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Nonlinear Multiresolution Signal Decomposition
Schemes—Part |: Morphological Pyramids

John GoutsigsSenior Member, IEEEgnd Henk J. A. M. Heijmansvember, IEEE

Abstract—Interest in multiresolution techniques for signal pro- multirate filter banks for discrete-time signals, by employing a
cessing and analysis is increasing steadily. An important instance time-domain basis decomposition approach.
of such a technique is the so-called pyramid decomposition scheme. A popular way to obtain a multiresolution signal decom-

This paper presents a general theory for constructing linear as well iti h is t th . . L b f
as nonlinear pyramid decomposition schemes for signal analysis position scheme IS 10 smooth a given signal, by means of a

and synthesis. The proposed theory is based on the following in- linear lowpass filter, in order to remove high frequencies, and
gredients: 1) the pyramid consists of a (finite or infinite) number subsample the result in order to obtain a reduced-scale version
of levels such that the information cor_itentdecrea_\se;s toward higher of the original signal (e.g., see [1] and [3]). By repeating this
levels and 2) each step toward a higher level is implemented by process, a collection of signals at decreasing scale is thus

an (information-reducing) analysis operator, whereas each step to- -
ward a lower level is implemented by an (information-preserving) produced. These signals, stacked on top of each other, form

synthesis operator. One basic assumption is necessary: synthesig basic signal decomposition scheme, known asudtireso-

followed by analysis yields the identity operator, meaning that no lution (signal) pyramid A collection of detail signals is also

information is lost by these two consecutive steps. constructed by subtracting from each level of the pyramid an
Several examples of pyramid decomposition schemes are shownyyenojated version of the next coarser level. From a frequency

to be instances of the proposed theory: a particular class of linear int of Vi th lting detail si Is f . ld
pyramids, morphological skeleton decompositions, the morpholog- point ot view, the resuiting detall signais form a signal decom-

ical Haar pyramid, median pyramids, etc. Furthermore, the paper  Position in terms of highpass-filtered copies of the original
makes a distinction between single-scale and multiscale decompo-signal. It is not difficult to show that the original signal can be
sition schemes, i.e., schemes WithOUt or with sgmple reduction. Fi- unique|y reconstructed from the detail Signa|s (and the scaled
nally, the proposed theory provides the foundation of a general ap- ginna) residing at the top level). Therefore, the detail signals
proach to constructing nonlinear wavelet decomposition schemes . - . . .
and filter banks, which will be discussed in a forthcoming paper. provide a multlresol.utlon signal representation that guarantees
perfect reconstruction. The best-known example of such a
scheme is theaplacian pyramidof Burt and Adelson [1].

A linear filtering approach to multiresolution signal decom-
position may not be theoretically justified. In particular, the op-
erators used for generating the various levels in a pyramid must
. INTRODUCTION crucially depend on the application. The point stressed here is

ROM the very early days of signal and image processing,tiiat, scaling an image by means of linear operators may not be
F has been recognized that multiresolution signal decompqpmpatible with a natural scaling of some image attribute of in-
sition schemes provide convenient and effective ways to proc&&st (shape of object, for example), and hence use of linear
information. Pyramids [1], wavelets [2], multirate filter bank$rocedures may be inconsistent in such applications. To ad-
[3], granulometries [4], [5], and skeletons [4], [6] are among tr@res; this is:sue,.a number of aufchors have proposed nonlinear
most common tools for constructing multiresolution signal dédultiresolution signal decomposition schemes based on mor-
composition schemes. Although these tools seem to be builtRj#Plogical operators (e.g., [4], [6], and [8]-{26]), median fil-
different paradigms, it is starting to be recognized that they &S (€-9., [14], [27], and [28]), and order statistic filters (e.g.,
different instances of the same theory. For example, Rioul est&®?] and [30]). These approaches have produced a number of

lished in [7] a clear link between linear pyramids, wavelets, att$eful nonlinear image processing and analysis tools, such as
morphological skeletons [4], [6], morphological subband de-

compositions and filter banks [13], [16], [20], [25], median and
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3) If such atheory exists, does it include the linear multires-
olution techniques as a special case?
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synthesis operator to;;. In general, a representation
obtained by means of a pyramid (coarsest signal along
with detail signals at all levels) is redundant (in the sense

Itis the main purpose of our work, presented in this (and a forth-
coming) paper, to lay-down the foundations of such a theory, by
employing an axiomatic approach. It will soon become apparent
that a general framework can be constructed that allows one to
treat linear and nonlinear pyramids, filter banks and Wavelets,z)
as well as morphological pyramids, from a unified standpoint.

Toward this goal, we present a general multiresolution
scheme which represents a signal, or image, on a pyramid,
using a sequence of successively reduced volume signals
obtained by applying fixed rules that map one level to the next.
In such a scheme, a level imiquelydetermined by the level

the original signal). This type of decomposition will be
the main subject of this paper.
Wavelet Schemdere, the detail signal resides at level

that the decomposition produces more data samples than

j+1litself, and is obtained from a second family of anal-
ysis operators. In this case, the analysis and synthesis op-
erators need to satisfy a condition that is very similar in
nature to the pyramid condition, discussed in this paper,
and the biorthogonality condition known from the theory
of wavelets (note, however, that this condition is formu-

below it. Our approach contains the following three ingredients:

1) No assumptions are made on the underlying signal/image
space. It may be a linear space (Laplacian pyramid, linear
wavelets), it may be a complete lattice (morphological
pyramids and wavelets), or any other set.

2) The proposed scheme is constituted by operators betW%
different spaces (the levels of the pyramid). These o
erators are decomposed indmalysis operatorsrepre-

of a signal, angynthesis operatorsepresenting a down-
ward step which does not (further) reduce the informati
contentt
3) The analysis and synthesis operators are only requir

to satisfy an elementary condition: synthesis followed l%
analysis is the identity operator. This condition, to be r
ferred to as the “pyramid condition,” plays an importanltn
role in the sequel. In fact, pyramidal schemes, based 9
analysis and synthesis operators that satisfy the pyrami
condition, enjoy an intuitive property: repeated applic
tion of the analysis/synthesis steps does not modify t%
decomposition. Moreover, if the pyramid condition is saty g

dho

lated in operator terms only, and does not require any sort
of linearity assumption or inner product). This type of de-
composition will be the main subject of a forthcoming
paper [33].

This paper is organized as follows. In Section I, we recall
some concepts and notations of mathematical morphology. Sec-
B 11 introduces the main results of our theoretical framework
B terms of analysis and synthesis operators and their compo-
sitions. Here, we introduce our key assumption, plyeamid
e@(gndition which plays a major role in our exposition. The re-
mainder of the paper is devoted to examples and applications of
Blr general scheme. Section 1V illustrates the fact that a par-
ticular class of linear pyramids is a special case of our gen-
| framework. This is done by means of an example, which
a nonseparable two-dimensional (2-D) extension of the Burt-
%delson pyramid [1]. Section V is concerned with a class of
orphological pyramids based on adjunctions. These pyramids
isfy an interesting property: the detail signals are always non-
gative! In Section V, we also show that a particular type of
rphological skeletons fits perfectly within our general frame-
rk. An attempt to put Lantuéjoul’s skeleton decomposition
orithm [4] into our framework, may lead to an improvement.

isfied, and ifi%;”” denotes the space of all signals obtainegh"section VI, we discuss more general morphological pyramid
by applyings analysis steps followed bysynthesis steps yecomposition schemes, such as median pyramids and morpho-

on signalss € Vp, thenVV ™ ¢ V¥ C v, for j > 0.

logical pyramids with quantization. Finally, in Section VII, we

This is a basic requirement for a multiresolution sign&nd with our conclusions.

decomposition ?%hemg [2] that agrees with our intuition The present paper is an extract of our report [22], where one
that the spacé;”, which contains the approximationscan find some additional results on linear pyramids, multiscale
of signals at level 0 of the pyramid, obtained by meansorphological operators, and granulometries.

of j analysis steps followed hysynthesis steps, contains
the approximations of signals at level 0 of the pyramid,
obtained by means of 4+ 1 analysis steps followed by

Il. MATHEMATICAL PRELIMINARIES

4 + 1 synthesis steps. However, it is worthwhile men- In this section, we provide an overview of basic concepts,
tioning here that, in the literature associated with mupotations, and results from mathematical morphology which we

tiresolution pyramids, this condition is often overlookedneed in the sequel. A comprehensive discussion can be found in

Many proposed linear and nonlinear pyramidal decomp(5s].
sition schemes do not satisfy such a condition. A set £ with a partial ordering< is called acomplete lattice
In our work, we are distinguishing among two types of mul every subsefC of £ has asupremungleast upper boundy
tiresolution decompositions: and aninfimum (greatest lower bound), . We say thatl is

1) Pyramid SchemeEvery analysis operator that brings & complete chairif it is a complete lattice such that < y or
signal z; from level j to the next coarser levgl + 1y < x, for every pairz, y € £. A simple example of a complete
reduces information. This information can be stored inghain is the seR = R U {—oc, oo} with the usual ordering.
detail signal (at levef) which is the difference between Let £ and.M be two complete lattices, and let £ — M
z; and the approximatiog; obtained by applying the andé: A1 — £ be two operators. We say that ) constitutes

anadjunctionbetween’ and M if
1we say that an operator “reduces information” if it is not injective, in other J M

words, if the original signal cannot be recovered from the transformed signal;

an operator which is injective is said to “preserve information.” y) <z e y<e(),

zeL,ye M.
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If (£, §) forms an adjunction betweehand M, thenes has the [1l. M ULTIRESOLUTION SIGNAL DECOMPOSITION
property To obtain a mathematical representation for a multiresolution
signal decomposition scheme, we need a sequence of signal do-
£ </\ a:z> = /\ e(x;) (1) mains, assigned at each level of the scheme, and analysis/syn-
il el thesis operators that map information between different levels.

The analysis operators are designed to reduce information in
order to simplify signal representation whereas the synthesis op-
erators are designed to undo as much as possible this loss of

for any family {xz;|¢ € I} C L of signals. Operatof has the
dual property

information. This is a widely accepted approach to multireso-
o <\/ yz> = \/ &(yi) (2) Iution signal decomposition [2]. Moreover, as discussed in the
icl icl introduction, the analysis/synthesis operators depend on the ap-

plication at hand and a sound theory should be able to treat them

for any family {y;|i € I}. < M Qf S|g_nals. This, in particular, from a general point of view. Motivated by these reasons, we
implies thate andé are increasing (i.e., monotone) operators

An operator that satisfies (1) is called arosion whereas an preggnt In this section a general muItiresoIgtion signal decom-
operatoré that satisfies (2) is called dilation. We denote the position scheme, to be referred to as pyeamid transform
identity operator or by id., or simplyid, when there is no
danger for confusion. : o _ )
dilation §: M — £ such thate, ) constitutes an adjunction. lution signal decomposition scheme. We either consitierbe
Similarly, with every dilations: M — £, there corresponds afinite orinfinite. In the finite case, we take = {0, 1, - --, K},
unique erosiorz: £ — M such that(e, §) constitutes an ad- for SomeK < oo, whereas/ = {0, 1, ---} in the infinite

junction. If (<, 6) is an adjunction between two complete late@se. A domair¥’; of signals is assigned at each leyelNo
tices£ and M, then particular assumptions ovi; are made at this point (e.g., it is

not necessarily true thaf is a linear space). In this framework,
e§>id, 6e<id and efe=¢, 6e6=46. (3) signalanalysizonsists of decomposing a signalinthe direction
of increasingj. This task is accomplished by meansaofal-
If 4 is an operator from a complete latti€einto itself, then ysis operatora/;}: V; — Vj41. On the other handsignal syn-
¢ isidempotentif ¢»? = 1 = ¢. If ¢ is increasing and idem- thesisproceeds in the direction of decreasijigby means of
potent, then) is called anorphological filter A morphological = synthesis operatorszj: Vjy1 — V;. Here, the upward arrow
filter 1 that satisfies) < id (¢ is anti-extensive) is aopening indicates that the operatgr’ maps a signal to a level higher
whereas a morphological filtep that satisfies) > id (¢ is  jn the pyramid, whereas the downward arrow indicates that the
extensive) is alosing If (¢, 6) is an adjunction between two gperator,;! maps a signal to a level lower in the pyramid. The
complete lattice& and.M, then,eé is a closing onM andée  analysis operatop! is designed to reduce information in order
is an opening orL. This is a direct consequence of (3). to simplify signal representation at levet 1, whereas the syn-

Given a complete latticd” and a nonempty set, the set  thesis operator; is designed to map this information back to
Fun(E, T) = 7", comprising all functions: £ — 7,isa |evel j.

A. Analysis and Synthesis Operators

complete lattice under the pointwise ordering We can travel from any levélin the pyramid to a higher level
) 4 by successively composing analysis operators. This gives an

In this paperFun(E, 7) represents the signals with domain
FE and values iri7. The least and greatest elementsZofare
denoted byL, T respectively)A7 = L, V7 = T.We are \hich maps an element ifj to an element i;. On the other
mainly interested in the case wheh is the d-dimensional o4 the composed synthesis operator

discrete spaceZ¢. Two basic morphological operators on ’

YLy =l ], G (6)

Fun(Z¢, T) are the (flatydilation &4 and the (flat)erosione 4, i =il el > (7)
given by takes us back from levglto leveli. Finally, we define the com-
osition
Sa(a)(n) =(x @ A)(n) = \/ x(n— k) @ P
bl big =il > ®8)
) = A = k). 5
eal@)(n) =( & A)n) k/&\A #n+Fk) ®) which takes a signal from levélto level j and back to level

again.
Here, A C 7¢ is a given set, the so-calletructuring element  Since the analysis operat0p§ are designed to reduce signal
The pair(e4, 6.4) constitutes an adjunction dfun(Z¢, 7). information, they are not invertible in general, and information
Thus, we may conclude that the composition = 642 4 iS an loss cannot be recovered by using only the synthesis operators
opening whereas the compositiB = 464 is a closing. We z/;Jl Therefore,z/ﬂiyj can be regarded as approximation oper-
use the following notationy s (x) = zo Aandg4(xz) = ze A.  atorthat approximates a signal at leveby mapping (by means
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of z/;]{i) the reduced information at levglincurred by(/;;’j, back The first equality in (10) simply states that the lekelpprox-

to level:. imation«; »(x) of a signalx € V; is adequate for determining
The following condition plays a major role in this paper. the levelj (j > k) approximatiom/?iyj(a:) of z. This agrees
Pyramid Condition. The analysis and synthesis operatorgith our intuition that higher levels in the decomposition corre-

4], 1} are said to satisfy theyramid conditiorif 4]+; =id spond to higher information reduction. The second equality in

onVjiq. (10) says tha’t/;i7j($), z € V;, is not modified if approximated
This condition has the following important consequences: by means of operatap; ;.
» ] is surjective; It is worthwhile noticing here that, i¥,”) = Rar(+), ;) (i.e.,
. z/;j is injective; therangeof the approximation operat@/}i,j), thenVi(” CcV;
o« pptp] = ¢l andyiplyr = ol and the second equality in (10), with= j — 1, results in

o htonl ici i Lotk T — oo T
Y, is idempotent, i.ey ;i =i,
Notice that the injectivity ofz/;j means that synthesis does not

cause information reduction. To prove, for example, ttnﬁt N . .
is surjective, takey € Vj;, and letz € V; be defined as Therefore, operatoy,; o!iefgmpos(?il';he signal spaieinto

z =, (y). Thenp! (z) = 9]¢} (y) = y. Inour report [22], we ne(gs)ted Sul:.)s.paces-“g Vi s V" € Vi, each subspace
have shown various relationships between the properties abdve. containing all “level;” (j > 4) approximations of signals

For example, we have shown that the pyramid condition is s#i-Vi- Equation (11) is a basic requirement for a multiresolution
isfied if and only ifp(/}I is surjective and/;;.z/;jz/); _ z/}]T 0”/}]4 is signal decomposmon slcheme [2] which agrees with our intu-
injective andz/;jz/;;z/;j _ w}i ition that the spacég(” ), which contains the approximations

Proposition 1: Assume that the pyramid condition is satis®f Signals at level obtained by means of operatr,;_1, con-

VI cviV v, i>i+1 (11)

fied. Then tains the approximations of signals at levebtained by means
N o of 7, ; as well.
¥, i, =idonV;, G > (9)
Vi hix =iy = Yixthij, P> k> (10) B. Pyramid Transform
In particular,7); ; is idempotent. Although, as a direct consequence of the pyramid condition,
Proof: Erom (6), (7), and the pyramid condition, we havéhe analysis operato,v; is the left inverse of the synthesis op-
that eratorz/;j, itis not true in general that it is also the right inverse:
W]t =l gl el I z/;jz/;;(a_:) is only an approximation of € V;. Therefore, the
AT JT JT — . ’ analysis step cannot be used by itself for signal representation.
=P a¥ie - (Vi) ¥ This is not a problem however. In fact, this is in agreement with
S z/,]T_lz/,]l._l =id the inherent property of multiresolution signal decomposition

of reducing information in the direction of increasing
Analysis of a signg&: € V;, followed by syntAhesis, yields an
approximationi = 1);;41(z) = ;9 ](z) € V; of z, where

which shows (9).
From (6)—(8) and the pyramid condition, we have that

(S SN RS R R ~ p : _
Yiitik =50V Vi = I/j(”l). We assume here that there existsubtraction
=z/)fz/)il 1 -z/},l»,lz/)T,lz/)T,Q . -z/)iT 1 operator(z, #) — xz—# mappingV; x V; into a seft’; (strictly
+ J J J + ¢ J J J

. (V)J?/)})?/)}H . 'T/)zt_ﬂ/)zz_ﬂ/)zZ_Q . _z/}; speaking, we should write ; to denote dt_apend(_ance on leygl
T ’ Furthermore, we assume that there existaddition operator
=it (z,y) — &4y mappingV; x Y; into V;. The detail signal
(Pl el k] y = x—& contains information about which is not present in

L Y Y AN Z. Itis crucial that: can be reconstructed from its approximation
N : i ¢i+1 . j_rl J-t J'T—Q k % and the detail signay. Toward this goal, we introduce the
R AR L RSP following assumption operfect reconstruction

:1/6{#/’;,;' = 1/371
which shows the first equality in (10). From (6)—(8) and the
pyramid condition, we also have that

biathi = a0

:1/)31/)3-1—1 : "wt—1¢£—1¢£—2 ) "1/};—1—1 = {yo, #1} = {yo, y1, w2} — -+

’ (1/);1/}3)1/)ii+1 . '1/)}'711/);711/);—2 ’ 1/)I —{vo, v1, o, ¥y, Tt — o (12)
= =i i (Pl Y )Y

! 1 T T T

'j/’k+T1 B '1/ij—11/’j—11/)j—2 : "1/%‘ zo=x €V

=;i¥i; = Vi i1 =9} (25) € Vips,  §20. (13)
which shows the second equality in (10). [ | Yj = a:jiz/;j (zj41) €Y

PHasd) =z, fzeV; andi =1 41(2).

This leads to the following recursive signal analysis scheme:
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Notice that, because of the perfect reconstruction conditic
signalz € V, can beexactlyreconstructed from:;,, and
Yo, Y1, - - -, Y; by means of the backward recursion

z=m0, z; =1 (zjq)ty, J>0 (14)

z
Example 1: The specific choice for the subtraction and ad_o"
dition operators depends upon the application at hand. Belc
we discuss three alternatives for which the perfect reconstrt
tion condition holds. In all cases, we assume that our signals @
in Fun(&, 7), for some gray-value sét. Now, it suffices to
define subtraction and addition operatorsn
1) Assume tha’ C R and let?7’ = {t —sjt, s € T}. We
define a subtraction operatff, s) — t — sfrom7 x 7
into7’. Obviously, the perfect reconstruction condition it
valid if we choose the standard additieras the addition

operator.
2) Suppose thdl is a complete lattice. If we know that the
approximation signak satisfiesz < z pointwise (see (b)
Section V for an example), then we can define i ) ] o
Fig. 1. lllustration of (a) a three-level pyramid transform and (b) its inverse.
. t, ift>s
t=s = { 1, ift=s (15) 5) " andy' are translation invariant. The translation invari-
ance condition should hold for every translation operator
where_L is the least element &F. For + we simply take T = Ty, given by(rg pz)(m, n) = x(m — k, n —1).
] A straightforward computation shows that there egitvo-
t+s=tVs. (16) |ution kernelsh, h such thaty™ and+! are of the following

. ) - general form (see Rioul [7]):
It is easy to verify thak+(¢t—s) = ¢, for everyt, s € T -
with s < ¢. b1 x)(m, n) = h(2m —k, 2n — Da(k, 1
3) Assume thaf is finite, say7 = {0, 1,---, N — 1}. (¥ 2)(m, n) Z ( ’ Jalh, 1)

Define + and — as the addition and subtraction in the k’loo =
Abelian groupZ v, i.e.,t+s = (t + s)mod N andt—s = PH(x)(m, n) = Z h(m — 2k, n — 2D)z(k, 1).
(t — s)mod N, where “mod” denotesnodula Observe k,l=—oo
that, in the binary case, both and— correspond to the .o pyramid condition) ! = id amounts to
“exclusive OR” operator. [ | o
The process of decomposing a sigrale V; in terms of Z ﬁ(gm —k, 2n = Dh(k, 1) = §(m, n) (17)
(12), (13) will be referred to here as thgramid transfornof z, ki=—oco

whereas the process of synthesizingy means of (14) will be
referred to as thenverse pyramid transfornBlock diagrams
illustrating the pyramid transform and its inverse, whén=
{0, 1, 2}, are depicted in Fig. 1.

where$ is the 2-D Dirac-delta sequence, givendgyn, n) = 1,
' if m = n =0, and 0 otherwise. This is known as thierthog-
onality condition
Let us consider the case when, in the analysis step, a
2 x 2 pixel block {(2m, 2n), (2m + 1, 2n), (2m + 1, 2n +
IV. LINEAR PYRAMIDS 1), (2m, 2n 4 1)} at level;j is replaced by one pixeimn, n)

A case of particular interest to signal processing and anak levelj + 1. The value of this pixel is a weighted average
ysis applications is when the analysis/synthesis operators @v€r 16 pixels at levef, namely the pixels in the x 4 block
linear and translation invariant. In this section, we discusssdrrounding the x 2 block; see Fig. 2(a). To be precise
nonseparable extension of the original one-dimensional (1:P).)(m, n) = a(z(2m, 2n) + z(2m + 1, 2n)

Burt—Adelson pyramid to two dimensions.

We restrict attention to 2-D discrete-time signalsNe con- +2@m+1, 20 +1) + 2(2m, 20 + 1)

sider pyramid transforms satisfying the following assumptions: +b(x(2m — 1, 2n) + 2(2m — 1, 2n + 1)
1) all domainsV; are identical; +2(2m, 2n— 1) +x(2m+1, 2n — 1)
2) operatorst and— are the usual addition and difference +z(2m+2, 2n) + z(2m+2, 2n+ 1)
operatorst+ and—, respectively; Fa(@m, 20+ 2) + 2(2m + 1, 2n + 2))

3) at every levelj, we use the same analysis and synthesis
operators, i.e.z/;; andz/;j are independent of; they are
denoted by and!, respectively; +z(2m+2, 2n 4+ 2) + 2(2m — 1, 2n + 2)).

4) ¢ andy' are linear operators; (18)

+elz(2m—1,2n—1)+2(2m+2,2n — 1)
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2m+2 C b b C m+1 T q q T
= (2m+1,2n) b (22 + 1,200 + 1)
et | b a a b m q|p Pl Y
(m,n)
2m b a a b m q p .p q
=" (2m.2n) = 2m2nt]) o~
2m-1| C b b C m-l T q T
2n-1 2n 2n+1 2n+2 n-1 n n n+l
(@) (o)

Fig. 2. Stencils for (a)>T in (18) and (b))! in (19)—(22).

The synthesis step subdivides a piXet, n) at level j + 1
into four pixels {(2m, 2n), (2m + 1, 2n), (2m + 1, 2n +

1), (2m, 2n + 1)} at levelj. The values of)! () are given by

[see Fig. 2(b)]

P (x)(2m, 2n)
= pz(m, n) + g(x(m — 1, n) + z(m, n — 1))
+rz(m—1,n-1)
PHx)(2m + 1, 2n)
=pz(m, n) + q(z(m+1, n) + 2(m, n — 1))
+rz(m+1,n—1)
PH(z)(2m, 2n+1)
= pz(m, n) + q(z(m, n+ 1) +2(m — 1, n))
+rz(m—1,n+1)
YH@)(2m + 1, 2n + 1)
= pz(m, n) + q(z(m+ 1, n) + z(m, n+ 1))
+rz(m4+1,n+1).

(19)

(20)

(21)

(22)

The pyramid condition (17) leads to the following relations:

4ap 4+ 8bq + der =1
2aq + 2bp + 2br + 2¢q =0
ar + 2bq+ cp =0.
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An example, illustrating the resulting linear pyramid, is
depicted in Fig. 3. Due to the calculations associated with
(18)—(22), the resulting images will not have integer gray-values
between 0-255, as required for computer storage and display,
even if the original image is already quantized to these values.
To comply with this requirement, all gray-values of the images
depicted in Fig. 3 have been mapped to integers between 0-255,
with the minimum and maximum values being mapped to 0 and
255, respectively. Finally, and for clarity of presentation, the
size of some of the images depicted in Fig. 3 (and later in this
paper) is larger than their actual size (e.g., although the size of
21 should be half the size afy, this is not the case in Fig. 3).

It is worth noticing here that most of the linear pyramid trans-
forms used in the literature are 1-D. These transforms, when ap-
plied onimages, usseparableanalysis and synthesis operators.
The linear pyramid transform discussed in this example employs
nonseparable analysis and synthesis operators. It is, therefore,
an example of a pure (nonseparable) 2-D linear pyramid trans-
form.

V. MORPHOLOGICALADJUNCTION PYRAMIDS

In this section, we consider the special, but interesting, case
when the signal domains are complete lattices and the anal-
ysis and synthesis operators between two adjacent levels in the
pyramid form an adjunction. More precisely, we make the fol-
lowing assumptions: 1) all domairl§ have the structure of a
complete lattice and 2) the pa@«/;;, z/)]i») is an adjunction be-
tweenV; and Vy1. In this caseg] is an erosion and; is
a dilation. It is easy to see that the pyramid condition is sat-
isfied if and only if z/;j is injective, or, alternatively, iﬁ/;; is
surjective. This is a direct consequence of our comment just be-
fore Proposition 1, the fact thé’, 1) is an adjunction, and
the last two properties in (3). Notice thaﬁz/;; is an opening
and hence) ;! < id, i.e., the approximation operatgg ! is
anti-extensive.

Inthis section, we distinguish between two types of pyramids:
those ones that involve sample reduction (i.e., multiscale pyra-
mids) and those ones that do not (i.e., single-scale pyramids).

It is obvious that, due to the symmetryin<" maps the high- A- Multiscale Pyramids

frequency signals:(m, n) = (—1)™, (—1)*, (—1)™*" onto

1) Representation:n this subsection, we give a complete

the zero signal. We impose the following two normalizing coreharacterization of analysis and synthesis operators, between
ditions:¢)" andy)' map a constant signal onto the same constaméo adjacent levels = 0 andj = 1 in a pyramid, under the
signal (albeit at a different level of the pyramid). This yields thénllowing general assumptions.

following two conditions:

4a+8b+4c=1 and p+2¢+r=1.

The uniquesolution of the previous system of five equations

with six unknowns can be expressed in termg af

o 4a o 4 —1
P=9=9%.—1 " 16a-1

c= - — 3a,

b:
a, 4

Clearly, we must exclude = 1/16 in order to avoid singulari-

ties. Whenz = 1/4, we have that

1

CLIin, C:_§7 pzqzé, (23)

1) Vo = Vi = Fun(Z¢, T), the complete lattice of functions
from Z¢ into a given complete latticg of gray-values.

2) The analysis operatap’: V; — V, and the synthesis
operatory)t: Vi — Vj form an adjunction betweeW,
andVy, i.e.,

z1 <Pl (z0) & PH(z1) < 20, zo € Vo, 71 € V1.

3) For every translation = 7z, 1,, ..., x,) Of Z¢, where

(rz)(n) = (r2)(n1, n2, -+, na)
=x(ny — ki, n2 —ka, -+, na — ka)
=x(n—k), n,kecz¢
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(o) c)

Fig. 3. Multiresolution image decomposition based on the 2-D linear pyramid transform of Section IV. (a) Anrgeagits decompositiofizy, 21, @2, 23}
obtained by means of the analysis operatorin (18), wherez, b, ¢ are given by (23). (b) The approximation imadés, #1, @} obtained from{x1, 2, 3}
by means of the synthesis operator in (19)—(22), where, ¢, r are given by (23). (c) The detail imagés,, y:, v} -

we have that Proposition 2: Let (¢',4') be an adjunction on
Fun(Z¢, 7). The translation invariance conditigni 72 = 7'
W2 =yl and lr = 72! implies thaty!+ = 72! and vice versa. Every adjunction
satisfying these equivalent conditions is of the form
wherer? = 7+ denotes double translation. Pl)n) = N en—an(a(k)),
Our characterization is given in terms of adjuncti¢asd) on kcze
the complete lattic& and is closely related to the representation P ) k) =\ dioza(z(n)) (24)
of translation invariant adjunctions for grayscale functions in neze

mathematical morphology [5]. where(ey, di) defines an adjunction of, for everyk € 7<.
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Proof: We show the first part of the assertion concerning N Z4[a] = Ala] = {a}, hence, fori = 1, 2, ! (z;)(k) =
translation invariance; the other implication is proved anal@;,(z;(n)). Sinced, is assumed to be injective, we find that
gously. Assume thap' 2 = 74T, for every translation. For *(z;)(k) # ' (x2)(k). Therefore ! is injective and the

zo, 71 € Fun(z¢, 7), we have the following equivalences: pyramid condition is satisfied. [ |
Observe thatl, is injective if and only ife,d, = id. In the
Plir(zy) < w0 € (1) < YT (w0) & 21 <7711 (w0) following subsection, we consider a particular subclass of anal-

a1 <P wo) & () < 7 (w0) y_sis and syr_lthesis_oper_ators, given by (24_), Wﬁ«h c{a) peing
either the trivial adjunctio T, L) or the adjunctior{id, id).

2) Pyramids Based on Flat Adjunctions:et A C 7¢ be

given and assume thét;, di) = (id, id), for £ € A, and

o o
This yields that)!r = T W_-_ ] (ex, di,) = (T, L) elsewhere. In other words} is the support
We next prove the identities in (24). From [5, Prop. 5.3] i f (47, '), Now, (24) reduces to

follows that every adjunctiox’, ¥') onFun(Z¢, T) is of the

& 7'21/)i(.’171) < z9.

form
$l@)n) = N o2+ k).
Y@ = A doaled). 9 @® =\ ,0) I
kczd nczZ?® (25) z/)i(a:)(k) = \/ .T( 5 ) (26)
ne€Alk]

where(c}, ,,, d,, ;) is an adjunction o, for everyn, k € 7¢.
A : S
Equation (25), together with conditio' T yields In mathematical morphology, these two operators are ctified
/ _ / operators since they transform flat signals(&) = ¢o, for & in
N Chramn(@®) = A e (@(R)). the domain ofz, and_L outside) into flatsignéls); see [5, Ch. 11].
Flatness of an operator means, in particular, that no other gray-
and Valuesthanthose presentin the signal are created. The resulting
y pyramids make sense for every gray-value’Be€ R and, in
k, n, m € 7°. Similarly, equation (25), together with conditionﬁgtrit(';;utlﬁgtf?;tt:]‘:rg'giirsyt ;;]SEE = {é)dclh}-t;&rF FE)?O?U'[?]Z r?
z/}i’l' 2 TQT/JL, Ie;((ijssto the Id,entltyl;a—&m’k d:/ d%, ka2nkl)’ the pyraml,d condition is satisfied a=an
everyk, n, m € £°. Seley, = ¢, o andd, = d,, , and observe ince (7, w!) is an adjunction, th roximation signal
et ) onsteson acrtoncr. A shaniomard 1) 2 S neton e epoiede oo
Whe:s:ue wle arriveV;t the i’zjgntitie(;kia2€24). " ¥ andthe error signgg(n) = z(n) — P(z)(n) i.s nonneg.ative.
Now that we have found a characterization of analysis aE]__cE]e s_chem_e in (26) has been proposed earl_ler by _Heumans and
: . . : oet in their paper on morphological sampling (with the roles
synthesis operators which form adjunctions, we may ask our-~. " S
selves: for which of these pairs is the pyramid condition sa?I gllatlonl andzerosul\)/ln |ntr$ri:hgngled) |[_|12]' P AL
isfied? The next proposition answers this question. In the fo}f x_am[?{(% 0) (0( 1;)rp(10 ?)g'ca 0} azlatr is e)\//rizr:r:t)tr?;t
lowing, we .define thesupportA of the analysis/synthesis pairA[m_n] - ’{(ﬂ’l n)’} f’or (;n ;1) é i .Hence the pyramid
(24), as being the set of all vectotse Z* for which the ad- condition is satisfied. The op’eratogré andqy! are given by
junction (eg, di) is nontrivial; i.e.,ex, # T andd, # L,
where L, T are the least and greatest element/gfrespec-
tively. We introduce the following notation: for € z¢, we  ¥'(z)(m, n)
definez¢[n] = {k € 74|k — n € 27%}, where27¢ denotes = z(2m, 2n) A 2(2m, 2n + 1) Az(2m + 1, 2n + 1)
all vectors inz¢ with evencoordinates. The se&'[n] yield a A(2m + 1, 20) @7)
disjoint partition ofZ¢ into 2¢ parts. ForA C Z¢ andn € 7Z¢, . ’
we setA[n] = A N Z%n], which yields a partition oft com- ¥ (@)(2m, 2n)
prising at mos2¢ nonempty and mutually disjoint subsets. =¢Hx)(2m, 2n + 1) = Pt (x)(@m + 1, 2n + 1)
Proposition 3: Consider the analysis/synthesis pair of — Z/)i(a;)(gm +1, 2n) = z(m, n). (28)
Proposition 2, and lett C 7Z¢ denote its support. Suppose that

_th_ere_eX|sts am € A such that 1?‘4.1[64. {C.L}.and 2)da is This leads to a signal decomposition scheme which we call the
injective. Then, the pyramid condition is satisfied. : . )
) " morphological Haar pyramidThe operators in (27) and (28)
Proof. Assume that conditions 1) and 2) hold. We show . . .
| iq imiang . are the morphological counterparts of that of a linear pyramid
that#+ is injective. From (24) notice that S . . .
where the operators coincide with the lowpass filters associated

k—m with the Haar wavelet (see [22] for more detalils). [ |
wf«(557))

kez4 kez4

Since this identity holds for every € Fun(Z¢ 7)
n, m € 1% we conclude that;,,,,, ,, = ¢ ,,_,,, for ever

Example 3: A more interesting example is obtained by
taking A to be the3 x 3 square centered at the origin; i.e.,
A= {(_17 _1)' (_17 0)' (_17 1)’ (07 _1)' (07 0)' (07 1)*
for everyk € 7¢. If z; # x», thenzy(n) # z2(n), for some (1, —1), (1, 0), (1, 1)}. We have thatd[0, 0] = {(0, 0)},

n € 7% Letk = 2n + a, thenA[k] = ANZ2n + a] = A[0, £1] = {(0, —1), (0, 1)}, A[+1, 0] = {(-1, 0), (1, 0)},

Pk =\

rnEA[k}
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(0) ()

Fig. 4. Multiresolution image decomposition based on the morphological pyramid transform of Example 3. (a) Anzignage its decomposition
{0, 1, 72, T3} Obtained by means of the analysis operatbrin (29). (b) The approximation imagés,, &, 2.} obtained from{z,, z., x5} by means of
the synthesis operatar! in (30)—(33). (c) The detail imaggsyo, y1, y-}.

andA[£1, 1] = {(=1, —1), (=1, 1), (1, —1), (1, 1)}. The ' (x)(2m + 1, 2n +1)
operatorg)" andy! are therefore given by = z(m, n) V a(m,n+ 1) Va(m+1, n+ 1)
ve(m+ 1, n). (33)

P (z)(m, n) = z(2m+k, 2n+1), (29 . .
V@) ) /\ ( ) (29 Fig. 4 illustrates such a decomposition. Operatprand — are

—1<k,I1<1 . .
P (@) (2m, 2n) = 2(m, n) (30) ;ankdef here to be the usual addition and difference operators
P (z)(2m, 2n 4+ 1) =z(m, n) V z(m, n + 1) (31)  we should point out that the detail signals, depicted in Fig. 4,

PHz)(2m+ 1, 2n) =x(m, n) Vz(m +1, n) (32) assume only nonnegative values, which is a direct consequence
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of the fact that the analysis and synthesis operators are adjuinom mathematical morphology [4]. L&t C R, define7’ =
tions. This should be compared to the linear pyramids, in whidh — s|t, s € 7 ands < t}, and consider the set of signals
case the detail signals usually assume both positive and nBga(F, 7). Assume thate, 6) is an adjunction on the com-
ative values. This may be advantageous in image compressitete latticeFun(E, 7). Letz € Fun(F, 7) and letK > 0 be
and coding applications, as it has been already discussed in [Ebich that X +1(z) = ¥ (z), wheres® = idande’ = ee--- € (j
Finally, it has been experimentally demonstrated in [15] théines). Sincee is an opening, we have that(x) > (8¢)e’ ().
the pyramid based on (29)—(33) enjoys superior performanceDefiney; € Fun(E, 7') by

lossy compression, as compared to a number of alternative non-

linear, as well as linear, choices. [ | y; =&l (x) — (6e)e¥(x), j=0,1,---, K—1, 37
If we take A = {0} andeg = dy = id, then Proposition 3 {yK = (x). @37
is trivially satisfied. Denoting the corresponding analysis/syn-
thesis pair bys", o} , we have It is possible to reconstruetfromyo, 1, - - -, yx by means of
the (backward) recursion formula
ol (z)(n) =z(2n) (34)
o (@)(@n) =(n), ol (x)(m) =L (o Zsln ~
L ’ L ’ xj:6($j+1)+yja jIK—].,K—Q,--',O.
if m ¢ 22¢. (35)
Itis easy to verify thatr; = &7(x), hencery = .
The pair(s", ') in (26) can be written as Our attempt to fit Lantuéjoul’s skeleton decomposition into
a pyramid framework is not only successful, but even more,
' =oley and Pt = 5A0'i (36) it leads to a decomposition, which may be better than Lan-

tuéjoul’s, in the sense that it may contain less data.

) ) ) ) . Assume thatC is a complete lattice and th&t, §) is an ad-
where (z.4, 6.4) is the adjunction given by (4) and (5). Thisjynction onc. SetV; = Rarn(¢’) (i.e., therangeof operatoe?),
shows that the _anaIyS|s and synthe3|s operators of pyraméﬁiﬁ Ietz/;T: Vi — Vi andzp%: V;11 — V; be given byz/;T —
based on flat adjunctions can be implemented by means of flatdz/i - TS5t We can SJhOW the followin result [2’2]
erosions, followed by dyadic subsampling by means ‘ofand andy; =« AT ) g. i )
flat dilations, following dyadic upsampling by meanscof. Lemma 1: The pair(y/;, ;) defines an adjunction between

If we replace the erosion, in (36) by the openingacs, 77 @ndViii. e
then the pyramid condition is still satisfied, provided that we !tiS obvious that); is surjective. We therefore conclude that
make an assumption which is slightly stronger than conditidh€ Pyramid condition holds. _ -
1) in Proposition 3. Indeed, we have the following result. Let us now assume that the underlying latiices of the form
Proposition 4: Let A be a structuring element such that (&, 7), where7 C R. We can set; = Fun(E, 77),
A[0] = {0}. The analysis operatap’ = o'§4c4 and the WhereZ’ = {t —s|t, s € 7 ands < ¢}, and consider,
synthesis operataf! = 5A0i satisfy the pyramid condition. — 0 be standard addition and subtractlon._lee_n an imput
Proof: From the fact thate 4, 6.4) is an adjunction, we * € Vo = Fun(E, T), we arrive at the following signal analysis

get thaty ¢! = oTéAsA&Aoj = UT(gAgiL_ Now scheme:
zo=x €W
'840 (x)(n) = L@)(2n — k) ziy1 =¢e(x;) €Vigr, 20
glosot (z)(n oy (x)(2n J A
- k\&/A - =z — &8 (@00).
=V cl@@n-k For synthesis, we find
kcA[0]

=01 (2)(2n) = z(n). x =9, x;=&& N (ajp1)+y;, 520

This yields that) T+ = id and the result is proved. m Notice that the detail signal; can be written as
Notice that the pair(zT, 1!) in this proposition does not

constitute an adjunction. The pyramid decomposition of Sun y; = e (z) — (767)(6e)e? (). (38)

and Maragos [9] given by (z)(n) = 64e.4(x)(2n), where
A={-1,0, 1} andy' (z)(2n) = z(n) andy* (z)(2n+1) =  Ccomparing (38) to the original Lantuéjoul formula (37), we see

@(n) vV a(n+1), fits within this latter class. Notice that[0] = that, in our new decomposition, we have an extra closii.
{0_}, as required by Proposition 4. Itis not difficult to generaliz@g 4 result, the detail signal} in (38) is never larger than the de-
this example to more dimensions. tail signal in the Lantuéjoul formula (37). It may therefore give

rise to a more efficient compression. This skeleton decomposi-
tion has been found earlier by Goutsias and Schonfeld [11].

In this subsection, we show that the morphological skeletonAn alternative approach to signal decomposition, suggested
decomposition scheme can fit into our pyramidal frameworky Kresch [17], is to se¥; = Fun(E, 7) and define— by
Recall Lantuéjoul’s formula for discrete skeletons, well-knowmeans of (15). In this case; is given by (16). Given an input

B. Morphological Skeleton Decomposition
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Fig. 5. Grayscale image and the decompositions obtained by means of the Goutsias—Schonfeld and Kresch skeleton transforms.

zo = x € Vo = Fun(E, T), we arrive at the following signal Substitution ofk = K yieldszo = \/,_, 8*(yx). Thus, the

analysis scheme:

To=2T c Vo
rjy1 =¢e(x;) € Vity, 720

yi(n) = zj(n), if 2;j(n) # 8+ (zj41)(n)
’ 1, otherwise

The synthesis scheme is as follows:
r=m9, ;=& (z;0)Vy, 720. (39)

Notice that the detail signal; can be written as

yi(n) = {Ej (@)(n), if & (z)(n) # (7 87)(de)e’ (z)(n)

1, otherwise.

Assume again that there existdfa> 0 such that*1(z) =

original signal can be recovered as a supremum of dilations of
the detail signal.

The Goutsias—Schonfeld and Kresch skeleton decomposition
schemes are quite different, even though they satisfy the same
algebraic description. Fig. 5 depicts the result of applying these
decompositions to a grayscale imagérhe3 x 3 square struc-
turing elementA that contains the origin has been used in both
cases. In the Goutsias—Schonfeld cagds thetop-hat trans-
form[5] of z, sincey, = x — x o A. However, the detail signal
1o in the Kresch case takes value zero (it is black) at all pixels
at whichxz = z o 4 and equals: at all other pixels.

VI. OTHER NONLINEAR PYRAMIDS

The morphological pyramids discussed in the previous sec-
tion are based on the concept of adjunction and they all satisfy
the pyramid condition. In this section, we show that a number
of alternative nonlinear pyramids can be constructed, such that
the pyramid condition is satisfied as well. We divide this sec-
tion into three subsections, which present examples of morpho-

e¥(z)and seyx = £ (x). Apply 67 on both sides of (39), and logical pyramids, median pyramids, and pyramids that employ

use the fact that’ distributes over suprema; we firtd(z;) =
&9 (x41) V 8 (y;). This implies the following formula:

k
5 Mag_x) = \/ 8%y ), k=0,1,---, K.

i=0

grayscale quantization.

A. Morphological Pyramids

In most cases, and in order to avoid aliasing, a signal, at level
7 of a pyramid, is filtered first, by means of a lowpass filter, and
then subsampled to obtain the scaled signal at Igwvell. In
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this subsection, we discuss a morphological pyramid schemedn Pyramids with Quantization

which sampling is done first, followed by filtering. An issue that we have not touched upon so far is the topic of

_ d : :
Let £ = Fun(Z¢, 7T), where7 is a complete chain, and g, antization. Suppose that the gray-values of the signals at the
consider the elementary sampling schemegiven by (34), and o10m level of a pyramid are represented by at iédtits. In

of, given byatl(x)_(%) = x(n) a”datl_(x)(m)_ =t ifm ¢  other words, the gray-value set equils = {0, 1, - --, 2 —

27°. Here,t € T is a fixed element; in practice one cho0Se$1 The operators involved in a pyramid decomposition scheme

t = LorT [recall (35)]. Given operatorg;: £ — ﬁ,Twe may map a signal onto one with values outside this range. In par-

defineV; = Rar(o;) (i.e., therangeof operatorg;) andy; = ticylar, this holds for linear pyramids. In such cases, a quantiza-

¢;4101, 95 = ¢;0;. The pyramid condition can be written asjon step, which reduces the transformed gray-value set, may be
¢j+1aT¢jaj¢j+1 = ¢,+1. When allg,’s are identical, say, indispensable. Also, in cases where the gray-value set does not

the previous condition can be stated as follows: change by the analysis and synthesis operators (e.g., in the case
of flat morphological operators), quantization may be useful
¢0T¢gtl¢ =¢ on L. (40) in data compression. In this subsection, we briefly discuss the

problem of quantization in the context of morphological opera-

Example 4 (Toet Pyramid)in this (1-D) example, we use OrS.
the alternating filterp = Ba, wherea and 3 are the opening ~ Consider the quantization mapping 7y — 7Zn-_1, given
and closing by the structuring elemetit= {0, 1}, and choose DY a(t) = [t/2], where|-] denotes the floor function. For sim-
t = T. To show the validity of (40), fo,g/) - Ba, assume plicity, we use the same symbol to denote quantization on func-
that the input signak € V., has three consecutive valuedion spaces, i.eq can also be co_nsidered as the operator from
zn—1) = r z(n) = s, z(n + 1) = ¢. Itis easy to verify Fun(F, 7y) to Eun(E, Tn-1), given bYQ_(x)(”) = q(az(n))
that the output valug’ = (grﬁag#)(aj)(n) is given bys’ = There are two dn‘fe_rgnt ways of “expanding” a quantized value
(s V1) A (r V s). Since the input signat is an element of € 7x-1 to the original gray-value sély, namely by means
Ran(3a), it is impossible that > s andr > s. This yields ©Of mappingsd(¢) = 2¢ or e(t) = 2t 4 1. Again, we use the
thats’ = s; hence, the pyramid condition follows. same notation for their extensions to the corresponding func-
The resulting pyramidal signal decomposition scheme h#@n spaces. The following properties hold:
been suggested by Toet in [10]. It can be easily extended to the
d-dimensional case; there, one choodes {0, 1}¢. u qd(t) = 7 teTn 1 (46)

B. Median Pyramids

It has been suggested in [28] that median filtering can be . ) . ) .
used to obtain a useful nonlinear pyramid that preserves det&il§thermoreg, d, ande are increasing mappings. It immedi-
and produces a decomposition that can be compressed moréi&ly follows that(e, g) is an adjunction fron¥ _, to 7 and
ficiently than other (linear) hierarchical signal decompositioiat(g, ) is an adjunction fron¥x to 7. In what follows,
schemes. We here provide a 2-D example of a pyramid ba¥é@) only use the second adjunction. Similar results can be ob-
on median filtering that satisfies the pyramid condition (see alé§ned by using the first one as well.

[22], for additional examples). If we want to emphasize the dependence ahdd on NV, we
Assume thaf is a complete chain, and consider a pyramilﬂ/rite gn anddy . Itis obvious how the corresponding operators
for whichV; = Fun(Z2, T), for everyj, and the same analysiscan be used to construct a single-scale pyramid: remove one bit
and synthesis operators are used at every lgwgiven by of information at every analysis step. We can formalize this in

the following way: putV; = Fun(E, Ty—;) and definey] =
Y1 (x)(m, n) = median{z(2m~+Fk, 2n+D)|(k, 1) € A} (41) av—j andz/;j = dn—;. Notice that (46) and (47) guarantee that
the pyramid condition is satisfied. The following example shows

where A is the3 x 3 square centered at the origin. Take that is possible to combine quantization and (morphological)
sample reduction into one scheme in such away that the pyramid

1 om. o) = 42 condition remains satisfied.
. V¥ (@)(2m, 2n) =a(m, n) (42) Example 5 (Morphological Pyramid with Quantiza-
&7 (@)(2m, 2n +1) = x(m, n) Aa(m, n+1) (43) tion): Consider the flat adjunction pyramid, given by (26),
PH(x)(2m+ 1, 2n) =2(m, n) Az(m+1,n) (44) whereV; = Fun(Z%, Ty), in which case
PpHz)2m+ 1, 2n + 1) =z(m, n) Va(m, n + 1)
vez(m+1, n+ 1) Va(im+1,n). (45) Pl (z)(n) = /\ z(2n + k),
KeA
It is easy to verify thatyT! = id, which means that the . E—n
pyramid condition holds. Fig. 6 illustrates such a decomposi- b (z)(k) = \/ * ’
tion. Operators and— are taken here to be the usual addition neAlk]

and difference operators and—. Notice that, in this case, the
detail signals may take both positive and negative values, sinkgsume that, for some € A, Ala] = {a}; this yields that the
the resulting operatap '+ is not anti-extensive (or extensive). pyramid condition is satisfied. P&f; = Fun(7¢, 75 _,) and
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()

Fig. 6. Multiresolution image decomposition based on a median pyramid. (a) An imaged its decompositiofiz,, z1, z2, 23} obtained by means of the
analysis operatotT in (41). (b) The approximation imagdsiy, @1, &, } obtained from{x,, x5, x5} by means of the synthesis operator in (42)—(45). (c)
The detail image$yo, y1, y=}.

define quantized analysis and synthesis operators betWgenWe can writep) = qy_;i] and¢} = ¢ldy_;. The pair

andV;, as follows: (¥}, %+) defines an adjunction betwe®h andV,.1. Further-
more, the pyramid condition is satisfied, since
_ Dt =an o bda
D) (n) = K N z(2n+ k)) /2J b =an—vdn )
kcA IqN,de,j =id on Fun(Z s 'E\r,j,l).

E—n By taking+! ands! as in (29)—(33), we can construct a mor-
di@ky =2 \/ ). phological pyramid, like the one in Example 3, with the addition
neAlk] 2 of a quantization step at each level.
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Fig. 7. (a) A512 x 512 grayscale image and (b) its partial reconstruction obtained from the detail signalg-, -- -, ys} calculated by means of the
morphological pyramid transform with quantization discussed in Example 5.

When the pyramid transform is used for signal compressiosgtisfied. In [29], Salembier and Kunt address the problem of
the detail signaly, is usually removed from the decompositiorsize-sensitive multiresolution image decomposition using rank
(this is due to the overcompleteness of the pyramid transfororder based filters. Their approach, however, does not include a
e.g., see [15]). In this case, satisfactory compression perfdownsampling stage.
mance can be achieved at the expense of partially reconstructinghe exposition in this paper is largely theoretical in nature.
the original signalk,. In fact, given the pyramid decompositionOur objective was to find a simple axiomatic framework which
{y1, y2, - -+, yK } of 2o, the inverse pyramid transform reconis flexible enough to allow pyramids based on linear as well as
structs only an approximatiofy of zo. Fig. 7(b) depicts the nonlinear filters, but which nevertheless imposes restrictions
partial reconstruction of thgl 2 x 512 grayscale image depictedwhich are physically meaningful. We believe that the pyramid
in Fig. 7(a), obtained by means of inverting the decompositi@ondition in Section 1ll meets these objectives; this is, among

{y1, y2, -- -, ys} based on the previously discussed morphathers, reflected by the fact that, in the linear case, every
logical pyramid transform with quantization. m pyramid that satisfies this condition can be extended, in a
unique way, to a biorthogonal wavelet. For a proof of this fact,

VIl. CONCLUSION we refer the reader to [26], [33], where we consider nonlinear

wavelet decomposition schemes comprising two (or more)

Inthisfir_sF part of our study, on gengral multiresc_)lution s.ignaa{nalysis and synthesis operators at each level. In that study,
decompos!t!on, we presented an :_:1X|_omat|c_; treatiseyoimid we give particular attention to a new family of wavelets, the
decomposition schemes. The basic ingredient of such schergl 3

is the so-callegpyramid condition which states that synthesis 8%alledmorpho|og|cal wavelets
of a signal followed by analysis returns the original signal. This

simple and intuitive condition, which means that synthesis never
gives rise to (additional) loss of information, lies at the heart of The authors would like to thank the reviewers for their com-
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