
Facilitating the Construction of Specification Pattern-based Properties∗

Sascha Konrad and Betty H.C. Cheng†

Software Engineering and Network Systems Laboratory
Department of Computer Science and Engineering

Michigan State University
3115 Engineering Building

East Lansing, Michigan 48824 USA
{konradsa,chengb}@cse.msu.edu

Abstract

Formal specification languages are often perceived as
difficult to use by practitioners, and are therefore rarely
used in industrial software development practices. Numer-
ous researchers have developed specification pattern sys-
tems to facilitate the construction of formal specifications
of system properties. Feedback indicates that these patterns
are considered helpful, but many practitioners prefer cap-
turing properties using informal notations, such as natural
language, instead of formal specification languages. This
paper describes a project that addresses this technology
gap. First, we introduce a stepwise process for deriving and
instantiating system properties in terms of their natural lan-
guage representations. The key components of this process
are structured natural language grammars and specifica-
tion pattern systems. Second, we describe SPIDER, a pro-
totype implementation of a tool suite supporting this speci-
fication process. We illustrate the use of our approach with
a description of a stepwise construction process of property
specifications of a real-world automotive embedded system
using SPIDER.

1. Introduction
Temporal logics, in particular, real-time temporal log-

ics, are often perceived by practitioners as difficult to un-
derstand and apply. Feedback from industrial collabora-
tors indicates that, typically, only developers with exten-
sive training in formal methods are inclined to make use
of temporal logics. Thus, temporal logics and other precise
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specification languages are rarely used in the development
of software systems [13], even though they can be used
to capture properties formally in a precise and unambigu-
ous manner and can be automatically analyzed with model
checkers [4, 16, 18, 29], theorem provers [27], and other
formal analysis tools [7]. To promote the use of formal
specification techniques, we previously developed real-time
specification patterns [19] to be used in combination with
the already established qualitative specification patterns by
Dwyer et al. [8]. These patterns are intended to capture crit-
ical system properties and to be used with previously devel-
oped object analysis patterns [20]. In order to further en-
hance the accessability of these specification patterns and
their analysis tools, this paper introduces a syntax-guided
approach to deriving and instantiating qualitative and real-
time specification patterns in terms of their natural lan-
guage representations. We present SPIDER (Specification
Pattern Instantiation and Derivation EnviRonment), which
provides a graphical environment to a tool suite supporting
the derivation and instantiation of specification patterns in
terms of their natural language representation.

Numerous techniques have been developed to translate
requirements specified in natural language into formal spec-
ifications. Most of these approaches [3, 11, 15, 25, 31] use
some type of parsing and natural language processing to
construct formal specifications that can then be analyzed.
Often, these informal specifications are initially mapped to
an intermediate representation, at which point context de-
pendencies and ambiguities are resolved. The result is then
further refined into the targeted formal specification lan-
guage(s). A common problem with these approaches is the
limited ability to customize the specification style for spe-
cific domains, since the same natural language specifica-
tion may potentially vary in meaning in different domains.
In addition, for specification techniques that are based on
standard linguistic approaches, it is difficult to ensure that
a free-form user-constructed natural language sentence can
be translated into a legal formal specification [30].
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We offer two key insights to address these problems.
First, by using a grammar-driven derivation-based approach
to construct natural language representations of property
specifications, it is only possible to construct natural lan-
guage specifications that have corresponding formal spec-
ifications. Second, we base the grammar on a specifica-
tion pattern system coupled with corresponding natural lan-
guage representations. This approach enables us to cus-
tomize the specification system according to commonly-
occurring properties, natural language vocabulary, and
specification style of the domain. In our approach, domain
experts work closely with formal methods experts in con-
structing the specification grammar. Specifically, the do-
main experts use natural language to capture appropriate
properties identified for a given domain. The formal meth-
ods experts decide how to best represent these properties
in terms of appropriate target specification languages. The
resulting specifications can then be organized into a spec-
ification pattern system with an accompanying structured
natural language grammar.

This paper describes three major contributions. First, we
introduce a stepwise approach to deriving natural language
specifications that can be mapped to a repository of tempo-
ral logic formulas based on qualitative and real-time specifi-
cation patterns. We illustrate the derivation process using a
structured English grammar that we developed for specify-
ing qualitative specification patterns [8] and real-time speci-
fication patterns [19] in terms of an informal representation.
Second, SPIDER supports a model-based instantiation of a
natural language property, where a property is instantiated
with information automatically extracted from a formal sys-
tem model. This formal system model can be obtained from
the specifications of formal analysis environments, such as a
previously developed UML formalization framework [24].
SPIDER is customizable for different domain-specific nat-
ural language vocabularies, specification pattern systems,
and analysis tools. For example, the vocabulary and natural
language specification style to capture a cause-effect prop-
erty for the embedded systems domain may be quite differ-
ent than that used for a web service application. As such,
the mappings from the structured natural language grammar
to the specification patterns should reflect the appropriate
intent. Finally, SPIDER offers transparency to the formal
presentation of patterns and properties. In this paper, we il-
lustrate the applicability of our approach to specifying the
real-time requirements of an electronically controlled steer-
ing system obtained from one of our industrial collabora-
tors.

Overall, our approach combines the completeness of a
pattern system for specifying qualitative and real-time prop-
erties with the accessibility of a natural language represen-
tation. The remainder of the paper is organized as follows:
Section 2 reviews object analysis patterns and specifica-

tion patterns. Section 3 describes our specification con-
struction and analysis process, a structured natural language
grammar, and our SPIDER tool suite. Section 4 illustrates
the approach with an example derivation and instantiation
of critical properties of an electronically controlled power-
assisted steering system. Section 5 examines related work.
Finally, in Section 6 we present conclusions and discuss fu-
ture work.

2. Background
In this section, we overview object analysis patterns

for embedded systems and the specification patterns by
Dwyer et al. [8].

2.1. Object Analysis Patterns

Previously, we investigated how an approach similar to
the well-known design patterns [12], termed object analysis
patterns, can be applied in the analysis phase of embedded
system development [20]. Object analysis patterns contain
structural and behavioral information that can be used by
developers to quickly construct conceptual models of their
systems in terms of UML diagrams. In addition, they con-
tain a Constraints field with property templates specified
in terms of linear-time temporal logic (LTL) [23]. These
property templates are based on the specification patterns
by Dwyer et al. [8]. We developed MINERVA, a tool suite
that supports a pattern-driven approach to creating and an-
alyzing UML models that uses Hydra, a previously devel-
oped UML formalization framework [24] to automatically
generate formal specifications from UML diagrams. The
work described in this paper leverages MINERVA and Hy-
dra, while focusing on facilitating the construction of for-
mal property specifications based on the specification tem-
plates in the Constraints field of our object analysis pat-
terns.

2.2. Specification Patterns

Dwyer et al. [8] developed several patterns applicable to
software properties specified in different formalisms, such
as LTL [23], computational tree logic (CTL) [5], graphi-
cal interval logic (GIL) [32], and quantified regular expres-
sions (QRE) [28]. Specification patterns are categorized
into two major groups: occurrence patterns and order pat-
terns. While a given specification pattern may have several
scopes of applicability (e.g., globally, before an event/state
occurs, after an event/state occurs), the original specifica-
tion patterns do not include timing information. Therefore,
we refer to the specification patterns by Dwyer et al. as
qualitative specification patterns as they specify qualitative
properties that are not amenable to quantitative reasoning
about time.
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In our preliminary work with requirements of embed-
ded systems, it became clear that many of the requirements
were often timing-based, which could not be specified in
terms of Dwyer et al.’s specification patterns [8] in the Con-
straints field of our object analysis patterns [20]. There-
fore, we have identified a number of real-time specifica-
tion patterns [19] complementary to the qualitative speci-
fication patterns. These patterns are specified in terms of
metric temporal logic (MTL) [2, 21], timed computational
tree logic (TCTL) [1], and real-time graphical interval logic
(RTGIL) [27], all real-time extensions to logics used for
the qualitative specification patterns. The real-time speci-
fication patterns can be used to specify properties about the
duration that a boolean proposition holds, the periodic oc-
currence of a satisfied boolean proposition, and the timing-
dependent order in which boolean propositions hold.

3. Specification Derivation and Instantiation
In this section we introduce our specification derivation

and instantiation process and describe the corresponding
tool support.

3.1. Example Scenario
The following gives an example scenario that illustrates

our specification approach: Figure 1 contains UML mod-
els that will be used as a running example throughout this
section, comprising the UML class Class1 in Figure 1(a)
with the corresponding state diagram in Figure 1(b). We
use timed automata-like constructs to capture timing con-
straints in UML diagrams (please refer to [18] for details).
For the remainder of the paper, UML elements adhere to the
following style conventions: classes and states are named in
a san serif font, method names and messages are denoted
in italics, and attribute names are given in typewriter
font. Assume a user wants to verify the following property:

“Whenever Class1 is in state Wait, it will enter
the state Process within 5 time units.” (1)

The requirement captures a cause-effect relation, in which
“Class1 is in state Wait” causes Class1 to “enter the state
Process” with a real-time constraint of “within 5 time
units”.

Using our specification approach, the user follows a step-
wise process to derive1 a structured natural language sen-
tence capturing the requirement. This sentence can then be
instantiated with UML model elements (from Figure 1) and
then be mapped to a temporal logic formula in the specifi-
cation pattern system. For example, the natural language
requirement in Expression (1) can be systematically refined

1For this paper’s purposes, the word “deriving” refers to the process of
constructing a natural language sentence in a stepwise fashion that satisfies
the structured natural language grammar.

Class1

reset():void

timer1: timer

(a) Class Diagram

[timer1>=2]/Wait

timer1<=5

Process

reset()[]/

timer1:=0

timer1:=0

(b) State Diagram

Figure 1. Example UML models

into the following MTL specification, a real-time specifica-
tion pattern instance [19], which can then be used by for-
mal analysis tools, such as the Temporal Rover [7] and Hy-
dra [18]:

�((in(Class1.Wait))

→ ♦≤5(in(Class1.Process))). (2)

3.2. Specification Process
We have developed a process for deriving and instanti-

ating analyzable properties based on specification patterns.
Briefly, this process comprises three steps:

1. Derivation: Derive a natural language sentence from
structured grammar.

2. Instantiation: Instantiate the natural language repre-
sentation with model-specific elements.

3. Mapping: Map the instantiated natural language sen-
tence to the temporal logic required by the targeted for-
mal validation and verification tool and analyze.

An important component of our process is a natural lan-
guage grammar that is used to derive natural language sen-
tences that can be mapped to formal specifications struc-
tured in terms of a specification pattern system. In this pa-
per, we use a structured English grammar and a specifica-
tion pattern system that supports both qualitative and real-
time specification patterns [19]. Figure 2 contains the gram-
mar,2 where literal terminals are delimited by quotation
marks (“ ”), non-literal terminals are given in a san serif
font, and non-terminals are given in italics. The start sym-
bol S of the grammar is property and the language L(G)
of the grammar is finite. Each sentence (or string) s with
s ∈ L(G) serves as a handle that accompanies a scoped
formula of a qualitative or real-time specification pattern.
Therefore, the grammar aids in understanding the meaning
of a property without needing to analyze the temporal logic
representation. Our structured English grammar is simi-
lar in spirit to the structured English grammar for clocked
computational tree logic (CCTL) by Flake et al. [10]. One
major difference is that our grammar is based on a specifi-
cation pattern system and therefore intended to be general

2The grammar shown contains only production rules referenced in this
paper. For the complete grammar, please refer to [19].
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Start 1: property ::= scope “, ” specification “.”

Scope 2: scope ::= “Globally” | “Before ” R | “After ” Q | “Between ” Q “ and ” R | “After ”
Q “ until ” R

General 3: specification ::= qualitativeType | realtimeType

Qualitative

. . . . . .
10: orderCategory ::= “it is always the case that if ” P “ holds” (precedence-

Pattern | precedenceChainPattern1-2 | precedenceChainPattern2-1 |
responsePattern | responseChainPattern1-2 | responseChainPattern2-1 |
constrainedChainPattern1-2)

. . . . . .
14: responsePattern ::= “, then ” S “ eventually holds”
. . . . . .

Real-
time

18: realtimeType ::= “it is always the case that ” (durationCategory | periodicCategory | re-
altimeOrderCategory)

. . . . . .
22: periodicCategory ::= P “ holds ” boundedRecurrencePattern
23: boundedRecurrencePattern ::= “at least every ” c “ time unit(s)”
. . . . . .

Figure 2. Structured English grammar excerpt

enough to support translations of untimed and timed prop-
erties to multiple temporal logics. Specifically, our gram-
mar supports specifications using LTL, CTL, and GIL for
Dwyer et al.’s specification patterns [8] and MTL, TCTL,
and RTGIL for our real-time specification patterns [19].

The structured English grammar is organized according
to our classification of qualitative and real-time specifica-
tion patterns (please refer to [19] for details on the classi-
fication), in which we group specification patterns accord-
ing to categories (qualitative or real-time) and types (du-
ration, periodic, or real-time order for real-time proper-
ties, and occurrence or order for qualitative properties).
In general, there are four major choices to be made when
constructing a natural language representation of a prop-
erty with respect to this grammar. The process for using
our grammar is as follows: Initially, the users determine
(1) the scope of the property to be specified (Globally, Be-
fore, After, Between, or After-until), followed by (2) the
type and then (3) the category of the property to be spec-
ified. The final structured English sentence is constructed
by (4) choosing the corresponding specification pattern. In
the grammar, “precede” and “succeed” denote strict past
and future, respectively, while “held previously” and “hold
eventually” denotes non-strict past and future, respectively.
For example, “S eventually holds” is satisfied if S holds
in the current state, while this is not the case with “S suc-
ceeds”.

3.3. Tool Support

Figure 3 gives a data flow diagram overviewing SPIDER,
where bubbles represent processes, arrows denote data flow,
two parallel lines depict data stores, and external entities

are represented by rectangles. Initially, Formal methods ex-
perts and Domain experts collaborate to create a domain-
specific collection of formal specifications and associated
natural language representations. Using the Pattern System
Manager, they then construct a Structured natural language
grammar with descriptors for the natural language repre-
sentations and accompanying Formal specification mapping
files that describe how to map these natural language repre-
sentations to formal specifications. The natural language
grammar is then used by the Property Deriver to guide the
SPIDER user in constructing a structured language sentence
capturing the property to be specified. In previous investi-
gations, we developed a UML formalization framework, in-
cluding the Hydra tool, that produces formal specifications
for UML diagrams [18, 24]. For the current project, the for-
mal system model comes from Hydra. The Formal Model
Interpreter automatically extracts information from the sys-
tem model, which is used by the Property Instantiator to
instantiate the structured language sentence with boolean
propositions containing model-specific elements. In addi-
tion, the Property Instantiator invokes the Property Ana-
lyzer corresponding to the targeted analysis tool. At this
point, the Property Analyzer maps the instantiated natural
language sentence to the corresponding specification pat-
tern instances understood by the targeted analysis tool. Fi-
nally, the Property Analyzer provides analysis results back
to the Property Instantiator, which are then visually pre-
sented to the user.

SPIDER can be configured to support commonly-
occurring properties, natural language vocabulary, and
specification style of a domain. More specifically, SPIDER
can be configured as follows:
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Figure 3. Data flow diagram overviewing our SPIDER tool suite

Pattern System Manager: SPIDER offers graphical
support for creating and modifying structured natural lan-
guage grammars. In addition, the formal specifications
as well as their associations to natural language sentences
can be modified. Currently, SPIDER includes a grammar
and specification patterns for the specification patterns by
Dwyer et al. [8], as well as a grammar and specification
patterns for an extended specification pattern system (used
in this paper) that also includes our real-time specification
patterns [19].

Formal Model Interpreter: SPIDER uses an ab-
stract, model-independent representation of a formal sys-
tem model. This representation is populated by the Formal
Model Interpreter tailored for the specific formal analysis
tool. Presently, SPIDER supports the extraction of informa-
tion from formal models created by Hydra [24], as well as
Promela models for the model checker Spin [16].

Property Analyzer: The formal analysis tool-specific
Property Analyzer is responsible for the steps required to
invoke the formal analysis tool. The Property Analyzer first
maps the natural language specification to the specification
logic understood by the targeted formal analysis tool. Dur-
ing this mapping, the model-specific elements in the nat-
ural language specification are also mapped to a represen-
tation expected by the analysis tool. Finally, the Property
Analyzer invokes the formal analysis tool with parameters
required to verify the system model under consideration.
Currently, SPIDER supports analysis using the Spin model
checker [16] and support for Kronos [4] is being developed.

The main elements of SPIDER, the Pattern System Man-
ager, the Property Deriver, and the Property Instantiator

with the Formal Model Interpreter and the Property Ana-
lyzer are now described in more detail:

Pattern System Manager. The Pattern System Manager
is intended to be used by the domain experts and for-
mal methods experts as an administrative tool that config-
ures SPIDER according to a specification pattern system.
It aids in the construction and management of specifica-
tion pattern systems with their associated structured lan-
guage grammars. Specification patterns can be associated
with sentences automatically extracted from the language
of the grammar and these associations are stored in mapping
files. When the natural language grammar or the specifica-
tion pattern system is modified, the Pattern System Man-
ager preserves as many mappings as possible, prompting
the user to reassign elements that have no mappings asso-
ciated. The grammar is captured in Extended Backus-Naur
Form (EBNF) and internally translated to a BNF represen-
tation. The use of EBNF leads to a higher level of abstrac-
tion and aids in the understandability and readability of the
grammar, while BNF is easier to process when providing
user guidance, due to simplicity. For grammar rules con-
taining choices (e.g., scope and specification in Figure 2),
additional descriptors are included. These descriptors com-
prise two parts: An abbreviated name of the choice and a
textual explanation of each choice. This information is used
in the derivation process to provide guidance and feedback
to the user when making a choice in the derivation process.

The Pattern System Manager is also used by the formal
methods experts to specify the mappings between the sen-
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tences generated from the natural language grammar and
elements from the specification pattern system.

Property Deriver. Once SPIDER has been instantiated
with a natural language grammar, mappings to a specifi-
cation pattern system, and appropriate analysis tools, the
Property Deriver guides the user through the step-by-step
derivation of a natural language representation of the prop-
erty to be specified. Non-terminals are highlighted in the
sentence that is being derived and the user resolves these
non-terminals with applicable production rules. The Prop-
erty Deriver assists the user in making specification choices
by offering descriptive information about the consequences
of each choice. Each time the user highlights a particular
choice, the Property Deriver highlights corresponding de-
scriptors. In addition, the Property Deriver gives a preview
of selecting a particular choice for the sentence being de-
rived.

Using the Property Deriver for our running example, the
user would derive the following structured English sentence
from Expression (1):

“Globally, it is always the case that if P holds,
then S holds within c time units.” (3)

This sentence captures a real-time response property, where
P, S, and c are placeholder variables to be instantiated later
with formal system model elements.

Figure 4 shows a screen capture of the Property Deriver.
The Sentence derivation field shows the current sentence
obtained from the derivation process. The Choices field
contains the specific choices at this step, and the Descrip-
tion field gives descriptions for each choice. The Derivation
history contains a tree representation of the non-terminals
resolved thus far, and it can also be used to undo edits.

Property Instantiator, Formal Model Interpreter, and
Property Analyzer. Figure 5 shows a screen capture of
the Property Instantiator. The Sentence instantiation field
contains elements that are used to instantiate the derived
natural language sentence. The Property Instantiator ex-
tracts model-specific information from formal system mod-
els (displayed in the Current model elements fields). To
accomplish this task, the Property Instantiator potentially
uses several Formal Model Interpreters, each of which has
the ability to read a certain input format of a formal model.
For example, in this paper the Formal Model Interpreter ex-
tracts information from the Hydra Intermediate Language
(HIL) models of our Hydra UML formalization frame-
work [24] to obtain state, signal, and variable names for
each class. These elements can be inserted into boolean
propositions to be used in the placeholder variables of a
property.

For example, for the class and state diagrams in Figure 1,
the following information is extracted:

State names: Wait, Process
Signal names: reset
Variable names: timer

A boolean proposition field in the Property Instantia-
tor helps the user construct boolean expressions using el-
ements from the formal system model. For our running
example in Expression (3), the condition for P is instan-
tiated with (in(Class1.Wait)) (meaning that Class1
is in state Wait), the condition for S is instantiated with
(in(Class1.Process)) (meaning that Class1 is in
state Process), and the value of c is set to 5 time units.

The structured English result from this instantiation step
is as follows:

“Globally, it is always the case that if
(in(Class1.Wait)) holds, then
(in(Class1.Process)) holds
within 5 time units.” (4)

The Property Instantiator uses a Property Analyzer com-
ponent to translate the instantiated natural language sen-
tence into the formal specification language of the targeted
formal specification tool and to invoke the analysis. For
our real-time specification patterns [19], the instantiated
natural language sentence in Expression (4) is automati-
cally mapped to the temporal logic representation in Ex-
pression (2). The Property Analyzer returns the analysis re-
sults in the Analysis results field and sets the color of the
traffic light, all within the Property Instantiator window.
A red color indicates that the property was violated and a
counter example is returned; a green color indicates that the
property holds for the selected model; and a yellow color in-
dicates that problems occurred during the analysis process
that prohibited the successful verification of the property.
Example problems include exceeding the available system
memory for storing the states of the model during an ex-
haustive state space exploration. By offering the ability to
plug-in additional Formal Model Interpreter and Property
Analyzer components, SPIDER is configurable to support
numerous analysis tools beyond the ones explicitly men-
tioned in this paper.

4. Illustrative Example
We illustrate this approach with an example specifica-

tion derivation and instantiation on an electronically con-
trolled steering (ECS) system [36] obtained from one of
our industrial collaborators, Siemens Automotive. The ECS
system is intended to supplement the benefits provided by
traditional hydraulic power steering using an electric-motor
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Figure 4. Annotated screen capture of the Property Deriver

power assist mechanism to provide responsive power steer-
ing.

4.1. Using SPIDER

We demonstrate the use of SPIDER with example instan-
tiations of both qualitative and real-time properties of the
ECS system. For brevity, global scope is used for all prop-
erties.

Property 1
Requirement: “If a failure occurs, the malfunction in-
dicator light should be illuminated.”

This requirement does not contain any timing informa-
tion, therefore the type is qualitative. Clearly, the property
should be in the order category, since the requirement spec-
ifies that after a state in which a failure occurs, the system
should transition to a state where the malfunction indicator
light is illuminated. Finally, the user selects the Response
Specification Pattern from Dwyer et al.’s patterns [8], since
the requirement to be specified is a cause-effect relation and
involves two conditions. As a result, the user obtains the
following structured English sentence upon completion of
the derivation step:

“Globally, it is always the case that if P holds,
then S eventually holds.” (5)

(Grammar 1, 2, 3, 10, 14)

Next, the Property Instantiator is used to replace P and S
with boolean propositions describing the appropriate states.
SPIDER displays all the classes, with accompanying sig-

nal, state, and variable names, from the system model. In
this case, we are interested in the variables of the Fault-
Handler and MalfunctionIndicatorLight classes. Assum-
ing that the boolean proposition (FaultHandler.No-
OfFailures �=0) indicates the occurrence of failures
and (MalfunctionIndicatorLight.Status=1)
denotes that the malfunction indicator light is activated, the
following structured English sentence is obtained after the
instantiation step:

“Globally, it is always the case that if (Fault-
Handler.NoOfFailures �=0) holds, then
(MalfunctionIndicatorLight.Status=1)

eventually holds.” (6)

This instantiated sentence can then be mapped to a tem-
poral logic representation. The following temporal logic
property, automatically generated by SPIDER, denotes the
LTL representation of the property captured in natural lan-
guage in Expression (6), which can be analyzed by the
model checker Spin [16]:

�((FaultHandler.NoOfFailures �=0)
→ ♦(MalfunctionIndicatorLight.

Status=1)). (7)

Property 2
Requirement: “Once every second, a fault status re-
port must be sent over a controller area network
(CAN) communication link.”

Property 2 clearly contains timing information (i.e.,
“Once every second”), therefore the user selects the real-
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Figure 5. Annotated screen capture of the Property Instantiator

time type when deriving the corresponding property. Next,
the user indicates whether the property under considera-
tion falls in the duration, periodic, or real-time category.
Since this property denotes a recurring event, the property
falls in the periodic category, and then the user selects the
Bounded Recurrence Specification Pattern [19]. Therefore,
the derivation step yields the following structured English
sentence:

“Globally, it is always the case that P holds at least
every c time unit(s).” (8)

(Grammar 1, 2, 3, 18, 22, 23)

Let proposition (in(CANLink.TransmitFault-
Status)) denote that the CANLink is in state Transmit-
FaultStatus, in which it transmits the current fault status of
the system over the CAN link.3 In addition, we assume that
the timing granularity of the model is equal to 100 millisec-
onds, which means that 10 time units capture one second.
Therefore, c is replaced with 10, denoting 10 time units.
This instantiation leads to the following instantiated struc-
tured English sentence:

“Globally, it is always the case that (in(CAN-
Link.TransmitFaultStatus)) holds at
least every 10 time unit(s).” (9)

3The Controller Area Network (CAN) is a high-integrity serial data
communications bus for real-time applications [34].

which SPIDER maps to the MTL formula:

�(♦≤10(in(CANLink.TransmitFaultStatus)))). (10)

This MTL formula can be used by our timing-extended
UML formalization framework [18] to check for adherence
of the formalized UML system model to the requirement
under consideration.

5. Related Work
Numerous approaches [3, 11, 15, 25, 31] construct for-

mal specifications in different forms (such as temporal log-
ics, OO-based representations, Prolog specifications), from
natural language to support a variety of tasks, ranging from
completeness and consistency checking to formal valida-
tion and verification. While these approaches allow the
use of moderately restricted natural language (a completely
unrestricted language is considered undesirable for practi-
cal and technical reasons [31]), this type of extraction is a
more ambitious goal than our approach using syntax-guided
derivation and model-based instantiation, since it requires
advanced natural language processing approaches and tech-
niques to deal with imprecision and ambiguities inherent to
natural language specifications.

Fantechi et al. [9] use natural language constructs that
map directly into ACTL, an action-based variant of CTL.
User input is used to resolve ambiguities that might be en-
countered in the input phrase. While this approach is di-
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rectly related to ours, it restricts the source language ac-
cording to the structure of the targeted temporal logic [31].
While our approach also restricts the source language, this
restriction is not due to the structure of the targeted tem-
poral logic(s), but, instead, is due to the previously created
natural languages representations. As such, our grammar
can support multiple target languages because a specifica-
tion pattern system may include mappings to multiple for-
mal specification languages.

In summary, none of the aforementioned approaches
combines the completeness of a patterns system, the sup-
port for real-time properties, amenability for formal valida-
tion and verification with a wide variety of formal valida-
tion and verification tools, and the accessibility of a natural
language representation in any natural language subset for
which a context-free, non-recursive grammar without repe-
titions can be constructed.

Smith et al. developed Propel [35], where they extended
the specification patterns by Dwyer et al. [8] to address im-
portant and subtle aspects about a property, such as what
happens in a cause-effect relation if the cause recurs be-
fore the effect has occurred. These extended specification
patterns are specified in terms of finite-state automata in-
stead of temporal logic formulae. Smith et al. also offer
disciplined natural language templates that help a specifier
to precisely capture a property in natural language. The
natural language templates are comparable to the natural
language-based representations that can be created using
our structured English grammar. Similar to our syntax-
guided derivation process, Propel also offers decision tree
templates to aid the user in deciding which property tem-
plate is suited for specifying the intended property. Differ-
ing from our approach, Propel does not offer support for
including real-time information and does currently not in-
clude (customizable) support for instantiating a property
with information automatically extracted from a formal
model and analyzing the formal model for adherence to the
specified property.

Mondragon et al. developed a tool called Prospec [26]
for the specification of properties based on Dwyer et al.’s
specification patterns. The tool offers assistance in the spec-
ification process and extends the specification pattern sys-
tem by Dwyer et al. with compositional patterns. Differing
from our tool suite, they do not include support for natural
language representations or real-time information.

Other tools related to SPIDER are general-purpose
syntax-directed editors without inherent support for for-
mal analysis, such as the Synthesizer Generator [33]. In
addition, tools like the IFADIS toolkit [22] and the MT
toolset [6] offer temporal logic templates to specify proper-
ties to be checked, but do not incorporate natural language
support.

6. Conclusions
This paper described our configurable process for deriva-

tion and instantiation of analyzable natural language prop-
erties. We have implemented this approach in our SPI-
DER tool suite by supporting both existing qualitative and
real-time specification pattern systems. We illustrated the
derivation and instantiation process on an embedded system
from the automotive industry. Combined with our UML
formalization framework, users are able to specify system
models in terms of UML and analyze these models using
the natural language representation of specification patterns
obtained from the derivation and instantiation process sup-
ported by SPIDER.

We acknowledge that the stepwise, specification-
facilitating features, while helpful for the novice user,
might be too constraining for users with advanced knowl-
edge in formal specification and analysis. This problem
is commonly encountered in syntax-directed editing ap-
proaches [17] and we plan to investigate techniques to mit-
igate these problems, such as the use of multiple views and
different levels of assistance for the derivation and instantia-
tion tasks. In addition, we also plan on investigating how to
assist users in constructing the natural language grammar,
since the grammar is pivotal for the effective application of
our approach. Other directions for future work are also pos-
sible, such as integrating extensions that address property
subtleties similar to the Propel work [35].

Finally, support for additional analysis tools could be
integrated into SPIDER. Currently, SPIDER supports our
timing-extended UML formalization framework and the
model checker Spin [16], and support for Kronos [4] is be-
ing developed. Other possible extensions include the model
checking tools UPPAAL [29] and Hytech [14]. Also, the
usability of the tool could be enhanced according to user
feedback. Additional pattern systems and natural languages
grammars could be included in the tool suite and we expect
that different combinations of temporal logics and applica-
tion domains will lead to different sets of pattern systems
and natural language grammars.
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