies (2) is called adilation. We denote the
identity operator on by , or simply , when there is no
danger for confusion.

With every erosion : , there corresponds a unique
dilation : such that constitutes an adjunction.
Similarly, with every dilation : , there corresponds a
unique erosion : such that constitutes an ad-
junction. If is an adjunction between two complete lat-
tices and , then

(3)

If is an operator from a complete latticeinto itself, then
is idempotent, if . If is increasing and idem-

potent, then is called amorphological filter. A morphological
filter that satisfies ( is anti-extensive) is anopening,
whereas a morphological filter that satisfies ( is
extensive) is aclosing. If is an adjunction between two
complete lattices and , then, is a closing on and
is an opening on . This is a direct consequence of (3).

Given a complete lattice and a nonempty set , the set
, comprising all functions , is a

complete lattice under the pointwise ordering

In this paper, represents the signals with domain
and values in . The least and greatest elements ofare

denoted by respectively: , . We are
mainly interested in the case when is the -dimensional
discrete space . Two basic morphological operators on

are the (flat)dilation and the (flat)erosion ,
given by

(4)

(5)

Here, is a given set, the so-calledstructuring element.
The pair constitutes an adjunction on .
Thus, we may conclude that the composition is an
opening whereas the composition is a closing. We
use the following notation: and .

III. M ULTIRESOLUTION SIGNAL DECOMPOSITION

To obtain a mathematical representation for a multiresolution
signal decomposition scheme, we need a sequence of signal do-
mains, assigned at each level of the scheme, and analysis/syn-
thesis operators that map information between different levels.
The analysis operators are designed to reduce information in
order to simplify signal representation whereas the synthesis op-
erators are designed to undo as much as possible this loss of
information. This is a widely accepted approach to multireso-
lution signal decomposition [2]. Moreover, as discussed in the
introduction, the analysis/synthesis operators depend on the ap-
plication at hand and a sound theory should be able to treat them
from a general point of view. Motivated by these reasons, we
present in this section a general multiresolution signal decom-
position scheme, to be referred to as thepyramid transform.

A. Analysis and Synthesis Operators

Let be an index set indicating the levels in a multireso-
lution signal decomposition scheme. We either considerto be
finite or infinite. In the finite case, we take ,
for some , whereas in the infinite
case. A domain of signals is assigned at each level. No
particular assumptions on are made at this point (e.g., it is
not necessarily true that is a linear space). In this framework,
signal analysisconsists of decomposing a signal in the direction
of increasing . This task is accomplished by means ofanal-
ysis operators . On the other hand,signal syn-
thesisproceeds in the direction of decreasing, by means of
synthesis operators . Here, the upward arrow
indicates that the operator maps a signal to a level higher
in the pyramid, whereas the downward arrow indicates that the
operator maps a signal to a level lower in the pyramid. The
analysis operator is designed to reduce information in order
to simplify signal representation at level , whereas the syn-
thesis operator is designed to map this information back to
level .

We can travel from any levelin the pyramid to a higher level
by successively composing analysis operators. This gives an

operator

(6)

which maps an element in to an element in . On the other
hand, the composed synthesis operator

(7)

takes us back from levelto level . Finally, we define the com-
position

(8)

which takes a signal from levelto level and back to level
again.

Since the analysis operators are designed to reduce signal
information, they are not invertible in general, and information
loss cannot be recovered by using only the synthesis operators

. Therefore, can be regarded as anapproximation oper-
ator that approximates a signal at level, by mapping (by means
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of ) the reduced information at level, incurred by , back
to level .

The following condition plays a major role in this paper.
Pyramid Condition. The analysis and synthesis operators

are said to satisfy thepyramid conditionif
on .

This condition has the following important consequences:

• is surjective;
• is injective;
• and ;
• is idempotent, i.e., .

Notice that the injectivity of means that synthesis does not
cause information reduction. To prove, for example, that
is surjective, take and let be defined as

. Then . In our report [22], we
have shown various relationships between the properties above.
For example, we have shown that the pyramid condition is sat-
isfied if and only if is surjective and or is
injective and .

Proposition 1: Assume that the pyramid condition is satis-
fied. Then

on (9)

(10)

In particular, is idempotent.
Proof: From (6), (7), and the pyramid condition, we have

that

which shows (9).
From (6)–(8) and the pyramid condition, we have that

which shows the first equality in (10). From (6)–(8) and the
pyramid condition, we also have that

which shows the second equality in (10).

The first equality in (10) simply states that the levelapprox-
imation of a signal is adequate for determining
the level ( ) approximation of . This agrees
with our intuition that higher levels in the decomposition corre-
spond to higher information reduction. The second equality in
(10) says that , , is not modified if approximated
by means of operator .

It is worthwhile noticing here that, if Ran (i.e.,
the rangeof the approximation operator ), then
and the second equality in (10), with , results in

(11)

Therefore, operator decomposes the signal spaceinto
nested subspaces , each subspace

containing all “level ” ( ) approximations of signals
in . Equation (11) is a basic requirement for a multiresolution
signal decomposition scheme [2] which agrees with our intu-
ition that the space , which contains the approximations
of signals at level obtained by means of operator , con-
tains the approximations of signals at levelobtained by means
of as well.

B. Pyramid Transform

Although, as a direct consequence of the pyramid condition,
the analysis operator is the left inverse of the synthesis op-
erator , it is not true in general that it is also the right inverse:

is only an approximation of . Therefore, the
analysis step cannot be used by itself for signal representation.
This is not a problem however. In fact, this is in agreement with
the inherent property of multiresolution signal decomposition
of reducing information in the direction of increasing.

Analysis of a signal , followed by synthesis, yields an
approximation of , where

. We assume here that there exists asubtraction
operator mapping into a set (strictly
speaking, we should write to denote dependence on level).
Furthermore, we assume that there exists anaddition operator

mapping into . The detail signal
contains information about which is not present in

. It is crucial that can be reconstructed from its approximation
and the detail signal . Toward this goal, we introduce the

following assumption ofperfect reconstruction:

if and

This leads to the following recursive signal analysis scheme:

(12)

(13)
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Notice that, because of the perfect reconstruction condition,
signal can beexactly reconstructed from and

by means of the backward recursion

(14)

Example 1: The specific choice for the subtraction and ad-
dition operators depends upon the application at hand. Below,
we discuss three alternatives for which the perfect reconstruc-
tion condition holds. In all cases, we assume that our signals lie
in , for some gray-value set . Now, it suffices to
define subtraction and addition operators on.

1) Assume that and let . We
define a subtraction operator from
into . Obviously, the perfect reconstruction condition is
valid if we choose the standard additionas the addition
operator.

2) Suppose that is a complete lattice. If we know that the
approximation signal satisfies pointwise (see
Section V for an example), then we can define

if

if
(15)

where is the least element of . For we simply take

(16)

It is easy to verify that , for every
with .

3) Assume that is finite, say .
Define and as the addition and subtraction in the
Abelian group , i.e., and

, where “mod” denotesmodulo. Observe
that, in the binary case, both and correspond to the
“exclusive OR” operator.

The process of decomposing a signal in terms of
(12), (13) will be referred to here as thepyramid transformof ,
whereas the process of synthesizingby means of (14) will be
referred to as theinverse pyramid transform. Block diagrams,
illustrating the pyramid transform and its inverse, when

, are depicted in Fig. 1.

IV. L INEAR PYRAMIDS

A case of particular interest to signal processing and anal-
ysis applications is when the analysis/synthesis operators are
linear and translation invariant. In this section, we discuss a
nonseparable extension of the original one-dimensional (1-D)
Burt–Adelson pyramid to two dimensions.

We restrict attention to 2-D discrete-time signals. We con-
sider pyramid transforms satisfying the following assumptions:

1) all domains are identical;
2) operators and are the usual addition and difference

operators and , respectively;
3) at every level , we use the same analysis and synthesis

operators, i.e., and are independent of; they are
denoted by and , respectively;

4) and are linear operators;

Fig. 1. Illustration of (a) a three-level pyramid transform and (b) its inverse.

5) and are translation invariant. The translation invari-
ance condition should hold for every translation operator

, given by .
A straightforward computation shows that there existconvo-

lution kernels such that and are of the following
general form (see Rioul [7]):

The pyramid condition amounts to

(17)

where is the 2-D Dirac-delta sequence, given by ,
if , and 0 otherwise. This is known as thebiorthog-
onality condition.

Let us consider the case when, in the analysis step, a
pixel block

at level is replaced by one pixel
at level . The value of this pixel is a weighted average
over 16 pixels at level , namely the pixels in the block
surrounding the block; see Fig. 2(a). To be precise

(18)
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Fig. 2. Stencils for (a) in (18) and (b) in (19)–(22).

The synthesis step subdivides a pixel at level
into four pixels

at level . The values of are given by
[see Fig. 2(b)]

(19)

(20)

(21)

(22)

The pyramid condition (17) leads to the following relations:

It is obvious that, due to the symmetry in, maps the high-
frequency signals onto
the zero signal. We impose the following two normalizing con-
ditions: and map a constant signal onto the same constant
signal (albeit at a different level of the pyramid). This yields the
following two conditions:

The uniquesolution of the previous system of five equations
with six unknowns can be expressed in terms ofas

Clearly, we must exclude in order to avoid singulari-
ties. When , we have that

(23)

An example, illustrating the resulting linear pyramid, is
depicted in Fig. 3. Due to the calculations associated with
(18)–(22), the resulting images will not have integer gray-values
between 0–255, as required for computer storage and display,
even if the original image is already quantized to these values.
To comply with this requirement, all gray-values of the images
depicted in Fig. 3 have been mapped to integers between 0–255,
with the minimum and maximum values being mapped to 0 and
255, respectively. Finally, and for clarity of presentation, the
size of some of the images depicted in Fig. 3 (and later in this
paper) is larger than their actual size (e.g., although the size of

should be half the size of , this is not the case in Fig. 3).
It is worth noticing here that most of the linear pyramid trans-

forms used in the literature are 1-D. These transforms, when ap-
plied on images, useseparableanalysis and synthesis operators.
The linear pyramid transform discussed in this example employs
nonseparable analysis and synthesis operators. It is, therefore,
an example of a pure (nonseparable) 2-D linear pyramid trans-
form.

V. MORPHOLOGICALADJUNCTION PYRAMIDS

In this section, we consider the special, but interesting, case
when the signal domains are complete lattices and the anal-
ysis and synthesis operators between two adjacent levels in the
pyramid form an adjunction. More precisely, we make the fol-
lowing assumptions: 1) all domains have the structure of a
complete lattice and 2) the pair is an adjunction be-
tween and . In this case, is an erosion and is
a dilation. It is easy to see that the pyramid condition is sat-
isfied if and only if is injective, or, alternatively, if is
surjective. This is a direct consequence of our comment just be-
fore Proposition 1, the fact that is an adjunction, and
the last two properties in (3). Notice that is an opening
and hence , i.e., the approximation operator is
anti-extensive.

In this section, we distinguish between two types of pyramids:
those ones that involve sample reduction (i.e., multiscale pyra-
mids) and those ones that do not (i.e., single-scale pyramids).

A. Multiscale Pyramids

1) Representation:In this subsection, we give a complete
characterization of analysis and synthesis operators, between
two adjacent levels and in a pyramid, under the
following general assumptions.

1) , the complete lattice of functions
from into a given complete lattice of gray-values.

2) The analysis operator : and the synthesis
operator : form an adjunction between
and , i.e.,

3) For every translation of , where
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Fig. 3. Multiresolution image decomposition based on the 2-D linear pyramid transform of Section IV. (a) An imagex and its decompositionfx ; x ; x ; x g
obtained by means of the analysis operator in (18), wherea; b; c are given by (23). (b) The approximation imagesfx̂ ; x̂ ; x̂ g obtained fromfx ; x ; x g
by means of the synthesis operator in (19)–(22), wherep; q; r are given by (23). (c) The detail imagesfy ; y ; y g.

we have that

where denotes double translation.

Our characterization is given in terms of adjunctions on
the complete lattice and is closely related to the representation
of translation invariant adjunctions for grayscale functions in
mathematical morphology [5].

Proposition 2: Let be an adjunction on
. The translation invariance condition

implies that and vice versa. Every adjunction
satisfying these equivalent conditions is of the form

(24)

where defines an adjunction on, for every .
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Proof: We show the first part of the assertion concerning
translation invariance; the other implication is proved analo-
gously. Assume that , for every translation . For

, we have the following equivalences:

This yields that .
We next prove the identities in (24). From [5, Prop. 5.3] it

follows that every adjunction on is of the
form

(25)
where is an adjunction on , for every .
Equation (25), together with condition , yields

Since this identity holds for every and
, we conclude that , for every

. Similarly, equation (25), together with condition
, leads to the identity , for

every . Set and and observe
that constitutes an adjunction on. A straightforward
manipulation shows that and ,
whence we arrive at the identities in (24).

Now that we have found a characterization of analysis and
synthesis operators which form adjunctions, we may ask our-
selves: for which of these pairs is the pyramid condition sat-
isfied? The next proposition answers this question. In the fol-
lowing, we define thesupport of the analysis/synthesis pair
(24), as being the set of all vectors for which the ad-
junction is nontrivial; i.e., and ,
where are the least and greatest element of, respec-
tively. We introduce the following notation: for , we
define , where denotes
all vectors in with evencoordinates. The sets yield a
disjoint partition of into parts. For and ,
we set , which yields a partition of com-
prising at most nonempty and mutually disjoint subsets.

Proposition 3: Consider the analysis/synthesis pair of
Proposition 2, and let denote its support. Suppose that
there exists an such that 1) and 2) is
injective. Then, the pyramid condition is satisfied.

Proof: Assume that conditions 1) and 2) hold. We show
that is injective. From (24) notice that

for every . If , then , for some
. Let , then

, hence, for ,
. Since is assumed to be injective, we find that

. Therefore, is injective and the
pyramid condition is satisfied.

Observe that is injective if and only if . In the
following subsection, we consider a particular subclass of anal-
ysis and synthesis operators, given by (24), with being
either the trivial adjunction or the adjunction .

2) Pyramids Based on Flat Adjunctions:Let be
given and assume that , for , and

elsewhere. In other words, is the support
of . Now, (24) reduces to

(26)

In mathematical morphology, these two operators are calledflat
operators, since they transform flat signals ( , for in
the domain of , and outside) into flat signals; see [5, Ch. 11].
Flatness of an operator means, in particular, that no other gray-
values than those present in the signal are created. The resulting
pyramids make sense for every gray-value set and, in
particular, for the binary case . From Proposition 3,
notice that, if there exists an such that , then
the pyramid condition is satisfied.

Since is an adjunction, the approximation signal
satisfies (pointwise inequality)

and the error signal is nonnegative.
The scheme in (26) has been proposed earlier by Heijmans and
Toet in their paper on morphological sampling (with the roles
of dilation and erosion interchanged) [12].

Example 2 (Morphological Haar Pyramid):Let
, , , . It is evident that

, for . Hence, the pyramid
condition is satisfied. The operators and are given by

(27)

(28)

This leads to a signal decomposition scheme which we call the
morphological Haar pyramid. The operators in (27) and (28)
are the morphological counterparts of that of a linear pyramid
where the operators coincide with the lowpass filters associated
with the Haar wavelet (see [22] for more details).

Example 3: A more interesting example is obtained by
taking to be the square centered at the origin; i.e.,

, , , , , ,
, , . We have that ,

, ,



1870 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 11, NOVEMBER 2000

Fig. 4. Multiresolution image decomposition based on the morphological pyramid transform of Example 3. (a) An imagex and its decomposition
fx ; x ; x ; x g obtained by means of the analysis operator in (29). (b) The approximation imagesfx̂ ; x̂ ; x̂ g obtained fromfx ; x ; x g by means of
the synthesis operator in (30)–(33). (c) The detail imagesfy ; y ; y g.

and , . The
operators and are therefore given by

(29)

(30)

(31)

(32)

(33)

Fig. 4 illustrates such a decomposition. Operatorsand are
taken here to be the usual addition and difference operators
and .

We should point out that the detail signals, depicted in Fig. 4,
assume only nonnegative values, which is a direct consequence
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of the fact that the analysis and synthesis operators are adjunc-
tions. This should be compared to the linear pyramids, in which
case the detail signals usually assume both positive and neg-
ative values. This may be advantageous in image compression
and coding applications, as it has been already discussed in [15].
Finally, it has been experimentally demonstrated in [15] that
the pyramid based on (29)–(33) enjoys superior performance in
lossy compression, as compared to a number of alternative non-
linear, as well as linear, choices.

If we take and , then Proposition 3
is trivially satisfied. Denoting the corresponding analysis/syn-
thesis pair by , we have

(34)

(35)

The pair in (26) can be written as

(36)

where is the adjunction given by (4) and (5). This
shows that the analysis and synthesis operators of pyramids
based on flat adjunctions can be implemented by means of flat
erosions, followed by dyadic subsampling by means of, and
flat dilations, following dyadic upsampling by means of.

If we replace the erosion in (36) by the opening ,
then the pyramid condition is still satisfied, provided that we
make an assumption which is slightly stronger than condition
1) in Proposition 3. Indeed, we have the following result.

Proposition 4: Let be a structuring element such that
. The analysis operator and the

synthesis operator satisfy the pyramid condition.
Proof: From the fact that is an adjunction, we

get that . Now

This yields that and the result is proved.
Notice that the pair in this proposition does not

constitute an adjunction. The pyramid decomposition of Sun
and Maragos [9] given by , where

, and and
, fits within this latter class. Notice that

, as required by Proposition 4. It is not difficult to generalize
this example to more dimensions.

B. Morphological Skeleton Decomposition

In this subsection, we show that the morphological skeleton
decomposition scheme can fit into our pyramidal framework.
Recall Lantuéjoul’s formula for discrete skeletons, well-known

from mathematical morphology [4]. Let , define
and , and consider the set of signals

. Assume that is an adjunction on the com-
plete lattice . Let and let be
such that , where and (
times). Since is an opening, we have that .
Define by

(37)

It is possible to reconstructfrom by means of
the (backward) recursion formula

It is easy to verify that , hence .
Our attempt to fit Lantuéjoul’s skeleton decomposition into

a pyramid framework is not only successful, but even more,
it leads to a decomposition, which may be better than Lan-
tuéjoul’s, in the sense that it may contain less data.

Assume that is a complete lattice and that is an ad-
junction on . Set Ran (i.e., therangeof operator ),
and let : and : be given by
and . We can show the following result [22].

Lemma 1: The pair defines an adjunction between
and .

It is obvious that is surjective. We therefore conclude that
the pyramid condition holds.

Let us now assume that the underlying latticeis of the form
, where . We can set ,

where and , and consider ,
to be standard addition and subtraction. Given an input

, we arrive at the following signal analysis
scheme:

For synthesis, we find

Notice that the detail signal can be written as

(38)

Comparing (38) to the original Lantuéjoul formula (37), we see
that, in our new decomposition, we have an extra closing.
As a result, the detail signal in (38) is never larger than the de-
tail signal in the Lantuéjoul formula (37). It may therefore give
rise to a more efficient compression. This skeleton decomposi-
tion has been found earlier by Goutsias and Schonfeld [11].

An alternative approach to signal decomposition, suggested
by Kresch [17], is to set and define by
means of (15). In this case, is given by (16). Given an input



1872 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 11, NOVEMBER 2000

Fig. 5. Grayscale image and the decompositions obtained by means of the Goutsias–Schonfeld and Kresch skeleton transforms.

, we arrive at the following signal
analysis scheme:

if
otherwise

The synthesis scheme is as follows:

(39)

Notice that the detail signal can be written as

if
otherwise.

Assume again that there exists a such that
and set . Apply on both sides of (39), and

use the fact that distributes over suprema; we find
. This implies the following formula:

Substitution of yields . Thus, the
original signal can be recovered as a supremum of dilations of
the detail signal.

The Goutsias–Schonfeld and Kresch skeleton decomposition
schemes are quite different, even though they satisfy the same
algebraic description. Fig. 5 depicts the result of applying these
decompositions to a grayscale image. The square struc-
turing element that contains the origin has been used in both
cases. In the Goutsias–Schonfeld case,is thetop-hat trans-
form [5] of , since . However, the detail signal

in the Kresch case takes value zero (it is black) at all pixels
at which and equals at all other pixels.

VI. OTHER NONLINEAR PYRAMIDS

The morphological pyramids discussed in the previous sec-
tion are based on the concept of adjunction and they all satisfy
the pyramid condition. In this section, we show that a number
of alternative nonlinear pyramids can be constructed, such that
the pyramid condition is satisfied as well. We divide this sec-
tion into three subsections, which present examples of morpho-
logical pyramids, median pyramids, and pyramids that employ
grayscale quantization.

A. Morphological Pyramids

In most cases, and in order to avoid aliasing, a signal, at level
of a pyramid, is filtered first, by means of a lowpass filter, and

then subsampled to obtain the scaled signal at level . In
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this subsection, we discuss a morphological pyramid scheme in
which sampling is done first, followed by filtering.

Let , where is a complete chain, and
consider the elementary sampling scheme, given by (34), and

, given by and , if
. Here, is a fixed element; in practice one chooses

or [recall (35)]. Given operators , we
define Ran (i.e., therangeof operator ) and

, . The pyramid condition can be written as
. When all ’s are identical, say ,

the previous condition can be stated as follows:

(40)

Example 4 (Toet Pyramid):In this (1-D) example, we use
the alternating filter , where and are the opening
and closing by the structuring element , and choose

. To show the validity of (40), for , assume
that the input signal has three consecutive values

. It is easy to verify
that the output value is given by

. Since the input signal is an element of
Ran , it is impossible that and . This yields
that ; hence, the pyramid condition follows.

The resulting pyramidal signal decomposition scheme has
been suggested by Toet in [10]. It can be easily extended to the
-dimensional case; there, one chooses .

B. Median Pyramids

It has been suggested in [28] that median filtering can be
used to obtain a useful nonlinear pyramid that preserves details
and produces a decomposition that can be compressed more ef-
ficiently than other (linear) hierarchical signal decomposition
schemes. We here provide a 2-D example of a pyramid based
on median filtering that satisfies the pyramid condition (see also
[22], for additional examples).

Assume that is a complete chain, and consider a pyramid
for which , for every , and the same analysis
and synthesis operators are used at every level, given by

(41)

where is the square centered at the origin. Take

(42)

(43)

(44)

(45)

It is easy to verify that , which means that the
pyramid condition holds. Fig. 6 illustrates such a decomposi-
tion. Operators and are taken here to be the usual addition
and difference operators and . Notice that, in this case, the
detail signals may take both positive and negative values, since
the resulting operator is not anti-extensive (or extensive).

C. Pyramids with Quantization

An issue that we have not touched upon so far is the topic of
quantization. Suppose that the gray-values of the signals at the
bottom level of a pyramid are represented by at mostbits. In
other words, the gray-value set equals

. The operators involved in a pyramid decomposition scheme
may map a signal onto one with values outside this range. In par-
ticular, this holds for linear pyramids. In such cases, a quantiza-
tion step, which reduces the transformed gray-value set, may be
indispensable. Also, in cases where the gray-value set does not
change by the analysis and synthesis operators (e.g., in the case
of flat morphological operators), quantization may be useful
in data compression. In this subsection, we briefly discuss the
problem of quantization in the context of morphological opera-
tors.

Consider the quantization mapping , given
by , where denotes the floor function. For sim-
plicity, we use the same symbol to denote quantization on func-
tion spaces, i.e., can also be considered as the operator from

to , given by .
There are two different ways of “expanding” a quantized value

to the original gray-value set , namely by means
of mappings or . Again, we use the
same notation for their extensions to the corresponding func-
tion spaces. The following properties hold:

(46)

(47)

Furthermore, , and are increasing mappings. It immedi-
ately follows that is an adjunction from to and
that is an adjunction from to . In what follows,
we only use the second adjunction. Similar results can be ob-
tained by using the first one as well.

If we want to emphasize the dependence ofand on , we
write and . It is obvious how the corresponding operators
can be used to construct a single-scale pyramid: remove one bit
of information at every analysis step. We can formalize this in
the following way: put and define

and . Notice that (46) and (47) guarantee that
the pyramid condition is satisfied. The following example shows
that is possible to combine quantization and (morphological)
sample reduction into one scheme in such a way that the pyramid
condition remains satisfied.

Example 5 (Morphological Pyramid with Quantiza-
tion): Consider the flat adjunction pyramid, given by (26),
where , in which case

Assume that, for some , ; this yields that the
pyramid condition is satisfied. Put and
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Fig. 6. Multiresolution image decomposition based on a median pyramid. (a) An imagex and its decompositionfx ; x ; x ; x g obtained by means of the
analysis operator in (41). (b) The approximation imagesfx̂ ; x̂ ; x̂ g obtained fromfx ; x ; x g by means of the synthesis operator in (42)–(45). (c)
The detail imagesfy ; y ; y g.

define quantized analysis and synthesis operators between
and as follows:

We can write and . The pair
defines an adjunction between and . Further-

more, the pyramid condition is satisfied, since

By taking and as in (29)–(33), we can construct a mor-
phological pyramid, like the one in Example 3, with the addition
of a quantization step at each level.
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Fig. 7. (a) A512 � 512 grayscale image and (b) its partial reconstruction obtained from the detail signalsfy ; y ; � � � ; y g calculated by means of the
morphological pyramid transform with quantization discussed in Example 5.

When the pyramid transform is used for signal compression,
the detail signal is usually removed from the decomposition
(this is due to the overcompleteness of the pyramid transform,
e.g., see [15]). In this case, satisfactory compression perfor-
mance can be achieved at the expense of partially reconstructing
the original signal . In fact, given the pyramid decomposition

of , the inverse pyramid transform recon-
structs only an approximation of . Fig. 7(b) depicts the
partial reconstruction of the grayscale image depicted
in Fig. 7(a), obtained by means of inverting the decomposition

based on the previously discussed morpho-
logical pyramid transform with quantization.

VII. CONCLUSION

In this first part of our study, on general multiresolution signal
decomposition, we presented an axiomatic treatise ofpyramid
decomposition schemes. The basic ingredient of such schemes
is the so-calledpyramid condition, which states that synthesis
of a signal followed by analysis returns the original signal. This
simple and intuitive condition, which means that synthesis never
gives rise to (additional) loss of information, lies at the heart of
various linear and nonlinear decomposition schemes.

Our scheme includes various existing pyramids known from
the literature, such as the linear Laplacian pyramid, due to Burt
and Adelson [1] (but only for a particular choice of the param-
eters; see Section IV), and the morphological pyramid due to
Toet [10]; see also [12] and [15]. Moreover, it includes various
morphological shape analysis tools, like morphological skele-
tons and granulometries.2

In [8], Haralick et al. develop a theory for morphological
sampling in which, among others, they provide relationships
between the original and sampled signal. Related work can be
found in [12], [20]. Moraleset al. [19] use the sampling the-
orem formulated in [8] to construct morphological pyramids
based on alternating sequential filters. These pyramids do not
fit in our framework, however, as the pyramid condition is not

2It has been shown in [22] that a given (discrete)granulometry[5] generates
its own pyramid in terms of adjunctions, which satisfies the pyramid condition.

satisfied. In [29], Salembier and Kunt address the problem of
size-sensitive multiresolution image decomposition using rank
order based filters. Their approach, however, does not include a
downsampling stage.

The exposition in this paper is largely theoretical in nature.
Our objective was to find a simple axiomatic framework which
is flexible enough to allow pyramids based on linear as well as
nonlinear filters, but which nevertheless imposes restrictions
which are physically meaningful. We believe that the pyramid
condition in Section III meets these objectives; this is, among
others, reflected by the fact that, in the linear case, every
pyramid that satisfies this condition can be extended, in a
unique way, to a biorthogonal wavelet. For a proof of this fact,
we refer the reader to [26], [33], where we consider nonlinear
wavelet decomposition schemes comprising two (or more)
analysis and synthesis operators at each level. In that study,
we give particular attention to a new family of wavelets, the
so-calledmorphological wavelets.
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